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The energy spectrum of central divalent impurity is calculated using the effective mass approximation in a

spherical quantum dot (QD). The dipole moment and oscillator strength of interlevel transition is defined. The

dependence of linear absorption coefficient on the QD size and electromagnetic frequency is analyzed. The

obtained results are compared with the results of univalent impurity.
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1. Introduction

The semiconductor quantum dots (QDs) are widely used in opto- and nanoelectronics due to their
unique properties. Lasers, sources of light, LEDs are constructed based on nanosystems. Sources of ter-
ahertz radiation, which are constructed based on QDs, take a special place [1]. The feature of terahertz
radiation lies in the fact that it practically does not ionize materials, contrary to the X-ray, and is capable
of penetrating into materials. That is why this kind of radiation is widely used in medical tomography [2],
in security systems, in producing high resolution images of microscopic objects [3]. The possibilities of de-
veloping high-speed THz communication systems are studied [4]. The detector of terahertz radiation was
proposed based on QDs [5, 6]. Taking into consideration that the energy of interlevel transitions responds
to the terahertz range, the study of interlevel transitions became the basis for theoretical description and
prognostication of the properties of terahertz detectors and sources.

Single-electron states in the QD which definitely depend on the QD size, the presence of defects, es-
pecially impurities, are the basis of interlevel transition analysis. At present, the theory of shallow hy-
drogenic donor impurities is widely developed in the QD. An exact solution of Schrödinger equation for
the central impurity was derived [7], the energy spectrum of the off-central impurity was obtained using
different methods in spherical [8] and ellipsoidal [9] QDs. The cubic [10] QDs are analysed too. Since the
QD can contain several impurities, the problem regarding the QDwith two impurities was solved [11, 12].
Based on the obtained results, the linear and nonlinear optical properties of the QD with impurities [8–
10, 12–14] were calculated using the density matrix and iteration method [15].

Experimental data show that QDs can be doped with impurities which are divalent [16]. In particular,
in this work it was shown that the zinc impurities penetrate the CdS QDs. This leads to the changes of
the optical properties which are connected with interband (high-energy) and interlevel intraband (low-
energy) transitions.

The above mentioned as well as the lack of a consistent theory of central divalent impurities in spher-
ical QDs, which could make possible the calculation of the ground and excited states, brings about the
necessity to consider the divalent impurity in a spherical QD; to determine the energy spectrum of this
impurity; to calculate interlevel transitions in the QD with divalent impurity; to compare the obtained
results with the corresponding results of monovalent impurity.
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2. Eigenvalues and eigenfunctions

We consider a spherical nanosize heterosystem. It consists of a nanocrystal of radius a having elec-
tron effective mass m∗

1 , which is placed in a matrix having electron effective mass m∗
2 . There is a divalent

impurity in the center of the QD. Let the heterosystem be made of crystals that have the values close to
dielectric permittivity. This makes it possible to introduce the average value of dielectric permittivity ε.
The effective-mass Hamiltonian of this system can be written as follows:

Ĥ = Ĥ1 + Ĥ2 +
e2

4πε0εr12
, (2.1)

where

Ĥi =−ħ2

2
∇i

1

m∗ (ri )
∇i +U (ri )− Z e2

4πε0εri
= Ĥ (0)

i
− Z e2

4πε0εri
, (2.2)

Z = 2. The potential energy caused by the heterostructure band mismatch is given by:

U (ri ) =
{

0, ri É a,

U0, ri > a.
(2.3)

The Schrödinger equation with the Hamiltonian (2.1) cannot be solved exactly. Therefore, the Ritz vari-
ation method has been used herein. Since the electrons are fermi-particles, the wave function should be
antisymmetric. The approach of [8, 17, 18] has been used for the chosen variation function. Nonetheless
in [17, 18] there was calculated only the ground state energy of divalent impurity, and in [8] there was
calculated the energy of the ground state and the first exited states of the monovalent impurity. In both
cases, one variational parameter was used. To improve the accuracy, two variational parameters are in-
troduced in the present paper in the coordinate wave functions of ground state and some exited states of
divalent impurity:

ψ1 = c1 |1s,~r1,α1〉
∣

∣1s,~r2,β1

〉

, (2.4)

ψ2 = c2

(

|1s,~r1,α2〉
∣

∣1p,~r2,β2

〉

−
∣

∣1p,~r1,α2

〉∣

∣1s,~r2,β2

〉)

, (2.5)

ψ3 = c3

(

|1s,~r1,α3〉
∣

∣1p,~r2,β3

〉

+
∣

∣1p,~r1,α3

〉∣

∣1s,~r2,β3

〉)

, (2.6)

ψ4 = c4

(

|1s,~r1,α4〉
∣

∣1d ,~r2,β4

〉

−|1d ,~r1,α4〉
∣

∣1s,~r2,β4

〉)

, (2.7)

ψ5 = c5

(

|1s,~r1,α5〉
∣

∣1d ,~r2,β5

〉

+|1d ,~r1,α5〉
∣

∣1s,~r2,β5

〉)

, (2.8)

where

∣

∣ j ,~ri ,γq

〉

= R j

(

ri ,γq

)

Y
m j

l j

(

θi ,ϕi

)

= A j Y
m j

l j

(

θi ,ϕi

)







jl j

(

kn j ,l j
ri

)

exp
(

−γq ri

)

, ri É a,

kl j

(

xn j ,l j
ri

)

exp
{

−γq

[

m2
∗

m1
∗ (a − ri )−a

]}

, ri > a,
(2.9)

j = 1s,1p,1d ; index q = 1,2,3,4,5 enumerates variational parameters for states (2.4)–(2.8); γ = α,β

are variational parameters, index i = 1,2 enumerates electrons; l1s = 0, l1p = 1, l1d = 2; m1s = 0,
m1p =−1,0,1; m1d =−2,−1,0,1,2. The spherical Bessel function of the first kind jb(z) and the modified
spherical Bessel function of the second kind kb(z) are the solutions of a Schrödinger equation regarding
the particle in the spherical potential well with the Hamiltonian Ĥ (0)

i
,

kn j ,l j
=

√

2m1
∗

ħ2
E (0)

n j ,l j
, xn j ,l j

=
√

2m2
∗

ħ2

(

U0 −E (0)
n j ,l j

)

,

n1s , n1p , n1d enumerates the solutions of dispersion equation when l is fixed. A j can be found from
the normalization condition for the function (2.9). ψ1, ψ3, ψ5 are functions of singlet states; ψ2, ψ4 are
functions of triplet states. Orthogonality of total wave functions (the coordinate part and the spin part)
are provided by the orthogonality of spin parts of wave functions and by the orthogonality of spherical
harmonics. The single particle wave function ensures the implementation of a boundary condition.
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Figure 1. The energy of divalent impurity as a function of the QD radius. Numbers denote energies of

respective states: 1— ψ1, 2— ψ2, 3— ψ3, 4— ψ4, 5— ψ5. Horizontal lines correspond to the energy of

the divalent impurity in the bulk CdS.

After substitution (2.4)–(2.8) into the Schrödinger equation with Hamiltonian (2.1), the functional was
found which depends on two variational parameters for excited states and depends on one variational
parameter for the ground state. The performed procedure of numerical minimization makes it possible
to get the corresponding energy states and find the values of variational parameters, and thus ultimately
determine the wave functions.

Calculation of electron discrete energy was performed for heterostructure CdS/SiO2 with the follow-
ing parameters: m∗

1 = 0.2m0, m∗
2 = 0.42m0 , ε= (5.5+3.9)/2 = 4.7, U0 = 2.7 eV, where m0 is free electron

mass. The energy spectrum of a divalent impurity is presented in figure 1. Due to spherical symmetry,
ground and excited states are degenerated by the magnetic quantum number. Figure 1 shows that an
increase of the QD radius leads to a decrease of the energy of the ground state which quickly becomes
saturated. For larger QD radius, the energy of excited states leads to the values corresponding to the val-
ues of the bulk crystal. Similar dependencewas observed for amonovalent impurity [8]. This dependence
is caused by a small effective Bohr radius a∗

b
= 12.44 Å and a large confinement. Although the effective

Bohr radius is small, the volume a∗3
b

approximately contains 10–12 elementary cells. This is the reason
for using the Coulomb model potential interaction of electrons having an impurity.

An important characteristic of the QD having a divalent ormonovalent impurity is the binding energy.
In the case of a divalent impurity, Eb is calculated by the similar formula [19]:

Eb,I I = E0 +E1s,Z=2 −E1 , (2.10)

where E0 is the electron energy of the QDwithout impurities, E1s,Z=2 is the ground state energy of the QD
having a singly ionized divalent impurity, E1 is the energy of the state ψ1 of the divalent impurity (2.4).
In the case of an univalent impurity, the binding energy is defined by the formula:

Eb,I = E0 −E1s,Z=1, (2.11)

where E1s,Z=1 is the energy of the univalent impurity. If the QD radius reduces, the binding energy in-
creases in both cases. For very small radii, Eb decreases (figure 2). This is caused by an increase of the
probability of location of the electrons outside the QD in both cases. However, if the QD has a divalent
impurity, the binding energy is larger.

3. Optical properties

Energy spectrum and wave functions make it possible to calculate interlevel transitions. Selection
rules by spin variables state that transitions are possible only between singlet-singlet and triplet-triplet
states.
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Figure 2. (Color online) The binding energy of the univalent impurity (curve 1) and of the divalent impu-

rity (curve 2).

Let the QD be irradiated by the linearly polarized light along the z direction. Then, in the dipole
approximation, interlevel transitions are possible between the states ψ1 and ψ3; ψ2 and ψ4; ψ3 and ψ5.
Dipole transition matrix elements between those states are given by:

d13 =
〈

ψ1

∣

∣ez
∣

∣ψ3

〉

, d24 =
〈

ψ2

∣

∣ez
∣

∣ψ4

〉

, d35 =
〈

ψ3

∣

∣ez
∣

∣ψ5

〉

. (3.1)

The dependence of the square of the dipole transition matrix element on the QD radius is presented in
figure 3 with logarithmic scale.

∣

∣d1s−1p /e
∣

∣

2
for the monovalent impurity is plotted too. Figure 3 shows

that the corresponding values for a monovalent impurity are bigger than for the divalent one. This is due
to the changes in the average distance of electrons in their respective states. Besides, it was established
that all the curves for a large QD radii tend to the values that correspond to the values of the bulk crystal.

The oscillator strength of interlevel transitions is also defined

fmn =
2m∗

1

ħ2e2
(En −Em) |dmn |2. (3.2)

The dependences are presented in figure 4 with logarithmic scale. The oscillator strength of interlevel
transitions for a monovalent impurity in the center of the QD is plotted too. This is in agreement with
the result of other works [8, 20]. Similarly to the dipole momentum, the oscillator strength of the divalent
impurity is smaller than the oscillator strength of the monovalent impurity. This dependence is caused
by the dependence of the dipole momentum and the transition energy Etr=En −Em (figure 5).
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Figure 3. The square of the dipole momentum of interlevel transitions. Solid curves correspond to the

divalent impurity. The dotted curve corresponds to the monovalent impurity. Horizontal dashed curve

denotes the square of the dipole momentum of interlevel transitions of the monovalent and divalent

impurity in the bulk crystal.
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Figure 4. The oscillator strength of interlevel transitions. Solid curves correspond to the divalent impu-

rity. The dotted curve corresponds to the monovalent impurity. Horizontal curves denote the oscillator

strength of interlevel transitions of the monovalent and divalent impurity in the bulk crystal.

The above mentioned dependence of the dipole momentum and the transition oscillator strength
effects the height of the absorption peaks. For a two-level system, the density matrix and iterative pro-
cedure were used to derive the absorption coefficient [13–15]. In this approach, the linear absorption
coefficient can be expressed as follows:

αm,n (ω) =ω

√

µ0

ε0ε

N
∣

∣dm,n

∣

∣

2ħΓ
(En −Em −ħω)2 + (ħΓ)2

, (3.3)

where ε0 is electric constant, µ0 is magnetic constant, c is the speed of light, N ≈ 3 ·1016 cm−3 is carrier
concentration, ħΓ is the scattering rate caused by the electron-phonon interaction and by some other
factors of scattering. If ħΓ limits to zero, one can obtain:

αm,n (ω) = lim
ħΓ→0

(

ω

√

µ0

ε0ε

N
∣

∣dm,n

∣

∣

2ħΓ
(En −Em −ħω)2 + (ħΓ)2

)

=ωπ

√

µ0

ε0ε
N

∣

∣dm,n

∣

∣

2
δ(En −Em −ħω) . (3.4)

In practice, sets of QD are obtained which are located on both crystal and polymer matrix or in the
solutions. Whatever method of cultivation is used, the set of QDs are always characterized by the size
dispersion. Let the QD size distribution be approximated by the Gauss function:

g (s, ā, a) =
1

s
p

2π
exp

(

− (a − ā)2

2s2

)

, (3.5)
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Figure 5. The transition energy. Solid curves correspond to the divalent impurity. Dashed curve corre-

sponds to the monovalent impurity.
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Figure 6. The absorption coefficient of the QD system with the average radius ā = 40 Å. The curve 1

denotes the QD system with σ= 5%, the curve 2— σ= 10%, the curve 3— σ= 15%.

where a is the QD radius (variable), s is a half-width of the distribution (3.5), which is expressed by
the average radius ā and the value σ which is considered as the variance in the QD sizes expressed in
percentage: s = āσ/100. By regarding the QD dispersion (3.5), the absorption coefficient is obtained for
the set of QDs:

αm,n;system (ω) =ωπ

√

µ0

ε0ε
N

∫

g (s, ā, a)
∣

∣dm,n (a)
∣

∣

2
δ(En (a)−Em (a)−ħω)da.

Using delta-function properties we obtain:

αm,n;system (ω) =ωπ

√

µ0

ε0ε
N

∫

g (s, ā, a)
∣

∣dm,n (a)
∣

∣

2 ∑

i

δ(a −a0i )
∣

∣

∣

d
da (En (a)−Em (a)−ħω)

∣

∣

∣

a=a0i

da, (3.6)

where a0i are simple zeros of the function F (a) = En (a)−Em (a)−ħω. Therefore,

αm,n;system (ω) =ωπ

√

µ0

ε0ε
N

∑

i

g (s, ā, a0i )
∣

∣dm,n (a0i )
∣

∣

2

∣

∣

∣

d
da (En (a)−Em (a)−ħω)

∣

∣

∣

a=a0i

. (3.7)
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Figure 7. (Color online) The absorption coefficient of the QD system. Solid curves 1, 2, 3 denote the ab-

sorption coefficient of the QD with divalent impurity (transitions between singlet states ψ1, ψ3), dashed

curves 1’, 2’, 3’ denote the absorption coefficient of the QDwith univalent impurity. 1, 1’ — average radius

is 30 Å; 2, 2’ — average radius is 40 Å; 3, 3’ — average radius is 50 Å.

23703-6



Interlevel absorption of electromagnetic waves . . .

1’

2’

3’
1

2

3

0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

100

200

300

400

hΩ , eV

Α
,c

m
-

1

Figure 8. (Color online) Absorption coefficient of the system of QDs with divalent impurity. Solid curves 1,

2, 3 denote absorption between singlet states ψ1–ψ3 , dashed curves 1’, 2’, 3’ denote absorption between

triplet states ψ2–ψ4. Curves 1, 1’ — average radius 30 Å; 2, 2’ — 40 Å; 3, 3’ — 50 Å.

The dependence of the absorption coefficient on the energy quant of light for different average radii
and dispersion σ was plotted using expression (3.7).

In figure 6 for an univalent impurity in the QD, the dependence of the QD absorption coefficient
which is caused by the 1s −1p transition, was plotted for three different values of σ. The figure shows
that for highly dispersed QDs, the height of the absorption peak decreases and the absorption band blurs.
This leads to an overlap of absorption bands caused by transitions between other allowed states. For
monodispersion systems or systems with low σ, those transitions are clearly seen. A similar situation
exists for the bivalent impurity in the spherical QD. Thus, further we consider a system of QDs with
σ=5%.

The absorption coefficient is plotted in figure 7. The figure shows that for the same average QD radius
ā, 1s −1p transition in the QD having a monovalent impurity and the respective absorption coefficient
are larger than corresponding values in the QD having a divalent impurity. This is caused by a larger
oscillator strength and dipole momentum of the interlevel transition in the case of univalent impurity.
Values of |dm,n |2 in the case of univalent impurity are larger, because |〈rn〉−〈rm〉| is larger for the uni-
valent impurity than for the divalent impurity. A similar explanation of the height of absorption bands
is presented in our previous works [8, 12]. Both for the monovalent and divalent impurity, an increase of
the average QD radius leads to the shift of absorption bands into the low-energy range.When the average
QD radius is less than 55 Å, the absorption band caused by the transition 1s −1p with monovalent impu-
rity is located in the high-energy range in comparison with the transitionψ1–ψ3 of the divalent impurity.
For larger ā, this dependence reversed. Moreover, this can be seen in figure 5.

It should be noted that the absorption of electromagnetic waves by the system of QDs having a diva-
lent impurity caused by the transitions between singlet states, is stronger than the corresponding absorp-
tion between triplet states (figure 8). In addition, the transition energy of triplet states ψ2, ψ4 is smaller
than the transition energy of singlet statesψ1,ψ3. Therefore, the respective absorption bands are shifted
into low-energy region. Both for the singlet-singlet and triplet-triplet transitions, the small σ are provided
without overlapping the absorption bands which are clearly identified.

4. Summary

The present paper studied optical properties of the QD heterosystem CdS/SiO2 having a divalent im-
purity in the center of the QD, which made it possible:

• to determine the energy spectrum of the QD with a divalent impurity and to show that this energy
is smaller than the energy of the monovalent impurity in the same QD;

• to calculate the dipole momentum and the oscillator strength of the interlevel transition and to find

23703-7



V.I. Boichuk, R.Ya. Leshko

out that the absorption between the singlet states is stronger than between the triplet states;

• to establish that the absorption bands of low dispersion systems with QD caused by a transition
between the permitted states are clearly visible and do not overlap;

• to show that in the presence of a monovalent impurity, the absorption coefficient is larger than in
the presence of a divalent impurity.

The results obtained are valid at very low temperatures. Their adjustments will be made by consider-
ing the temperature dependence. This will be implemented in our further works.
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Мiжрiвневе поглинання електромагнiтних хвиль

нанокристалом з двовалентною домiшкою

В.I. Бойчук, Р.Я. Лешко

Кафедра теоретичної фiзики, Дрогобицький державний педагогiчний унiверситет iм. Iвана Франка

вул. Стрийська, 3, 82100 Дрогобич, Львiвська обл.

У рамках методу ефективної маси обчислено спектр центральної двовалентної домiшки у квантовiй точцi

(КТ) сферичної форми. Визначено дипольнi моменти та сили осциляторiв мiжрiвневих переходiв. Проана-

лiзовано залежнiсть лiнiйного коефiцiєнту поглинання електромагнiтних хвиль вiд розмiрiв КТ та частоти

падаючої хвилi. Проведено порiвняння з вiдповiдними результатами для одновалентної домiшки.
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