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Abstract. Action of outer derivations on nilpotent ideals of

Lie algebras are considered. It is shown that for a nilpotent ideal

I of a Lie algebra L over a field F the ideal I + D(I) is nilpotent,

provided that charF = 0 or I nilpotent of nilpotency class less

than p − 1, where p = charF . In particular, the sum N(L) of

all nilpotent ideals of a Lie algebra L is a characteristic ideal, if

charF = 0 or N(L) is nilpotent of class less than p − 1, where

p = charF .

It is known that the nilradical of a finite dimensional Lie algebra over
a field of characteristic 0 is characteristic, i.e. it is invariant under any
derivation of the algebra. It was shown in [3], that for an arbitrary Lie
algebra L (not necessarily finite dimensional) over a field of characteristic
0 the image D(I) of a nilpotent ideal I ⊆ L under derivation D ∈ Der(L)
lies in some nilpotent ideal of the algebra L. The restriction on charac-
teristic of the ground field is essential while proving this assertion.

We use methods which are analogous to ones in [6] during the investi-
gation of behavior of solvable ideals under outer derivations. It is shown
in Theorem 1 of the paper that the image of a nilpotent ideal of nilpotency
class n from a Lie algebra L over a field F under an outer derivation lies
in a nilpotent ideal provided that n < p−1, where p = charF. The meth-
ods of research here are completely different from ones in [3] because it is
impossible in general to construct automorphisms from nilpotent deriva-
tions of Lie algebras over fields of positive characteristic.
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The notations in the paper are standard. If T is an F−subspace of a
Lie algebra L then we denote by T 1 = T, T 2 = [T, T ], . . . , Tn = [Tn−1, T ].

For elements x1, . . . , xn of a Lie algebra L we denote

[x1, x2, . . . , xn] = [[. . . [x1, x2], . . . xn−1], xn].

For a Lie algebra L we denote by Der(L) the Lie algebra of all deriva-
tions of L. If D ∈ Der(L) and T is an F -subspace of L we denote for
convenience D0(T ) = T, Dk(T ) = D(Dk−1(T )) for k > 1.

Further, for any elements x1, . . . , xm ∈ L, any derivation D ∈ Der(L)
and an arbitrary natural n > 1 it holds (Leibniz’s rule for differentiation
of several multipliers):

Dn([x1, . . . , xm]) =
∑

k1+···+km=n

n!

k1! . . . km!
[Dk1(x1), . . . , D

km(xm)] (1)

(the summation is extended over all nonnegative k1, . . . , km). The special
case of this formula is the usual Leibniz’s rule

Dn([x, y]) =
n∑

k=0

(
n

k

)

[Dk(x), Dn−k(y)]

for arbitrary elements x, y ∈ L и D ∈ Der(L).
Let L be a Lie algebra over an arbitrary field, let I be its ideal, D ∈

Der(L). As for any x ∈ I, y ∈ L it holds [x, D(y)] = D([x, y])− [D(x), y],
than I + D(I) is an ideal of the Lie algebra L. It is easy to see that the
sum

I + D(I) + D2(I) + . . . + Dk(I)

is also an ideal for any natural k > 1.
We need some lemmas for proving the main theorem.

Lemma 1. Let L be a Lie algebra over a field of characteristic p 6= 2, I
be an abelian ideal of L, D ∈ Der(L). Then [D(I), D(I)] ⊆ I.

Proof. Take arbitrary elements x, y ∈ I. As the ideal I is abelian, then
[x, y] = 0 and, therefore, D2([x, y]) = 0. From the other hand, by Leib-
niz’s rule we obtain the following:

0 = D2([x, y]) = [D2(x), y] + 2[D(x), D(y)] + [x, D2(y)].

Since I is an ideal of L, it follows from the previous relation that
[D(x), D(y)] ∈ I. Since x, y are arbitrary elements from I then

[D(I), D(I)] ⊆ I.
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Lemma 2. Let L be a Lie algebra over an arbitrary field, I be an ideal
of L, D ∈ Der(L). Then for any x1, . . . , xs ∈ I and any nonnegative
number m < s it holds:

Dm([x1, . . . , xs]) ∈ Is−m.

Proof. Denote by l = s − m > 0. Using the relation (1), we obtain:

Dm([x1, . . . , xs]) =
∑

k1+···+ks=m

m!

k1! . . . ks!
[Dk1(x1), . . . , D

ks(xs)] (2)

Since all k1, . . . , ks are nonnegative and k1 + · · · + ks = m < s, then
at least l of the numbers k1, . . . , ks are equal to zero. As, by definition,
D0(x) = x for all x ∈ I, then, as one can easily make sure, every sum-
mand [Dk1(x1), D

k2(x2), . . . , D
ks(xs)] of this sum belongs to I l. Hence,

Dm([x1, . . . , xs]) ∈ I l = Is−m.

Lemma 3. Let I be a nilpotent ideal of nilpotency class n from a Lie
algebra L over a field K of characteristic 0 or characteristic p > n + 1,
D ∈ Der(L). Then (I + D(I))n+1 ⊆ I.

Proof. To prove the statement of Lemma it is sufficient to show that

[D(I), . . . , D(I)
︸ ︷︷ ︸

n+1

] ⊆ I (3)

Consider the equality (2) for m = n + 1, s = n + 1 and take into
account that [x1, . . . , xn, xn+1] = 0 for all elements x1, . . . , xn, xn+1 ∈ I:

Dn+1([x1, . . . , xn+1]) =

=
∑

k1+···+kn+1=n+1

(n + 1)!

k1! . . . k(n+1)!
[Dk1(x1), . . . , D

kn+1(xn+1)] = 0.

Since all k1, . . . , kn+1 are nonnegative, then the last relation can be writ-
ten down in the form

(n + 1)!

1! . . . 1!
[D(x1), . . . , D(xn+1)]+

+
∑

k1+···+kn+1=n+1

(n + 1)!

k1! . . . kn+1!
[Dk1(x1), . . . , D

kn+1(xn+1)] = 0,

where the summation is extended over all nonnegative k1, . . . , kn+1, at
least one of which is more then 1. Since all numbers k1, . . . , kn+1 in the
last sum are nonnegative, then at least, one of them is zero. Therefore all
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summands under the sign of sum in the last relation belong to the ideal
I. But then, obviously, (n + 1)![D(x1), . . . , D(xn+1)] ∈ I. As n + 1 < p
or charF = 0, then it follows that [D(x1), . . . , D(xn+1)] ∈ I. Since
the elements x1, . . . , xn, xn+1 ∈ I were chosen arbitrarily we obtain the
relation (3).

Lemma 4. Let I be a nilpotent ideal of nilpotency class n from a Lie
algebra L over a field of characteristic 0 or characteristic p > n + 1,
D ∈ Der(L). Then [I, D(I), . . . , D(I)

︸ ︷︷ ︸

n+1

] ⊆ I2.

Proof. Take arbitrary elements x1, . . . , xn+2 ∈ I. Denote for convenience:
t1 = [x1, D(x2), D(x3), . . . , D(xn+2)];
t2 = [D(x1), x2, D(x3), . . . , D(xn+2)];
. . .
tn+1 = [D(x1), D(x2), . . . , xn+1, D(xn+2)];
tn+2 = [D(x1), D(x2), . . . , D(xn+1), xn+2].
Since In+1 = 0, we can write down the following equalities:

us = [x1, x2, . . . , D(xs), . . . , xn+2] = 0

for s = 1, . . . , n + 2. Applying the Leibniz’s rule (1) for computation
0 = Dn(us) = Dn([x1, x2, . . . , D(xs), . . . , xn+2]) we obtain

Dn(us) =
∑

k1+···+kn+2=n

n!

k1! . . . kn+2!
[Dk1(x1), . . .

. . . , Dks+1(xs), . . . , D
kn+2(xn+2)].

Since all kj are nonnegative and k1 + · · · + kn+2 = n, then at least two
numbers among k1, . . . , kn+2 are equal to 0. If at least three numbers
among k1, . . . , kn+2 are equal to 0 then the summand of this sum of the
form

n!

k1! . . . kn+2!
[Dk1(x1), . . . D

ks+1(xs), . . . , D
kn+2(xn+2)]

lies obviously in I2. Let now exactly two numbers ki, kj are equal to 0 in
this summand. If i 6= s и j 6= s, then, as above, one can show that the
summand

n!

k1! . . . kn+2!
[Dk1(x1), . . . D

ks+1(xs), . . . , D
kn+2(xn+2)]

lies in the ideal I2. So, we have to consider only the case when one of
the indices i, j, for instance, i coincides with s. Then ks = 0, kj = 0, j 6=
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s. Since all other numbers km are equal to 1, then we obtain that the
summand

n!

k1! . . . kn+2!
[Dk1(x1), . . . D

ks+1(xs), . . . , D
kn+2(xn+2)]

is equal to

n!

1! . . . 1!
[D(x1), . . . D(xj−1), D

0(xj), D(xj+1) . . . , Dkn+2(xn+2)] = n!tj .

Therefore, having fixed i = s and arbitrarily chosen j, not equal to s, we
obtain that

Dn(us) = n!(t1 + . . . ts−1 + ts+1 + · · · + tn+2) + zs (4)

for some zs ∈ I2. Denote by vs = Dn(us)/n! for s = 1, . . . , n + 2. Then
taking into account the relation charK = p > n + 1 we see that

vs = t1 + . . . ts−1 + ts+1 + · · · + tn+2 ∈ I2

for arbitrary s = 1, . . . , n + 2. Consider the sum v =
∑n+2

s=1 vs. It is easy
to see that v = (n + 1)

∑n+2
k=1 tk, v ∈ I2. Because of the restriction on

characteristic of the ground field it holds the relation t = t1 + t2 + · · · +
tn+2 ∈ I2. But then the element t1 = t − v1 belongs to the ideal I2. As
elements x1, . . . , xn+2 were chosen arbitrarily and

t1 = [x1, D(x2), D(x3), . . . , D(xn+2)]

we have that [I, D(I), . . . , D(I)
︸ ︷︷ ︸

n+1

] ⊆ I2.

Lemma 5. Let I be a nilpotent ideal of nilpotency class n from a Lie
algebra L over a field of characteristic 0 or characteristic p > n + 1,
D ∈ Der(L). Then there exits a function fn(m) of a natural argument
m such that fn(m) = fn(m − 1) + n − m + 1, fn(1) = n + 1 and

[Im, D(I), . . . , D(I)
︸ ︷︷ ︸

fn(m)

] ⊆ Im+1 (5)

for m = 1, . . . , n.

Proof. Let n be a fixed natural number. Then for m = 1 we have by
Lemma 4 the relation [I, D(I), . . . , D(I)

︸ ︷︷ ︸

n+1

] ⊆ I2 and therefore one can

take fn(1) = n + 1.
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Assume that it is already proved that the function fn(t) satisfies the
condition

[Im−1, D(I), . . . , D(I)
︸ ︷︷ ︸

fn(m−1)

] ⊆ Im.

Let us show that the following inclusion holds:

[Im, D(I), . . . , D(I)
︸ ︷︷ ︸

fn(m−1)+n−m+1

] ⊆ Im+1.

We denote for convenience N = fn(m−1)+n−m+2 and take arbitrary
elements x1 ∈ Im, x2, . . . , xN ∈ I. Denote by s = fn(m − 1) + 1, t =
n − m + 1. Then N = t + s.

It is easy to see that the following equality holds:

[x1, D(x2), . . . , D(xs), xs+1, . . . , xN ] = 0 (6)

Really, [x1, D(x2), . . . , D(xs)] ∈ Im and, as xs+1, . . . , xN ∈ I, then

[x1, D(x2), . . . , D(xs), xs+1, . . . , xN
︸ ︷︷ ︸

n−m+1

] ∈ Im+(n−m+1) = In+1 = 0.

Apply now the derivation D to the equality (6) n−m+1 times. Using
Leibniz’s rule (1), we obtain:

∑ t!

k1! . . . kN !
[Dk1(x1), D

k2+1(x2), . . .

. . . , Dks+1(xs), D
ks+1(xs+1), . . . , D

kN (xN )] = 0 (7)

where the summation is extended over all nonnegative k1, . . . , kN such
that k1 + · · · + kN = t = n − m + 1.

Since the sum of all numbers k1, . . . , kN is t, and their quantity is
N = s + t, then obviously there are at least s numbers from the set
{k1, . . . , kN} which are equal to 0. Let’s prove that in the sum (7) all
summands except maybe the summand

t![D0(x1), D(x2), . . . , D(xs), D(xs+1), . . . , D(xN )], (8)

that corresponds to k1 = 0, k2 = 0, . . . , ks = 0, ks+1 = 1, . . . , kN = 1, lie
in Im+1.

Consider the possible cases:
a) There are exactly s numbers among k1, . . . , kN which are equal

to 0. If these numbers are k1, . . . , ks, then ks+1 = · · · = kN = 1 and
we obtain the exceptional element (8). So we assume that at least one
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of the numbers k1, . . . , ks is nonzero. Then at least one of the numbers
ks+1, . . . , kN is 0.

At first assume that k1 = 0. Then Dk1(x1) = x1 ∈ Im and if at least
one of numbers ks+1, . . . , kN is 0, then the summand

t! · [Dk1(x1), D
k2+1(x2), . . . , D

ks+1(xs), D
ks+1(xs+1), . . . , D

kN (xN )] (9)

belongs to the ideal Im+1. Let now all the numbers ks+1, . . . , kN be
nonzero. Then k2 = · · · = ks = 0 and we obtain the exceptional ele-
ment (8).

Consider now the case k1 = 1. If k2 = · · · = ks = 0, then D(x1) ∈
Im−1 by Lemma 2 and therefore [D(x1), D(x2), . . . , D(xs)

︸ ︷︷ ︸

fn(m−1)

] ∈ Im. Since

at least one of the numbers ks+1, . . . , kN is 0, then the element of the
form (9) lies in Im+1. Suppose now that at least one of the numbers
k2, . . . , ks is equal to 1. Then at least two of the numbers ks+1, . . . , kN

are 0 and therefore again the element of the form (9) lies in Im+1.
So, in case a) either the element (9) is of the exceptional form (8) or

it lies in Im+1.
b) There are exactly s+ i numbers among k1, . . . , kN which are equal

to 0, where i > 1. Show that we can suppose in this case that at least
i + 1 of the numbers ks+1, . . . , kN are equal to 0. Really, since N = s + t
then we have that at least i of numbers ks+1, . . . , kN are equal to 0.
Assume that there are exactly i such numbers. Then all the numbers
k1, . . . , ks are equal to 0 and therefore t! · [x1, D(x2), . . . , D(xs)] ∈ Im.
Since i > 1, then at least one of the numbers ks+1, . . . , kN is equal to 0
and t! · [x1, D(x2), . . . , D(xs), D

ks+1(xs+1), . . . , D
kN (xN )] ∈ Im+1.

So, we will suppose further that there are at least i+1 of the numbers
ks+1, . . . , kN which are equal to 0. Denote the quantity of such numbers
by r. Then according to our assumption r > i + 1. Hence, the quantity
of non-zero numbers among ks+1, . . . , kN is equal to t − r and for their
sum it holds > t − r. But then the sum of all non-zero numbers among
k1, . . . , ks is less or equal t − (t − r) = r and, therefore k1 6 r.

At first let the sum of all nonzero numbers among k1, . . . , ks be less
than r. Then k1 6 r−1 and therefore Dk1(x1) ∈ Im−r+1. It follows from
here that

[Dk1(x1), D
k2+1(x2), . . .

. . . , Dks+1(xs), D
ks+1(xs+1), . . . , D

kN (xN )] ∈ Im−r+1+r = Im+1

since there are at least r elements among Dks+1(xs+1), . . . , D
kN (xN )

which lie in I.
Let now the sum of all nonzero numbers among k1, . . . , ks be equal

to r. If k1 6 r − 1, then, as above, one can show that the element of
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the form (8) lies in Im+1. Let now k1 = r. Then k2 = · · · = ks = 0 and
by the inductive assumption (since by Lemma 2 it holds Dr(x1) ∈ Im−r)
we have the inclusion [Dr(x1), D(x2), . . . , D(xs)

︸ ︷︷ ︸

fn(m−1)

] ∈ Im−r+1. But then

[Dr(x1), D(x2), . . . , D(xs), D
ks+1(xs+1), . . . , D

kN (xN )] ∈ Im+1, since at
least r elements among Dks+1(xs+1), . . . , D

kN (xN ) belong to I.
So, all summands in the relation (7), except maybe of the form (8)

lie in Im+1. But then in view of equality (7) the exceptive summand (8)
lies in Im+1. As the characteristic of the ground field does not divide
t = n − m + 1, we obtain [x1, D(x2), . . . , D(xN )] ∈ Im+1. Since the
elements x1 ∈ Im, x2, . . . , xN ∈ I can be chosen arbitrarily we obtain

[Im, D(I), . . . , D(I)
︸ ︷︷ ︸

fn(m−1)+n−m+1

] ⊆ Im+1

It means that one can put fn(m) = fn(m − 1) + n − m + 1. Lemma is
proved.

Remark 1. The relation for the function fn(m) obtained while proving
the previous lemma is an inhomogeneous recurrence relation of the 1-st
order. Its solution (see, for example [2], §3.3.3) can be written down as
a sum fn = fh

n +fp
n, where fh

n is the general solution of the homogeneous
recurrence relation fn(m)−fn(m−1) = 0, and fp

n is a particular solution
for the inhomogeneous relation

fn(m) = fn(m − 1) + n − m + 1 (10)

The single characteristic root of the corresponding homogeneous relation
is 1. So, its general solution is fh

n = C, where C is an arbitrary constant.
We find a particular solution in the form fp

n = m(A1m+A0), where A0, A1

are indeterminate coefficients. Substituting fp
n into the relation (10), we

get A1 = −1
2 , A0 = n + 1

2 . So, the general solution of the inhomogeneous
relation (10) can be presented as fn(m) = C− 1

2m2 +(n+ 1
2)m. One finds

the coefficient C = 1 from the initial condition fn(1) = n + 1. Finally,
we have fn(m) = m(n + 1) − (m − 1)(m + 2)/2.

Theorem 1. Let I be a nilpotent ideal of nilpotency class n of a Lie
algebra L over a field of characteristic 0 or characteristic p > n + 1,
D ∈ Der(L). Then I + D(I) is a nilpotent ideal of the Lie algebra L of
nilpotency class at most n(n + 1)(2n + 1)/6 + 2n.

Proof. Denote by k =
∑n

m=1 fn(m). Using Lemma 5 one can easily show
that [I, D(I), . . . , D(I)

︸ ︷︷ ︸

k

] ⊆ In+1 = 0. Further, by Lemma 3 we have
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(I + D(I))k+n+1 = 0. So, the ideal I + D(I) is nilpotent of nilpotency
class at most k + n. Direct calculation yields k + n = n +

∑n
m=1 m(n +

1) −
∑n

m=1(m − 1)(m + 2)/2 = n(n + 1)(2n + 1)/6 + 2n.

Corollary 1. Let L be a Lie algebra (not necessarily finite dimensional)
over a field F, let N(L) be the sum of all nilpotent ideals of L. If the ideal
N(L) is nilpotent, then it is a characteristic in the following cases: a)
charF = 0; b) charF = p > 0 and nilpotency class of N(L) is less than
p − 1.

Remark 2. We should note that the estimation of nilpotency class of
the ideal I + D(I) from Theorem 1 is rather rough. For example, for an
ideal I of nilpotency class 2 of a Lie algebra over a field of characteristic
p > 3 Theorem 1 gives the estimation 9, but direct calculation shows that
nilpotency class of I + D(I) does not exceed 8.
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