Algebra and Discrete Mathematics Number 2. **(2008).** pp. 109 – 122 © Journal "Algebra and Discrete Mathematics"

On τ -closed totally saturated group formations with Boolean sublattices

RESEARCH ARTICLE

Vasily G. Safonov

Communicated by L. A. Shemetkov

ABSTRACT. In the universe of finite groups the description of τ -closed totally saturated formations with Boolean sublattices of τ -closed totally saturated subformations is obtained. Thus, we give a solution of Question 4.3.16 proposed by A. N. Skiba in his monograph "Algebra of Formations" (1997).

Introduction

All groups considered are finite. Used notations and terminology are standard (see [1]–[4]). Recall that a formation \mathfrak{F} is called *saturated* if $G/\Phi(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$. It is known [4] that if \mathfrak{F} is a non-empty saturated formation, then $\mathfrak{F} = LF(f)$, i. e., \mathfrak{F} has a local satellite f.

Every group formation is considered as 0-multiply saturated [5]. For $n \geq 1$, a formation $\mathfrak{F} \neq \emptyset$ is called *n*-multiply saturated [5], if it has a local satellite f such that every non-empty value f(p) of f is a (n-1)-multiply saturated formation. A formation is called *totally saturated* [5] if it is *n*-multiply saturated for all natural n.

Let τ be a function such that for any group G, $\tau(G)$ is a set of subgroups of G, and $G \in \tau(G)$. Following [3] we say that τ is a *subgroup* functor if for every epimorphism $\varphi : A \to B$ and any groups $H \in \tau(A)$ and $T \in \tau(B)$ we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$.

²⁰⁰⁰ Mathematics Subject Classification: 20D10, 20F17.

Key words and phrases: finite group, formation, totally saturated formation, lattice of formations, τ -closed formation.

A group class \mathfrak{F} is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for all $G \in \mathfrak{F}$. The set l_{∞}^{τ} of all τ -closed totally saturated formations is a complete lattice [3].

A τ -closed totally saturated formation \mathfrak{F} is called $\mathfrak{H}_{\infty}^{\tau}$ -critical (or a minimal τ -closed totally saturated non- \mathfrak{H} -formation) if $\mathfrak{F} \not\subseteq \mathfrak{H}$ but all proper τ -closed totally saturated subformations of \mathfrak{F} are contained in \mathfrak{H} .

If \mathfrak{F} and \mathfrak{M} are l_{∞}^{τ} -formations such that $\mathfrak{M} \subseteq \mathfrak{F}$, then $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{M}$ denotes the lattice of l_{∞}^{τ} -formations between \mathfrak{M} and \mathfrak{F} . In particular, if $\mathfrak{M} = (1)$ is the formation of identity groups, then $L_{\infty}^{\tau}(\mathfrak{F})$ denotes the lattice $\mathfrak{F}/_{\infty}^{\tau}(1)$.

In this paper we prove the following.

Theorem 1. Let \mathfrak{F} and \mathfrak{X} be τ -closed totally saturated formations, $\mathfrak{F} \not\subseteq \mathfrak{X} \subseteq \mathfrak{N}$. Then the following conditions are equivalent:

1) the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$ is Boolean;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{H}_{i} | i \in I)), \text{ where } \{\mathfrak{H}_{i} | i \in I\} \text{ is the set of all } \mathfrak{X}_{\infty}^{\tau}\text{-critical subformations of } \mathfrak{F};$

3) every subformation of \mathfrak{F} of the form $(\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} \mathfrak{H}$ is l_{∞}^{τ} -complemented in $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$, where \mathfrak{H} is some $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation of \mathfrak{F} ;

4) any $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation of \mathfrak{F} has an $\mathfrak{X}_{\infty}^{\tau}$ -complement in \mathfrak{F} .

Note that if in this theorem $\mathfrak{X} = \mathfrak{N}$ and τ is the trivial subgroup functor (i. e., $\tau(G) = \{G\}$ for all groups G) we obtain the main result in [6]. In another special case ($\mathfrak{X} = (1)$ and \mathfrak{F} is soluble) we obtain the main result of Section 4.3 in [3]. In particular, we give a solution of Question 4.3.16 in [3].

1. Definitions and Notations

Let \mathfrak{X} be a set of groups. Then l_{∞}^{τ} form \mathfrak{X} is the τ -closed totally saturated formation generated by \mathfrak{X} , i.e., l_{∞}^{τ} form \mathfrak{X} is the intersection of all τ -closed totally saturated formations containing \mathfrak{X} . If $\mathfrak{X} = \{G\}$, then the formation l_{∞}^{τ} form G is called a *one-generated* τ -closed totally saturated formation.

We denote by $\pi(\mathfrak{F})$ the set of prime divisors of orders of groups in \mathfrak{F} . For any two τ -closed totally saturated formations \mathfrak{M} and \mathfrak{H} , we write $\mathfrak{M} \vee_{\infty}^{\tau} \mathfrak{H} = l_{\infty}^{\tau} \text{form}(\mathfrak{M} \cup \mathfrak{H}).$

For any set \mathfrak{X} of groups, we put $\mathfrak{X}_{\infty}^{\tau}(p) = l_{\infty}^{\tau} \operatorname{form}(G/F_p(G)|G \in \mathfrak{X})$, if $p \in \pi(\mathfrak{X})$, and $\mathfrak{X}_{\infty}^{\tau}(p) = \emptyset$ if $p \notin \pi(\mathfrak{X})$.

If \mathfrak{F} is an arbitrary τ -closed totally saturated formation, then the symbol $\mathfrak{F}_{\infty}^{\tau}$ denotes the minimal l_{∞}^{τ} -valued local satellite of \mathfrak{F} .

For an arbitrary sequence of primes p_1, p_2, \ldots, p_n and any set \mathfrak{X} of groups, the class of groups $\mathfrak{X}^{p_1p_2\dots p_n}$ is defined as follows:

1) $\mathfrak{X}^{p_1} = (A/F_{p_1}(A)|A \in \mathfrak{X});$

2) $\mathfrak{X}^{p_1p_2...p_n} = (A/F_{p_n}(A)|A \in \mathfrak{X}^{p_1p_2...p_{n-1}}).$

A sequence of primes p_1, p_2, \ldots, p_n is called *suitable* for \mathfrak{X} if $p_1 \in \pi(\mathfrak{X})$ and for any $i \in \{2, \ldots, n\}$ we have $p_i \in \pi(\mathfrak{X}^{p_1 p_2 \ldots p_{i-1}})$.

Let p_1, p_2, \ldots, p_n be a suitable sequence for \mathfrak{F} . Then the l_{∞}^{τ} -valued local satellite $\mathfrak{F}_{\infty}^{\tau} p_1 p_2 \ldots p_n$ is defined as follows:

1) $\mathfrak{F}_{\infty}^{\tau} p_1 = (\mathfrak{F}_{\infty}^{\tau}(p_1))_{\infty};$

2) $\mathfrak{F}_{\infty}^{\tau} p_1 \dots p_n = (\mathfrak{F}_{\infty}^{\tau} p_1 \dots p_{n-1}(p_n))_{\infty}^{\tau}$.

A group G is called a τ -minimal non- \mathfrak{H} -group (or an \mathfrak{H}^{τ} -critical group) if $G \notin \mathfrak{H}$ but every proper τ -subgroup of G belongs to \mathfrak{H} .

A τ -closed totally saturated formation \mathfrak{F} is called an l_{∞}^{τ} -irreducible formation if $\mathfrak{F} \neq l_{\infty}^{\tau}$ form $(\bigcup_{i \in I} \mathfrak{X}_i) = \bigvee_{\infty}^{\tau} (\mathfrak{X}_i | i \in I)$, where $\{\mathfrak{X}_i | i \in I\}$ is the set of all proper τ -closed totally saturated subformations of \mathfrak{F} . Otherwise, \mathfrak{F} is called an l_{∞}^{τ} -reducible τ -closed totally saturated formation.

Let \mathfrak{M} and \mathfrak{H} be some τ -closed totally saturated subformations of \mathfrak{F} , \mathfrak{X} be a class of groups. Then \mathfrak{H} is called an $\mathfrak{X}_{\infty}^{\tau}$ -complement to \mathfrak{M} in \mathfrak{F} if $\mathfrak{F} = l_{\infty}^{\tau} \operatorname{form}(\mathfrak{M} \cup \mathfrak{H})$ and $\mathfrak{M} \cap \mathfrak{H} \subseteq \mathfrak{X}$. A subformation of \mathfrak{F} is called $\mathfrak{X}_{\infty}^{\tau}$ -complemented in \mathfrak{F} if it has an $\mathfrak{X}_{\infty}^{\tau}$ -complement in \mathfrak{F} . In addition, the $(1)_{\infty}^{\tau}$ -complement to \mathfrak{M} in \mathfrak{F} is called an l_{∞}^{τ} -complement to \mathfrak{M} in \mathfrak{F} , and in this case \mathfrak{M} is called l_{∞}^{τ} -complemented in \mathfrak{F} . A subformation \mathfrak{M} of \mathfrak{F} is called complemented in \mathfrak{F} if $\mathfrak{F} = \operatorname{form}(\mathfrak{M} \cup \mathfrak{H})$ and $\mathfrak{M} \cap \mathfrak{H} = (1)$ for some subformation \mathfrak{H} of \mathfrak{F} .

For a set π of primes, we use \mathfrak{N}_{π} and \mathfrak{S}_{π} to denote the class of all nilpotent π -groups and the class of all soluble π -groups, respectively.

2. Used Results

Lemma 1. [7, 8]. Let \mathfrak{F} be a non-soluble τ -closed totally saturated formation. Then \mathfrak{F} has at least one $\mathfrak{S}^{\tau}_{\infty}$ -critical subformation.

Lemma 2. [7, 8]. Let \mathfrak{F} be a τ -closed totally saturated formation. Then \mathfrak{F} is a minimal τ -closed totally saturated non-soluble formation if and only if $\mathfrak{F} = l_{\infty}^{\tau}$ form G, where G is a monolithic τ -minimal non-soluble group with a non-abelian minimal normal subgroup R such that G/R is soluble.

Lemma 3. [7, 8]. Let G be a monolithic group with a non-abelian socle R. Then $\mathfrak{F} = l_{\infty}^{\tau}$ formG has a unique maximal l_{∞}^{τ} -subformation $\mathfrak{M} = \mathfrak{S}_{\pi(R)} l_{\infty}^{\tau}$ form $(\{G/R\} \bigcup \mathfrak{X})$, where \mathfrak{X} is the set of all proper τ -subgroups of G. In particular, $\mathfrak{S}_{\pi(R)} \subseteq \mathfrak{M} \subset \mathfrak{F}$.

Lemma 4. [9]. The lattice l_{∞}^{τ} of τ -closed totally saturated formations is distributive.

Lemma 5. [10]. For any two τ -closed totally saturated formations \mathfrak{M} and \mathfrak{F} we have

$$\mathfrak{M} \vee_{\infty}^{\tau} \mathfrak{F}/_{\infty}^{\tau} \mathfrak{M} \simeq \mathfrak{F}/_{\infty}^{\tau} \mathfrak{M} \cap \mathfrak{F}.$$

Lemma 6. [7, 11] The lattice l_{∞}^{τ} is algebraic.

3. Main Results

Lemma 7. [7]. Let $\mathfrak{F}, \mathfrak{X}$ be τ -closed totally saturated formations such that $\mathfrak{F} \not\subseteq \mathfrak{X} \subseteq \mathfrak{N}$. The formation \mathfrak{F} is an $\mathfrak{X}^{\tau}_{\infty}$ -critical formation if and only if either of the following conditions is satisfied:

1) $\mathfrak{F} = \mathfrak{N}_p$, where $p \notin \pi(\mathfrak{X})$;

2) $\mathfrak{F} = \mathfrak{N}_p \mathfrak{N}_q$ for some different primes p and q in $\pi(\mathfrak{X})$.

Proof. Necessity. Let \mathfrak{F} be an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation. Suppose that there exists $p \in \pi(\mathfrak{F})$ such that $p \notin \pi(\mathfrak{X})$. Since $\mathfrak{N}_p \in l_{\infty}^{\tau}$, $\mathfrak{N}_p \subseteq \mathfrak{F} \setminus \mathfrak{X}$, (1) is the unique l_{∞}^{τ} -subformation of \mathfrak{N}_p and (1) $\subseteq \mathfrak{X}$, we have that $\mathfrak{F} = \mathfrak{N}_p$. So, \mathfrak{F} satisfies 1).

Assume that $\pi(\mathfrak{F}) \subseteq \pi(\mathfrak{X})$. We show that \mathfrak{F} is soluble.

Assume that $\mathfrak{F} \not\subseteq \mathfrak{S}$. Then by Lemma 1, \mathfrak{F} contains at least one $\mathfrak{S}_{\infty}^{\tau}$ -critical subformation \mathfrak{L} . By Lemma 2, $\mathfrak{L} = l_{\infty}^{\tau}$ form L, where L is a monolithic τ -minimal non-soluble group with a non-abelian minimal normal subgroup N such that group L/N is soluble. It follows from Lemma 3 that $\mathfrak{S}_{\pi} \subset \mathfrak{L}$, where $\pi = \pi(N)$. Since N is non-abelian, we have that $|\pi| \geq 3$. But by hypothesis the formation \mathfrak{F} is an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation. Hence $\mathfrak{S}_{\pi} \subseteq \mathfrak{X} \subseteq \mathfrak{N}$, a contradiction. Therefore, \mathfrak{F} is soluble.

Let *h* is the canonical local satellite of \mathfrak{X} . By Theorem 2.5.2 [3, p. 94], $\mathfrak{F} = l_{\infty}^{\tau}$ form*G*, where *G* is a group of minimal order in $\mathfrak{F} \setminus \mathfrak{X}$ with the socle $R = G^{\mathfrak{X}}$ such that for all $p \in \pi(R)$ the formation $\mathfrak{F}_{\infty}^{\tau}(p)$ is $(h(p))_{\infty}^{\tau}$ -critical. Since by Theorem 1.3.14 [3, p. 33] $\mathfrak{N}_{\infty}^{\tau}(p) = (1)$, we have $h(p) = \mathfrak{N}_p$. Hence, $\mathfrak{F}_{\infty}^{\tau}(p) = l_{\infty}^{\tau}$ form $(G/F_p(G))$ is an $(\mathfrak{N}_p)_{\infty}^{\tau}$ -critical formation. Therefore, $|\pi(\mathfrak{F}_{\infty}^{\tau}(p))| = 1$ and $\mathfrak{F}_{\infty}^{\tau}(p) = \mathfrak{N}_q$, for some prime $q \neq p$. Since *G* is soluble, it follows that *R* is a *p*-group and $F_p(G) = R$. Hence, $\pi(G) = \{p, q\}$ and $\mathfrak{F} = \mathfrak{N}_p\mathfrak{N}_q$. Thus, \mathfrak{F} satisfies 2).

Sufficiency. Let \mathfrak{F} be a formation satisfying 1) or 2). Then \mathfrak{F} is a hereditary totally saturated formation. Hence, \mathfrak{F} is a τ -closed formation, for any subgroup functor τ . If $\mathfrak{F} = \mathfrak{N}_p$, then (1) is a unique maximal l_{∞}^{τ} -subformation of \mathfrak{F} . But (1) $\subseteq \mathfrak{X} \neq \emptyset$. Hence, \mathfrak{F} is an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation.

Let $\mathfrak{F} = \mathfrak{N}_p\mathfrak{N}_q$. Then by Theorem 2.5.3. [3, p. 94] mathfrakF is an $\mathfrak{N}_{\infty}^{\tau}$ -critical formation. Since $\mathfrak{N}_{\{p,q\}} \subseteq \mathfrak{X}$, it follows that \mathfrak{F} is a minimal τ -closed totally saturated non- \mathfrak{X} -formation.

Lemma 8. [7]. Let \mathfrak{F} and \mathfrak{X} be l_{∞}^{τ} -formations such that $\mathfrak{F} \not\subseteq \mathfrak{X} \subseteq \mathfrak{N}$. Then \mathfrak{F} has at least one $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation.

Proof. Assume that $\pi(\mathfrak{F}) \not\subseteq \pi(\mathfrak{X})$ and $p \in \pi(\mathfrak{F}) \setminus \pi(\mathfrak{X})$. Then according to Lemma 6, \mathfrak{N}_p is a required $\mathfrak{X}_{\infty}^{\tau}$ -critical formation. Now we assume that $\pi(\mathfrak{F}) \subseteq \pi(\mathfrak{X})$, and let A be a group of minimal order in $\mathfrak{F} \setminus \mathfrak{X}$. Then A is a monolithic τ -minimal non- \mathfrak{X} -group with the socle $R = A^{\mathfrak{X}}$. Let $p \in \pi(R)$ and $\mathfrak{L} = l_{\infty}^{\tau}$ form A. Assume that R is non-abelian. Then by Lemma 3, $\mathfrak{S}_{\pi(R)} \subseteq \mathfrak{L}$. Since $|\pi(R)| \geq 3$, there exists a prime $q \neq p, q \in \pi(R)$, such that

$$\mathfrak{M} = \mathfrak{N}_p\mathfrak{N}_q \subset \mathfrak{S}_{\pi(R)} \subset \mathfrak{F}.$$

Since $\mathfrak{N}_{\{p,q\}} \subseteq \mathfrak{X}$, from Lemma 6 it follows that \mathfrak{M} is a required $\mathfrak{X}_{\infty}^{\tau}$ -critical formation.

Suppose now that R is an abelian p-group. Since $R \not\subseteq \Phi(A)$, we have $R = O_p(A) = F_p(A)$ and A = [R]B for some maximal subgroup B in A. By Theorem 1.3.14 [3, p. 33],

$$\mathfrak{L}^{\tau}_{\infty}(p) = l^{\tau}_{\infty} \operatorname{form}(A/F_p(A)) = l^{\tau}_{\infty} \operatorname{form} B.$$

Let $q \in \pi(B) \setminus \{p\}$, and Q be a group of prime order q. Since $\mathfrak{L}_{\infty}^{\tau}(p)$ is totally saturated, $Q \in \mathfrak{L}_{\infty}^{\tau}(p)$. Denote by V an exact irreducible $F_p[Q]$ -modul, and let F = [V]Q. Then

$$F/O_p(F) \simeq Q \in \mathfrak{L}^{\tau}_{\infty}(p).$$

Therefore, by Lemma 8.2 [2, p. 78], $F \in \mathfrak{L}$. But

$$\mathfrak{F} = l_{\infty}^{\tau} \mathrm{form} F = \mathfrak{N}_p \mathfrak{N}_q.$$

Hence, by Lemma 6, \mathfrak{F} is a required $\mathfrak{X}^{\tau}_{\infty}$ -critical formation.

Lemma 9. Let \mathfrak{X} , \mathfrak{M} and \mathfrak{F} be τ -closed totally saturated formations such that $\mathfrak{M} \subseteq \mathfrak{X} \subseteq \mathfrak{N}$, and $\mathfrak{F} = \mathfrak{M} \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau}(\mathfrak{H}_{i}|i \in I))$, where $\{\mathfrak{H}_{i}|i \in I\}$ is some set of $\mathfrak{X}_{\infty}^{\tau}$ -critical formations. If \mathfrak{H} is an $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation of \mathfrak{F} , then $\mathfrak{H} \in \{\mathfrak{H}_{i}|i \in I\}$.

Proof. Let \mathfrak{H} be a $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation of \mathfrak{F} . By Lemma 6, \mathfrak{H} satisfies either of the following conditions:

1) $\mathfrak{H} = \mathfrak{N}_p$, where $p \notin \pi(\mathfrak{X})$;

2) $\mathfrak{H} = \mathfrak{N}_p \mathfrak{N}_q$ for some primes $p \neq q$ in $\pi(\mathfrak{X})$.

Assume that \mathfrak{H} satisfies 1). Since $\mathfrak{H} \subseteq \mathfrak{F}$, we have by Corollary 1.3.10 [3, p. 31] that $\mathfrak{H}_{\infty}^{\tau} \leq \mathfrak{F}_{\infty}^{\tau}$. Therefore, $\mathfrak{H}_{\infty}^{\tau}(p) \subseteq \mathfrak{F}_{\infty}^{\tau}(p)$. By Theorem 1.3.14 [3, p. 33], we have $\mathfrak{H}_{\infty}^{\tau}(p) = (1)$. Hence, $(1) \subseteq \mathfrak{F}_{\infty}^{\tau}(p) \neq \emptyset$. By Lemma 4.1.2 [3, p. 152],

$$\mathfrak{F}^\tau_\infty(p) = \mathfrak{M}^\tau_\infty(p) \vee^\tau_\infty (\vee^\tau_\infty(\mathfrak{H}^\tau_{i\infty}(p)|i \in I)).$$

Since $p \notin \pi(\mathfrak{X})$, it follows that $p \notin \pi(\mathfrak{M})$ and $\mathfrak{M}^{\tau}_{\infty}(p) = \emptyset$. Hence,

$$\mathfrak{F}_{\infty}^{\tau}(p) = \vee_{\infty}^{\tau}(\mathfrak{H}_{i\infty}^{\tau}(p)|i \in I).$$

Suppose that $p \notin \pi(\mathfrak{H}_i)$ for all $i \in I$. Then from Theorem 1.3.14 [3, p. 33] it follows that $\mathfrak{H}_{i\infty}^{\tau}(p) = \emptyset$ for all $i \in I$. Therefore, $\mathfrak{F}_{\infty}^{\tau}(p) = \emptyset$, a contradiction. So, there exists $i \in I$ such that $p \in \pi(\mathfrak{H}_i)$. Since \mathfrak{H}_i is an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation and $p \notin \pi(\mathfrak{X})$, we see that $\mathfrak{H}_i = \mathfrak{N}_p$. Thus, $\mathfrak{H}_i = \mathfrak{H}$.

Assume that \mathfrak{H} satisfies 2). Then p, q is a suitable sequence for \mathfrak{H} and \mathfrak{F} . By Corollary 1.3.10 and Theorem 1.3.14 [3], we obtain that

$$\mathfrak{H}^{ au}_{\infty}(p) \subseteq \mathfrak{F}^{ au}_{\infty}(p) \ \ ext{and} \ \ \mathfrak{H}^{ au}_{\infty}p(q) = (1) \subseteq \mathfrak{F}^{ au}_{\infty}p(q)
eq arnothing.$$

From Lemma 4.1.2 [3, p. 152] it follows that

$$\mathfrak{F}_{\infty}^{\tau}p(q) = \mathfrak{M}_{\infty}^{\tau}p(q) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau}(\mathfrak{H}_{i\infty}^{\tau}p(q)|i \in I)).$$

Suppose that $q \in \pi(\mathfrak{M}_{\infty}^{\tau}(p))$. Since $\mathfrak{M}_{\infty}^{\tau}(p)$ is a saturated formation, we have that $\mathfrak{N}_q \subseteq \mathfrak{M}_{\infty}^{\tau}(p)$. By Theorem 1.3.12 [3, p. 32],

$$\mathfrak{N}_p\mathfrak{M}^{\tau}_{\infty}(p)\subseteq\mathfrak{M}.$$

Hence,

$$\mathfrak{H} = \mathfrak{N}_p\mathfrak{N}_q \subseteq \mathfrak{N}_p\mathfrak{M}^{ au}_{\infty}(p) \subseteq \mathfrak{M} \subseteq \mathfrak{X}.$$

But \mathfrak{H} is an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation. We have a contradiction. Therefore, $q \notin \pi(\mathfrak{M}_{\infty}^{\tau}(p)), \mathfrak{M}_{\infty}^{\tau}p(q) = \emptyset$ and

$$\mathfrak{F}_{\infty}^{\tau}p(q) = (\vee_{\infty}^{\tau}(\mathfrak{H}_{i\infty}^{\tau}p(q)|i\in I)).$$

If $\mathfrak{H}_{i\infty}^{\tau}p(q) = \emptyset$ for all $i \in I$, then $\mathfrak{F}_{\infty}^{\tau}p(q) = \emptyset$. It is impossible. Therefore, there exists $i \in I$ such that $\mathfrak{H}_{i\infty}^{\tau}p(q) \neq \emptyset$. Hence, $q \in \pi(\mathfrak{H}_{i\infty}^{\tau}(p))$ and $\mathfrak{N}_q \subseteq \mathfrak{H}_{i\infty}^{\tau}(p)$. But by Theorem 1.3.12 [3] we have $\mathfrak{N}_p \mathfrak{H}_{\infty}^{\tau}(p) \subseteq \mathfrak{H}_i$. Therefore,

$$\mathfrak{H} = \mathfrak{N}_p \mathfrak{N}_q \subseteq \mathfrak{N}_p \mathfrak{H}_{i\infty}^\tau(p) \subseteq \mathfrak{H}_i.$$

Since \mathfrak{H}_i is an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation, we see that $\mathfrak{H}_i = \mathfrak{H}$.

Lemma 10. \mathfrak{s} Let $\mathfrak{X}, \mathfrak{M}, \mathfrak{L}$, and \mathfrak{F} be τ -closed totally saturated formations such that $\mathfrak{X} \subseteq \mathfrak{M} \subseteq \mathfrak{L} \subseteq \mathfrak{F}$. If \mathfrak{H} is an l_{∞}^{τ} -complement to \mathfrak{M} in $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{X}$, then $\mathfrak{H} \cap \mathfrak{L}$ is an l_{∞}^{τ} -complement to \mathfrak{M} in $\mathfrak{L}/_{\infty}^{\tau}\mathfrak{X}$.

Proof. Let $\mathfrak{H}_1 = \mathfrak{H} \cap \mathfrak{L}$. Since \mathfrak{M} is l_{∞}^{τ} -complemented in the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{X}$ by \mathfrak{H} , it follows that $\mathfrak{M} \cap \mathfrak{H} = \mathfrak{X}$ and $\mathfrak{M} \vee_{\infty}^{\tau} \mathfrak{H} = \mathfrak{F}$. From Lemma 4 it follows that

$$\mathfrak{M}\vee^\tau_\infty\mathfrak{H}_1=\mathfrak{M}\vee^\tau_\infty(\mathfrak{H}\cap\mathfrak{L})=(\mathfrak{M}\vee^\tau_\infty\mathfrak{H})\ \cap(\mathfrak{M}\vee^\tau_\infty\mathfrak{L})=\mathfrak{F}\cap\mathfrak{L}=\mathfrak{L}.$$

Besides,

$$\mathfrak{M}\cap\mathfrak{H}_1=\mathfrak{M}\cap(\mathfrak{H}\cap\mathfrak{L})=\mathfrak{M}\cap\mathfrak{H}=\mathfrak{X}.$$
 (

But then \mathfrak{H}_1 is an l_{∞}^{τ} -complement to \mathfrak{M} in $\mathfrak{L}/_{\infty}^{\tau}\mathfrak{X}$.

Lemma 11. Let \mathfrak{X} and \mathfrak{F} be τ -closed totally saturated formations, \mathfrak{H} be some $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation of \mathfrak{F} . Then \mathfrak{H} has an $\mathfrak{X}_{\infty}^{\tau}$ -complement in \mathfrak{F} if and only if $\mathfrak{H} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$ has an l_{∞}^{τ} -complement in $\mathfrak{F}/_{\infty}^{\tau} \mathfrak{F} \cap \mathfrak{X}$.

Proof. Let \mathfrak{M} be an $\mathfrak{X}^{\tau}_{\infty}$ -complement to \mathfrak{H} in \mathfrak{F} . Then by definition $\mathfrak{H} \cap$ $\mathfrak{M} \subseteq \mathfrak{X} \text{ and } \mathfrak{H} \vee_{\infty}^{\tau} \mathfrak{M} = \mathfrak{F}. \text{ Put } \mathfrak{M}_{1} = \mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}) \text{ and } \mathfrak{H}_{1} = \mathfrak{H} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}).$ Then \mathfrak{M}_1 and \mathfrak{H}_1 are elements of the lattice $\mathfrak{F}/_{\infty}\mathfrak{F} \cap \mathfrak{X}$. By Lemma 4,

$$\mathfrak{H}_1\cap\mathfrak{M}_1=\mathfrak{H}_1\cap(\mathfrak{M}\vee^\tau_\infty(\mathfrak{F}\cap\mathfrak{X}))=(\mathfrak{H}_1\cap\mathfrak{M})\vee^\tau_\infty(\mathfrak{H}_1\cap(\mathfrak{F}\cap\mathfrak{X}))=$$

 $(\mathfrak{H} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})) \cap \mathfrak{M}) \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}) = (\mathfrak{H} \cap \mathfrak{M}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}) = \mathfrak{F} \cap \mathfrak{X}.$ Besides.

$$\mathfrak{H}_1\vee^\tau_\infty\mathfrak{M}_1=\mathfrak{H}\vee^\tau_\infty(\mathfrak{F}\cap\mathfrak{X})\vee^\tau_\infty\mathfrak{M}\vee^\tau_\infty(\mathfrak{F}\cap\mathfrak{X})=\mathfrak{F}.$$

Therefore, \mathfrak{M}_1 is an l_{∞}^{τ} -complement to \mathfrak{H}_1 in the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F}\cap\mathfrak{X}$.

Conversely, assume that \mathfrak{H}_1 has an l_{∞}^{τ} -complement \mathfrak{M} in the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F}\cap\mathfrak{X}$. Then $\mathfrak{H}_{1}\cap\mathfrak{M}=\mathfrak{F}\cap\mathfrak{X}$ and $\mathfrak{H}_{1}\vee_{\infty}^{\tau}\mathfrak{M}=\mathfrak{F}$. Hence, by definition, \mathfrak{M} is an $\mathfrak{X}_{\infty}^{\tau}$ -complement to \mathfrak{H}_1 in \mathfrak{F} .

Proof of Theorem 1. For an arbitrary l_{∞}^{τ} -formation \mathfrak{L} , we denote by $\Omega(\mathfrak{L})$ the set of all its $\mathfrak{X}^{\tau}_{\infty}$ -critical subformations.

Assume that for \mathfrak{F} Condition 1) is true, and $\mathfrak{M} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{H} | \mathfrak{H} \in \mathfrak{X}))$ $\Omega(\mathfrak{F}))$. Assume that $\mathfrak{M} \neq \mathfrak{F}$. Since $\mathfrak{F} \cap \mathfrak{X} \subseteq \mathfrak{M} \subseteq \mathfrak{F}, \mathfrak{M}$ is an element of the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F}\cap\mathfrak{X}$. Let \mathfrak{L} be an l_{∞}^{τ} -complement to \mathfrak{M} in the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F}\cap\mathfrak{X}$. Then $\mathfrak{M}\vee_{\infty}^{\tau}\mathfrak{L}=\mathfrak{F}$ and $\mathfrak{M}\cap\mathfrak{L}=\mathfrak{F}\cap\mathfrak{X}$. If $\mathfrak{L}\subseteq\mathfrak{X}$, then $\mathfrak{L} \subseteq \mathfrak{F} \cap \mathfrak{X} \subseteq \mathfrak{M}$ and $\mathfrak{F} = \mathfrak{M} \vee_{\infty}^{\tau} \mathfrak{L} = \mathfrak{M}$, which contradicts to our assumption. Therefore, $\mathfrak{L} \not\subseteq \mathfrak{X}$. Hence, by Lemma 8, the formation \mathfrak{L} contains at least one $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation \mathfrak{H} . Since $\mathfrak{H} \subseteq \mathfrak{L} \subseteq \mathfrak{F}$, we have that $\mathfrak{H} \in \Omega(\mathfrak{F}) \subseteq \mathfrak{M}$. But then $\mathfrak{H} \subseteq \mathfrak{L} \cap \mathfrak{M} = \mathfrak{F} \cap \mathfrak{X}$, a contradiction. Hence, $\mathfrak{M} = \mathfrak{F}.$

Now we show that Condition 2) implies Condition 3). Let \mathfrak{H}_1 be an $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation of the formation $\mathfrak{F}, \Sigma = \Omega(\mathfrak{F}) \setminus \{\mathfrak{H}_1\},\$

$$\mathfrak{L} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} \mathfrak{H}_1 \text{ and } \mathfrak{M} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{H} | \mathfrak{H} \in \Sigma)).$$

Then $\mathfrak{L} \vee_{\infty}^{\tau} \mathfrak{M} = \mathfrak{F}$. Suppose that $\mathfrak{L} \cap \mathfrak{M} \neq \mathfrak{F} \cap \mathfrak{X}$. Since $\mathfrak{F} \cap \mathfrak{X} \subseteq \mathfrak{L} \cap \mathfrak{M}$, we have $\mathfrak{L} \cap \mathfrak{M} \not\subseteq \mathfrak{F} \cap \mathfrak{X}$, i.e., $\mathfrak{L} \cap \mathfrak{M} \not\subseteq \mathfrak{X}$. Then by Lemma 8, $\mathfrak{L} \cap \mathfrak{M}$ contains some $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation \mathfrak{H}_2 . Since $\mathfrak{H}_2 \subseteq \mathfrak{L}$, it follows

from Lemma 9 that $\mathfrak{H}_2 = \mathfrak{H}_1$. But $\mathfrak{H}_2 \subseteq \mathfrak{M}$. Hence by Lemma 9, $\mathfrak{H}_2 \in \Sigma$, a contradiction. Thus, $\mathfrak{L} \cap \mathfrak{M} = \mathfrak{F} \cap \mathfrak{X}$. It means that the formation \mathfrak{L} is l_{∞}^{τ} -complemented in the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$. So, Condition 3) is true for \mathfrak{F} .

Now we assume that for \mathfrak{F} Condition 3) is true. We show that Condition 1) is true. By Lemma 4, the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$ is distributive. Therefore, it is enough to establish that $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$ is a complemented lattice.

Let \mathfrak{M} be an l_{∞}^{τ} -irreducible τ -closed totally saturated subformation of \mathfrak{F} , $\mathfrak{M} \not\subseteq \mathfrak{X}$. We prove that \mathfrak{M} is an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation. Suppose that it is false, and let \mathfrak{M}_1 be a maximal l_{∞}^{τ} -subformation in \mathfrak{M} . Since \mathfrak{M} is non- $\mathfrak{X}_{\infty}^{\tau}$ -critical, $\mathfrak{M}_1 \not\subseteq \mathfrak{X}$. Hence, by Lemma 8 the formation \mathfrak{M}_1 has at least one $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation \mathfrak{H} . Let $\mathfrak{L} = \mathfrak{H} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$. Then \mathfrak{L} is an element of the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$. Let \mathfrak{R} be an l_{∞}^{τ} -complement to \mathfrak{L} in $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$. Then $\mathfrak{F} = \mathfrak{R} \vee_{\infty}^{\tau} \mathfrak{L}$ and $\mathfrak{R} \cap \mathfrak{L} = \mathfrak{F} \cap \mathfrak{X}$. By Lemma 11, $\mathfrak{R} \cap (\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}))$ is an l_{∞}^{τ} -complement to \mathfrak{L} in the lattice $\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$.

$$(\mathfrak{R} \cap (\mathfrak{M} \vee^{ au}_{\infty} (\mathfrak{F} \cap \mathfrak{X}))) \vee^{ au}_{\infty} \mathfrak{L} = \mathfrak{M} \vee^{ au}_{\infty} (\mathfrak{F} \cap \mathfrak{X})).$$

By Lemma 4,

$$\mathfrak{R} \cap (\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})) = (\mathfrak{R} \cap \mathfrak{M}) \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$$

It means that

$$\mathfrak{R} \cap (\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})) \subseteq \mathfrak{M}_{1} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$$

Since $\mathfrak{L} \subseteq \mathfrak{M}_1 \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$ we have that

$$(\mathfrak{R} \cap (\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}))) \vee_{\infty}^{\tau} \mathfrak{L} \subseteq \mathfrak{M}_{1} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}).$$

But $(\mathfrak{R} \cap (\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}))) \vee_{\infty}^{\tau} \mathfrak{L} = \mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$. Hence,

$$\mathfrak{M}\vee^{\tau}_{\infty}(\mathfrak{F}\cap\mathfrak{X})\subseteq\mathfrak{M}_{1}\vee^{\tau}_{\infty}(\mathfrak{F}\cap\mathfrak{X}).$$

The inverse inclusion is obvious. Therefore,

$$\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})) = \mathfrak{M}_1 \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X}).$$

But by Lemma 5 we have a lattice isomorphism

$$\begin{split} \mathfrak{M} \vee_{\infty}^{\tau}(\mathfrak{F} \cap \mathfrak{X}) /_{\infty}^{\tau} \mathfrak{M}_{1} \vee_{\infty}^{\tau}(\mathfrak{F} \cap \mathfrak{X}) &= \mathfrak{M} \vee_{\infty}^{\tau}(\mathfrak{M}_{1} \vee_{\infty}^{\tau}(\mathfrak{F} \cap \mathfrak{X})) /_{\infty}^{\tau} \mathfrak{M}_{1} \vee_{\infty}^{\tau}(\mathfrak{F} \cap \mathfrak{X}) \simeq \\ &\simeq \mathfrak{M} /_{\infty}^{\tau} \mathfrak{M} \cap (\mathfrak{M}_{1} \vee_{\infty}^{\tau}(\mathfrak{F} \cap \mathfrak{X})) = \mathfrak{M} /_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{M}_{1}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{F} \cap \mathfrak{X})) = \\ &= \mathfrak{M} /_{\infty}^{\tau} \mathfrak{M}_{1} \cap (\mathfrak{M} \cap \mathfrak{X}) = \mathfrak{M} /_{\infty}^{\tau} \mathfrak{M}_{1}. \end{split}$$

Therefore, $\mathfrak{M}_1 \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$ is a maximal τ -closed totally saturated subformation of the formation $\mathfrak{M} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$. We obtain a contradiction. Hence, \mathfrak{M} is an $\mathfrak{X}_{\infty}^{\tau}$ -critical formation.

We show now that for any l_{∞}^{τ} -formation \mathfrak{R} in $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$ such that the set of all its $\mathfrak{X}_{\infty}^{\tau}$ -critical subformations is finite, the following equality is true:

$$\mathfrak{R} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{H} | \mathfrak{H} \in \Omega(\mathfrak{R}))).$$
(\alpha)

We shall prove (α) by induction on $|\Omega(\mathfrak{R})|$. If \mathfrak{R} is an l_{∞}^{τ} -irreducible formation, then from above we know that \mathfrak{R} is a $\mathfrak{X}_{\infty}^{\tau}$ -critical formation, and (α) is true. Let \mathfrak{R} be an l_{∞}^{τ} -reducible formation. Since $\mathfrak{R} \not\subseteq \mathfrak{X}$, we have by Lemma 8 that \mathfrak{R} contains some $\mathfrak{X}_{\infty}^{\tau}$ -critical formation \mathfrak{H} . Let $\mathfrak{H}_1 = \mathfrak{H} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$. By hypothesis, \mathfrak{H}_1 has an l_{∞}^{τ} -complement \mathfrak{M} in the lattice $\mathfrak{F}/_{\infty}^{\tau}(\mathfrak{F} \cap \mathfrak{X})$.

By Lemma 11, $\mathfrak{M} \cap \mathfrak{R}$ is a complement to \mathfrak{H}_1 in the lattice $\mathfrak{R}/_{\infty}^{\tau}(\mathfrak{F} \cap \mathfrak{X})$. Then

$$(\mathfrak{M} \cap \mathfrak{R}) \cap \mathfrak{H}_1 = \mathfrak{F} \cap \mathfrak{X} \text{ and } (\mathfrak{M} \cap \mathfrak{R}) \vee_{\infty}^{\tau} \mathfrak{H}_1 = \mathfrak{R}.$$

Since $\mathfrak{H} \not\subseteq \mathfrak{M}$, the number of $\mathfrak{X}_{\infty}^{\tau}$ -critical subformations of $\mathfrak{M} \cap \mathfrak{R}$ is less than the number of $\mathfrak{X}_{\infty}^{\tau}$ -critical subformations in \mathfrak{R} . Therefore, by induction we can conclude that

$$\mathfrak{M}\cap\mathfrak{R}=(\mathfrak{F}\cap\mathfrak{X})\vee^{\tau}_{\infty}(\vee^{\tau}_{\infty}(\mathfrak{B}|\mathfrak{B}\in\Omega(\mathfrak{M}\cap\mathfrak{R}))).$$

Hence,

$$\begin{split} \mathfrak{R} &= (\mathfrak{M} \cap \mathfrak{R}) \vee_{\infty}^{\tau} \mathfrak{H}_{1} = \\ &= ((\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{B} | \mathfrak{B} \in \Omega(\mathfrak{M} \cap \mathfrak{R})))) \vee_{\infty}^{\tau} (\mathfrak{H} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})) = \\ &= (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{B} | \mathfrak{B} \in \Omega(\mathfrak{R}))), \end{split}$$

i.e., (α) is true.

Let now \mathfrak{M} be an l_{∞}^{τ} -subformation of $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F}\cap\mathfrak{X}$. Assume that

$$\mathfrak{L} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{H} | \mathfrak{H} \in \Omega(\mathfrak{F}) \setminus \Omega(\mathfrak{M}))).$$

We show that \mathfrak{L} is an l_{∞}^{τ} -complement to \mathfrak{M} in the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$.

It is obvious that $\mathfrak{F} \cap \mathfrak{X} \subseteq \mathfrak{M} \cap \mathfrak{L}$. If $\mathfrak{M} \cap \mathfrak{L} \not\subseteq \mathfrak{F} \cap \mathfrak{X}$, then by Lemma 8, $\mathfrak{M} \cap \mathfrak{L}$ has at least one $\mathfrak{X}_{\infty}^{\tau}$ -critical subformation \mathfrak{H} . But then, using Lemma 9, we have that $\mathfrak{H} \in \Omega(\mathfrak{M}) \cap (\Omega(\mathfrak{F}) \setminus \Omega(\mathfrak{M})) = \emptyset$, a contradiction. Hence, $\mathfrak{M} \cap \mathfrak{L} = \mathfrak{F} \cap \mathfrak{X}$.

Let $\mathfrak{F}_1 = \mathfrak{L} \vee_{\infty}^{\tau} \mathfrak{M}$. Suppose that $\mathfrak{F}_1 \neq \mathfrak{F}$ and G is a group in $\mathfrak{F} \setminus \mathfrak{F}_1$.

Since $\pi(G)$ is a finite set, by Lemma 7 the set of all $\mathfrak{X}_{\infty}^{\tau}$ -critical subformations of the formation $\mathfrak{R} = l_{\infty}^{\tau}$ form G is finite. Denote by \mathfrak{R}_1 the formation $\mathfrak{R} \vee_{\infty}^{\tau} (\mathfrak{F} \cap \mathfrak{X})$. By Lemma 9, the set of all $\mathfrak{X}_{\infty}^{\tau}$ -critical

subformations of the formation \mathfrak{R}_1 is finite. Therefore, by (α) we have that

$$\mathfrak{R}_1 = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{H} | \mathfrak{H} \in \Omega(\mathfrak{R}))).$$

Since $\Omega(\mathfrak{R}_1) \subseteq \Omega(\mathfrak{F}) = \Omega(\mathfrak{L}) \cup \Omega(\mathfrak{M})$ and $\mathfrak{F} \cap \mathfrak{X} \subseteq \mathfrak{F}_1$, it follows that $\mathfrak{R}_1 \subseteq \mathfrak{F}_1$. Therefore, $G \in \mathfrak{F}_1$, a contradiction. So, $\mathfrak{F} = \mathfrak{F}_1$, and $\mathfrak{F}/_{\infty}^{\tau} \mathfrak{F} \cap \mathfrak{X}$ is a complemented lattice.

In particular, if $\mathfrak{X} = (1)$, from Theorem 1 we deduce the following result.

Theorem 2. Let \mathfrak{F} be a τ -closed totally saturated formation. Then the following conditions are equivalent:

- 1) the lattice $L^{\tau}_{\infty}(\mathfrak{F})$ is Boolean;
- 2) $\mathfrak{F} = \mathfrak{N}_{\pi(\mathfrak{F})};$
- 3) every subformation of the form \mathfrak{N}_p in \mathfrak{F} is complemented in \mathfrak{F} .

Proof. By Lemma 7, any $(1)_{\infty}^{\tau}$ -critical formation \mathfrak{H} has a form $\mathfrak{H} = \mathfrak{N}_p$, where p is a prime. Therefore by Theorem 1,

$$\mathfrak{F}=\vee^\tau_\infty(\mathfrak{N}_p\,|\,p\in\pi(\mathfrak{F}))=\mathfrak{N}_{\pi(\mathfrak{F})}.$$

Thus, Conditions 1) and 2) are equivalent to Conditions 1) and 2) of Theorem 1.

Now we show that any subformation \mathfrak{N}_p of \mathfrak{F} has a complement in \mathfrak{F} . By Theorem 1, Condition 2) is equivalent to the following: every subformation \mathfrak{N}_p of \mathfrak{F} has an l_{∞}^{τ} -complement. Let \mathfrak{M} be an l_{∞}^{τ} -complement to \mathfrak{N}_p in \mathfrak{F} . Then $\mathfrak{N}_p \vee_{\infty}^{\tau} \mathfrak{M} = \mathfrak{F}$ and $\mathfrak{N}_p \cap \mathfrak{M} = (1)$. By Theorem 1.3.16 [3, p. 34], $\mathfrak{F} = \operatorname{form}(\bigcup_{q \in \pi(\mathfrak{F})} \mathfrak{N}_q \mathfrak{F}_{\infty}^{\tau}(q))$. Since $\mathfrak{F} \subseteq \mathfrak{N}$, we have by Theorem 1.3.14 [3, p. 33] that $\mathfrak{F}_{\infty}^{\tau}(q) = (1)$. It means that $\mathfrak{F} = \operatorname{form}(\bigcup_{q \in \pi(\mathfrak{F})} \mathfrak{N}_q)$. Since \mathfrak{M} is contained in \mathfrak{N} and is an l_{∞}^{τ} -formation, we have by Theorem 1.3.16 [3, p. 34] that

$$\mathfrak{M} = \operatorname{form}(\cup_{q \in \pi(\mathfrak{M})} \mathfrak{N}_q) = \mathfrak{N}_{\pi(\mathfrak{F}) \setminus \{p\}}$$

Hence,

$$\begin{split} \mathfrak{F} &= \operatorname{form}(\mathfrak{N}_p \cup (\cup_{q \in \pi(\mathfrak{F}) \setminus \{p\}} \mathfrak{N}_q)) = \\ &= \operatorname{form}(\mathfrak{N}_p \cup \operatorname{form}(\cup_{q \in \pi(\mathfrak{F}) \setminus \{p\}} \mathfrak{N}_q)) = \operatorname{form}(\mathfrak{N}_p \cup \mathfrak{M}) \end{split}$$

Thus, \mathfrak{M} is a complement to \mathfrak{N}_p in \mathfrak{F} .

Let \mathfrak{L} be a complement to \mathfrak{N}_p in \mathfrak{F} . Then $\mathfrak{N}_p \lor \mathfrak{L} = \mathfrak{F}$ and $\mathfrak{N}_p \cap \mathfrak{L} = (1)$. We show that \mathfrak{L} is an l_{∞}^{τ} -complement to \mathfrak{N}_p in \mathfrak{F} . Let $\mathfrak{M} = l_{\infty}^{\tau}$ form \mathfrak{L} . Suppose that $\mathfrak{M} \not\subseteq \mathfrak{L}$, and let A be a group of minimal order in $\mathfrak{M} \setminus \mathfrak{L}$. Then A is a monolithic group, and $R = \operatorname{Soc}(A) = A^{\mathfrak{L}}$. Since $A \in \mathfrak{N}$, we conclude that A is a p-group. If $A \neq R$, then from $A/R \in \mathfrak{L}$ we have $\mathfrak{N}_p \cap \mathfrak{L} \neq (1)$, a contradiction. It means that A = R, and A is a group of order p. By Theorem 1.1.5 [3, p. 14], $\pi(\mathfrak{M}) = \pi(\mathfrak{L})$. Therefore, $p \in \pi(\mathfrak{L})$. Since $\mathfrak{L} \subseteq \mathfrak{N}$, we have $\mathfrak{N}_p \cap \mathfrak{L} \neq (1)$, a contradiction. Hence, $\mathfrak{M} = \mathfrak{L}$. Thus, \mathfrak{L} is an l_{∞}^{τ} -complement to \mathfrak{N}_p in \mathfrak{F} .

Theorem 2 gives the answer to Question 4.3.16 [3, p. 178].

In the case when $\tau(G) = S(G)$ is the set of all subgroups of G, from Theorem 1 we have the following.

Corollary 1. Let \mathfrak{F} be a hereditary totally saturated formation. Then the following conditions are equivalent:

- 1) the lattice $L^S_{\infty}(\mathfrak{F})$ is Boolean;
- 2) $\mathfrak{F} = \mathfrak{N}_{\pi(\mathfrak{F})};$
- 3) every subformation of the form \mathfrak{N}_p in \mathfrak{F} is complemented in \mathfrak{F} .

If $\tau(G) = S_n(G)$ is the set of all normal subgroups of G, from Theorem 1 we have

Corollary 2. Let \mathfrak{F} be a normal hereditary totally saturated formation. Then the following conditions are equivalent:

- 1) the lattice $L^{S_n}_{\infty}(\mathfrak{F})$ is Boolean;
- 2) $\mathfrak{F} = \mathfrak{N}_{\pi(\mathfrak{F})};$
- 3) every subformation of the form \mathfrak{N}_p in \mathfrak{F} is complemented in \mathfrak{F} .

Corollary 3. [3, p. 177]. Let \mathfrak{F} be a soluble totally saturated formation. Then the following conditions are equivalent:

- 1) the lattice $L_{\infty}(\mathfrak{F})$ is Boolean;
- 2) $\mathfrak{F} = \mathfrak{N}_{\pi(\mathfrak{F})};$
- 3) every subformation of the form \mathfrak{N}_p in \mathfrak{F} is complemented in \mathfrak{F} .

Let τ be a trivial subgroup functor. Then from Theorem 1 we obtain the following.

Corollary 4. Let \mathfrak{F} and \mathfrak{X} be totally saturated formations, $\mathfrak{F} \not\subseteq \mathfrak{X} \subseteq \mathfrak{N}$. Then the following conditions are equivalent:

1) the lattice $\mathfrak{F}/_{\infty}\mathfrak{F}\cap\mathfrak{X}$ is Boolean;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty} (\vee_{\infty}(\mathfrak{H}_i | i \in I))$, where $\{\mathfrak{H}_i | i \in I\}$ is the set of all \mathfrak{X}_{∞} -critical subformations of \mathfrak{F} ;

3) every subformation of the form $(\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty} \mathfrak{H}$ in \mathfrak{F} is complemented in $\mathfrak{F}/_{\infty}\mathfrak{F} \cap \mathfrak{X}$, where \mathfrak{H} is some \mathfrak{X}_{∞} -critical subformation of \mathfrak{F} ;

4) any \mathfrak{X}_{∞} -critical subformation of \mathfrak{F} has an \mathfrak{X}_{∞} -complement in \mathfrak{F} .

Corollary 5. [12]. Let \mathfrak{F} be a totally saturated formation. Then the following conditions are equivalent:

1) $L^{\tau}_{\infty}(\mathfrak{F})$ is a complemented lattice;

2) $\mathfrak{F} = \mathfrak{N}_{\pi(\mathfrak{F})};$

3) the lattice $L^{\tau}_{\infty}(\mathfrak{F})$ is Boolean;

4) every subformation of the form \mathfrak{N}_p in \mathfrak{F} is complemented in \mathfrak{F} .

In the case when $\mathfrak{X} = \mathfrak{N}$ from Theorem 1 we have

Corollary 6. Let \mathfrak{F} be a non-nilpotent τ -closed totally saturated formation. Then the following conditions are equivalent:

1) the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{N}$ is Boolean;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{N}) \vee_{\infty}^{\tau} (\vee_{\infty}^{\tau} (\mathfrak{H}_{i} | i \in I)), \text{ where } \{\mathfrak{H}_{i} | i \in I\} \text{ is the set of all } \mathfrak{M}_{\infty}^{\tau}\text{-critical subformations of } \mathfrak{F};$

3) every subformation of the form $(\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{\tau} \mathfrak{H}$ in \mathfrak{F} is l_{∞}^{τ} -complemented in $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F} \cap \mathfrak{X}$, where \mathfrak{H} is some $\mathfrak{N}_{\infty}^{\tau}$ -critical subformations of \mathfrak{F} .

4) every subformation of the form $\mathfrak{N}_p\mathfrak{N}_q$ in \mathfrak{F} has an $\mathfrak{N}_{\infty}^{\tau}$ -complement in \mathfrak{F} .

Corollary 7. [6]. Let \mathfrak{F} be a non-nilpotent totally saturated formation. Then the following conditions are equivalent:

1) $\mathfrak{F}/_{\infty}\mathfrak{F}\cap\mathfrak{N}$ is a complemented lattice;

2) formation \mathfrak{F} is soluble, and the lattice $\mathfrak{F}/_{\infty}\mathfrak{F} \cap \mathfrak{N}$ is algebraic; furthermore, $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{N}) \vee_{\infty} (\vee_{\infty}(\mathfrak{H}_i | i \in I))$, where $\{\mathfrak{H}_i | i \in I\}$ is the set of all \mathfrak{N}_{∞} -critical subformations in \mathfrak{F} ;

3) the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F}\cap\mathfrak{N}$ is Boolean.

Proof. By Lemma 7, every \mathfrak{N}_{∞} -critical formation is soluble. Then from Condition 2) of Theorem 1 the formation \mathfrak{F} is soluble. By Lemma 6, the lattice l_{∞}^{τ} is algebraic for every subgroup functor τ . Therefore, the lattice $\mathfrak{F}/_{\infty}^{\tau}\mathfrak{F}\cap\mathfrak{N}$ is also algebraic (it is a sublattice of complete algebraic lattice l_{∞}^{τ}). Applying Theorem 1 and Lemma 4 we conclude that Conditions 1) and 3) are equivalent.

Corollary 8. Let \mathfrak{F} and \mathfrak{X} be hereditary totally saturated formations, $\mathfrak{F} \not\subseteq \mathfrak{X} \subseteq \mathfrak{N}$. Then the following conditions are equivalent:

1) the lattice $\mathfrak{F}/_{\infty}^{S}\mathfrak{F} \cap \mathfrak{X}$ is Boolean;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{S} (\bigvee_{\infty}^{S} (\mathfrak{H}_{i} | i \in I)), \text{ where } \{\mathfrak{H}_{i} | i \in I\} \text{ is the set of all } \mathfrak{X}_{\infty}^{S}\text{-critical subformations of } \mathfrak{F};$

3) every subformation of the form $(\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{S} \mathfrak{H}$ in \mathfrak{F} is complemented in $\mathfrak{F}/_{\infty}^{S}\mathfrak{F} \cap \mathfrak{X}$, where \mathfrak{H} is some $\mathfrak{X}_{\infty}^{S}$ -critical subformations of \mathfrak{F} ;

4) any $\mathfrak{X}^{S}_{\infty}$ -critical subformation of \mathfrak{F} has an $\mathfrak{X}^{S}_{\infty}$ -complement in \mathfrak{F} .

Corollary 9. Let \mathfrak{F} and \mathfrak{X} be normal hereditary totally saturated formations, $\mathfrak{F} \not\subseteq \mathfrak{X} \subseteq \mathfrak{N}$. Then the following conditions are equivalent:

1) the lattice $\mathfrak{F}/_{\infty}^{S_n}\mathfrak{F} \cap \mathfrak{X}$ is Boolean;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{X}) \vee_{\infty}^{S_n} (\vee_{\infty}^{S_n} (\mathfrak{H}_i | i \in I)), \text{ where } \{\mathfrak{H}_i | i \in I\} \text{ is the set of all }$ $\mathfrak{X}^{S_n}_{\infty}$ -critical subformations of \mathfrak{F} ;

3) every subformation of the form (𝔅 ∩𝔅) ∨^{S_n}_∞𝔅 in 𝔅 is complemented in 𝔅/^{S_n}_∞𝔅 ∩𝔅, where 𝔅 is some 𝔅^{S_n}_∞-critical subformations of 𝔅;
4) any 𝔅^{S_n}_∞ -critical subformation of 𝔅 has an 𝔅^{S_n}_∞-complement in 𝔅.

Corollary 10. Let \mathfrak{F} be a non-nilpotent hereditary totally saturated formation. Then the following conditions are equivalent:

1) the lattice $\mathfrak{F}/_{\infty}^{S}\mathfrak{F} \cap \mathfrak{N}$ is Boolean; 2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{N}) \vee_{\infty}^{S} (\vee_{\infty}^{S}(\mathfrak{H}_{i}|i \in I))$, where $\{\mathfrak{H}_{i}|i \in I\}$ is the set of all $\mathfrak{N}_{\infty}^{S}$ -critical subformations of \mathfrak{F} ;

3) every subformation of the form $(\mathfrak{F} \cap \mathfrak{N}) \vee^S_{\infty} \mathfrak{H}$ in \mathfrak{F} is complemented in $\mathfrak{F}/_{\infty}^{S}\mathfrak{F}\cap\mathfrak{N}$, where \mathfrak{H} is some $\mathfrak{N}_{\infty}^{S}$ -critical subformations of \mathfrak{F} ;

4) every subformation of the form $\mathfrak{N}_p\mathfrak{N}_q$ in \mathfrak{F} has an \mathfrak{N}^S_∞ -complement in F.

Corollary 11. Let \mathfrak{F} be a non-nilpotent normal hereditary totally saturated formation. Then the following conditions are equivalent:

1) the lattice $\mathfrak{F}/_{\infty}^{S_n}\mathfrak{F} \cap \mathfrak{N}$ is Boolean;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{N}) \vee_{\infty}^{S_n} (\vee_{\infty}^{S_n} (\mathfrak{H}_i | i \in I)), \text{ where } \{\mathfrak{H}_i | i \in I\} \text{ is the set of all } \mathfrak{M}_{\infty}^{S_n}\text{-critical subformations of } \mathfrak{F};$

3) every subformation of the form $(\mathfrak{F} \cap \mathfrak{N}) \vee_{\infty}^{S_n} \mathfrak{H}$ in \mathfrak{F} is complemented in $\mathfrak{F}/_{\infty}^{S_n} \mathfrak{F} \cap \mathfrak{N}$, where \mathfrak{H} is some $\mathfrak{N}_{\infty}^{S_n}$ -critical subformations of \mathfrak{F} ;

4) every subformation of the form $\mathfrak{N}_p\mathfrak{N}_q$ in \mathfrak{F} has an $\mathfrak{N}_{\infty}^{S_n}$ -complement in F.

- References [1] Shemetkov L.A., Formations of finite groups, Nauka, Moscow, 1978.
- [2] Shemetkov L.A., Skiba A.N., Formations of algebraic systems, Nauka, Moscow, 1989.
- [3] Skiba A.N., Algebra of formations, Belarus. Navuka, Minsk, 1997.
- [4] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992.
- [5] Skiba A.N., Characteristics of soluble groups with given nilpotent length, Problems in Algebra, N.3, 1987, pp.21-31.
- [6] Guo W., Shum K.P. On totally local formations of groups, Comm. Algebra, vol. 30, N 5, 2002, pp. 2117-2131.
- [7] Safonov V.G. On properties of the lattice of τ -closed totally saturated formations, Preprint/ F. Scorina Gomel State University, Gomel, N. 3, 2004, 26 pp.
- [8] Safonov V.G. A characterization of soluble one-generated totally saturated formations of finite groups, Siberian Math. Journal, vol. 48, N. 1, pp. 185–191.

- [9] Safonov V.G. On distributivity of the lattice of τ-closed totally saturated formations of finite groups, Preprint/ F. Scorina Gomel State University, Gomel, N. 5, 2004, 18 pp.
- [10] Safonov V.G. On modularity of the lattice of τ -closed totally saturated formations of finite groups, Ukr. Math. Journal, vol. 58, N. 6, 2006, pp. 852–858.
- [11] Safonov V.G. On algebraicality of the lattice of τ -closed totally saturated formations, Algebra and Logic, vol. 45, N. 5, 2006, pp. 620–626.
- [12] Safonov V.G. On two questions of totally saturated formations theory, Dokl. NAN Belarusi, vol. 49, N. 5, 2005, pp. 16–20.

CONTACT INFORMATION

V.G. Safonov

Department of Mathematics, F. Scorina Gomel State University, Sovetskaya Str., 104, 246019 Gomel, Belarus *E-Mail:* safonov@minedu.unibel.by

Received by the editors: 15.10.2007 and in final form 15.07.2008.

Form 15.07.2008.