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On the condensation property

of the Lamplighter groups

and groups of intermediate growth1

Mustafa Gökhan Benli, Rostislav Grigorchuk

Abstract. The aim of this short note is to revisit some
old results about groups of intermediate growth and groups of the
lamplighter type and to show that the Lamplighter group L = Z2≀Z is
a condensation group and has a minimal presentation by generators
and relators. The condensation property is achieved by showing that
L belongs to a Cantor subset of the space M2 of marked 2-generated
groups consisting mostly of groups of intermediate growth.

1. Introduction

The modern development of group theory requires significant use of
methods of geometry, topology, probability and measure theory, the theory
of models etc. The space Mk of marked k-generated groups, introduced in
[Gri84] plays an important role in this development. It is a compact totally
disconnected metrizable space and it is important to know which groups
belong to its perfect kernel (or condensation part), which is homeomorphic
to a Cantor set. Groups in the perfect kernel are called condensation
groups. The aim of this note is to revisit some results of [Gri84] and to
use them to show that the so called Lamplighter group L = Z2 ≀ Z, which
is a popular object of study (see for example [GŻ01,GK12]) belongs to a
Cantor set and hence is a condensation group.

1The authors were supported by NSF grant DMS-1207699.
2010 MSC: 20F65, 20E08, 20F69, 20F05.
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Let Ω = {0, 1, 2}N be the set of all infinite sequences over {0, 1, 2}
with the product (Tychonoff) topology.

Main Theorem. There exists a subset L = {(Lω, Tω) | ω ∈ Ω} ⊂ M2

with the following properties:

a) L is homeomorphic to Ω (and hence is a Cantor set),

b) If ω ∈ Ω is not eventually constant, then Lω has intermediate
growth.

c) If ω ∈ Ω is a constant sequence then Lω
∼= L.

d) All groups in L are condensation groups.

A simple argument shows that a group possessing an infinite minimal
presentation is a condensation group. Surprisingly, it was observed in
[BCGS14] that there are finitely generated groups which do not have a
minimal presentation. It follows from [Bau61] that groups of the form
H ≀G where H and G are infinite and finitely generated are not finitely
presented and it was observed in [Cor11] that such groups are condensation
groups. It is probably well known (as indicated in [BCGS14]) that the
standard presentation

L =
〈

s, t | s2, [s, sti

] i > 1
〉

is minimal. A proof of this fact using ideas of [Bau61] is presented for
completeness. This provides an alternative proof of the fact that L is a
condensation group.

An effective way to build large families of condensation groups is to
construct closed subsets X ⊂ Mk, k > 2 homeomorphic to a Cantor set.
Such families were constructed in [Gri84,Gri85,Cha00,Nek07]. It will be
interesting to produce such families based on new ideas.

2. Preliminaries

For a topological space X, let X ′ denote its set of accumulation
points. For any ordinal α define the spaces X(α) inductively as follows:

X(0) = X,X(α+1) =
(

X(α)
)

′

and X(λ) =
⋂

β<λ

X(β) if λ is a limit ordinal.

If X is a Polish space, (i.e., a completely metrizable, separable space) for
some countable ordinal α0 we will have X(α0) = X(α) for all α > α0 (see
[Kec95, Theorem 6.1]). The least ordinal with this property is called the
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Cantor-Bendixon rank of X and will be denoted by rkCB(X). The set
X(α0) is called the perfect kernel (or condensation part) of X which will
be denoted by κ(X). Note that if nonempty, κ(X) is homeomorphic to
a Cantor set and κ(X) is empty if and only if X is countable. Points in
κ(X) are called condensation points and can be characterized as points
for which every open neighborhood is uncountable (see [Kec95, I.6]).

Let Mk denote the space marked groups consisting of pairs (G,S)
where G is a group and S is an ordered set of (not necessarily distinct) set
of k generators. Two marked groups (G,S) and (H,T ) in Mk are identified
whenever the map si 7→ ti, i = 1, . . . , k extends to an isomorphism. Two
points (G,S) and (H,T ) are of distance 6 2−N if the Cayley graphs
of (G,S) and (H,T ) have isomorphic balls of radius N . This (ultra)
metric makes Mk into a compact, totally disconnected, separable space.
It follows from the definition that a sequence (Gn, Sn) ∈ Mk converges
to (G,S) ∈ Mk, if and only if, for every element w ∈ Fk (the free group
of rank k), there exists N = Nw > 0, such that the the relation w = 1
holds in G if and only if it holds in Gn for n > N .

An important problem of geometric group theory (raised in [Gri05])
is the identification of rkCB(Mk) for k > 2. It follows from [Cor11] that
the lower bound rkCB(Mk) > ωω, k > 2 holds. By a classical result of
B.H. Neumann [Neu37] there exists uncountably many non-isomorphic 2-
generated groups. Therefore κ(Mk) is a Cantor set for all k > 2. A finitely
generated group G is called a condensation group, if for some generating set
S of size k the pair (G,S) belongs to κ(Mk). It follows that this property
does not depend on the generating set (see [dCGP07, Lemma 1]).

In [Gri84] the second author constructed Cantor sets G ⊂ Mk consist-
ing essentially of groups of intermediate growth. Clearly, groups belonging
to these families lie in the condensation part of Mk. In general, it is a chal-
lenging problem to identify which groups are in the condensation part. It is
expected that every group of intermediate growth is a condensation group.
In contrast, it is easy to observe that virtually nilpotent groups are not
condensation. In [Cor11,BCGS14] condensation properties of metabelian
groups were considered and it was proven that restricted wreath prod-
ucts H ≀ G of two finitely generated infinite groups are condensation
groups [Cor11, Proposition 8.1]. Also, by [Cha00] every non-elementary
hyperbolic groups is a condensation group.

Let us briefly recall the groups constructed in [Gri84]. Although the
original definition is in terms of measure preserving transformations of the
unit interval, we will give here a definition in terms of automorphisms of
rooted trees. Let Ω denote the set all infinite sequences over the alphabet
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{0, 1, 2}. We identify Ω with the product {0, 1, 2}N and endow it with
the product topology. Let τ : Ω → Ω be the shift transformation, i.e.,
τ(ω)n = ωn+1. For each ω ∈ Ω we will define a subgroup Gω of Aut(T2),
where the latter denotes the automorphism group of the binary rooted
tree T2 whose vertices are identified with the set of finite sequences {0, 1}∗.
Each group Gω is the subgroup generated by the four automorphisms
denoted by a, bω, cω, dω whose actions onto the tree is as follows.

For v ∈ {0, 1}∗

a(0v) = 1v and a(1v) = 0v

bω(0v) = 0β(ω1)(v) cω(0v) = 0ζ(ω1)(v) dω(0v) = 0δ(ω1)(v)
bω(1v) = 1bτ(ω)(v) cω(1v) = 1cτω(v) dω(1v) = 1dτω(v),

where
β(0) = a β(1) = a β(2) = e
ζ(0) = a ζ(1) = e ζ(2) = a
δ(0) = e δ(1) = a δ(2) = a

and e denotes the identity.
Note that from the definition, the following relations are immediate:

a2 = b2
ω = c2

ω = d2
ω = bωcωdω = e

Denoting by Sω = {a, bω, cω, dω}, we obtain a subset {(Gω, Sω) | ω ∈
Ω} ⊂ M4. In [Gri84] it was observed that this subset is not closed. It
was also shown in [Gri84] that modifying countably many groups in this
family, one obtains a closed subset G = {(Gω, Sω) | ω ∈ Ω} with the
following properties:

Theorem 1 ([Gri84]).

1) G is homeomorphic to Ω via the map ω 7→ (Gω, Sω),

2) If in ω ∈ Ω all symbols {0, 1, 2} appear infinitely often, then Gω is
a 2-group,

3) For ω ∈ Ω which is not eventually constant (i.e., is not constant
after some point), Gω has intermediate growth,

4) If ω ∈ Ω is eventually constant, then Gω is virtually metabelian of
exponential growth.
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3. Proof of the Main Theorem

We start with the following basic lemma:

Lemma 1. Suppose that {(Gn, Sn)} is a sequence in Mk converging to
(G,S). Let Fk be the free group of rank k, with basis {x1, . . . , xk} and let
π : Fk → G , πn : Fk → Gn be the canonical maps. Given w1, . . . , wm ∈
Fk, let T = {π(w1), . . . , π(wm)} , Tn = {πn(w1), . . . , πn(wm)} and H =
〈T 〉 6 G,Hn = 〈Tn〉 6 Gn. Then the sequence {(Hn, Tn)} converges to
(H,T ) in Mm.

Proof. Let Fm be the free group of rank m with basis {y1, . . . , ym} and
let γ : Fm → H and γn : Fk → Hn be the canonical maps. Also, let
p : Fm → Fk be the group homomorphism defined by p(yi) = wi , i =
1, . . . ,m. Note that we have the following:

γn = πn ◦ p for every n

and
γ = π ◦ p

It follows that, given w ∈ Fm, w = 1 in H if and only if p(w) = 1 in G.
This shows that the sequence {(Hn, Tn)} converges to (H,T ) in Mm.

The following is a description of the structure of the group G000....

Theorem 2. The group G000... is isomorphic to the group L⋊ Z2 where
L = Z2 ≀ Z is the Lamplighter group given by presentation
〈

s, t | s2, [s, sti

], i > 1
〉

and Z2 acts on L by the automorphism

s 7→ st

t 7→ t−1

Proof. Let us denote G000... by G and denote its canonical generators
by a, b, c, d. Let H be the subgroup of G generated by the elements
b, c, d, ba, ca, da. There exists an embedding (see [Gri84])

ψ : H → G×G
b 7→ (a, b)
c 7→ (a, c)
d 7→ (1, d)
ba 7→ (b, a)
ca 7→ (c, a)
da 7→ (d, 1)
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Let D = 〈〈d〉〉 be the normal closure of d in G. By induction on word
length one can see that D is an abelian group (see [Gri84, Lemma 6.1]).

We claim that D = 〈dg | g ∈ 〈a, b〉〉. Let us denote the right hand side
by T . Clearly T is contained in D. It suffices to show T is normal. Since
bcd = 1 it is enough to show that (dg)c ∈ T for all g ∈ 〈a, b〉. By induction
on k one can see that the following equality holds:

ψ(d(ab)n

) =

{

(1, d(ab)k

) , n = 2k
(d(ab)ka, 1) , n = 2k + 1

We will show by induction on |g| that (dg)c = (dg)b. Suppose |g| = 1,
the case g = b is obvious since bcd = 1. If g = a, we have ψ((da)b) =
ψ((da)c) = (da, 1) and hence (dg)c = (dg)b. Now assume |g| > 1. Since
db = d we can assume that g starts with a. There are two cases, either
g = (ab)n or g = (ab)na for some n. In the first case (using induction
assumption)

ψ((d(ab)n

)c) =

{

(1, (d(ab)k

)c) = (1, (d(ab)k

)b) , n = 2k
((d(ab)ka)a, 1) = (d(ab)k

, 1) , n = 2k + 1

and in the second case

ψ((d(ab)na)c) =

{

((d(ab)k

)a, 1) , n = 2k
(1, (d(ab)ka)c) = (1, (d(ab)k

)b) , n = 2k + 1

In any case ψ((dg)c) = ψ((dg)b). This shows T is normal and hence
D = T .

Now letting

tn =

{

d(ab)n

n ≥ 0
d(ab)−n−1a n < 0

we see that T = 〈tn | n ∈ Z〉. Looking at ψ(tn) we see that the tn are
mutually distinct, therefore T ∼=

∏

Z

Z2.

Since ψ((ab)2) = (ba, ab) , it follows that the element ab is of infinite
order in G.

We will show that the subgroups D and 〈ab〉 intersect trivially. Suppose
not, then dg = (ab)n for some g ∈ 〈a, b〉 and n ∈ Z. Necessarily n has
to be even since left hand side of dg = (ab)n has even number of a’s. If
n = 2k then ψ((ab)2k) = ((ba)k, (ab)k) whereas ψ(dg) = (dh, 1) or (1, dh)
for some element h ∈ G. It follows that (ab)k = 1 which is a contradiction
since ab has infinite order.
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Now the subgroup K = D ⋊ 〈ab〉 is isomorphic to (Z∞

2 ) ⋊ Z ∼= Z2 ≀ Z
which is the Lamplighter group. This is true since we have

tab
n = tn+1, n ∈ Z

and hence the generator 〈ab〉 acts on D by shifting its generators.
Conjugating the generators of K by the generators of G we see that

K is a normal subgroup. The quotient G/D is isomorphic to the infinite
dihedral group D∞ (see [Gri84, Lemma 6.1]) and maps onto the quotient
G/K. The kernel of this homomorphism contains the image of ab in
G/D. From this It follows that K has index 2 in G. Hence we have
G = K ⋊ 〈a〉 ∼= L⋊ Z2. Identifying s = d, t = ab we see that conjugation
by a gives the asserted automorphism of K.

For ω ∈ Ω let Lω = 〈dω, abω〉 6 Gω. By virtue of the relations
a2 = b2

ω = c2
ω = d2

ω = bωcωdω = 1 we see that Lω is a normal subgroup of
index 2 in Gω and hence share many properties with Gω. Let us denote
by Tω = {dω, abω} and Lω = {(Lω, Tω) | ω ∈ Ω} ⊂ M2.

Proof of the main Theorem:

a) Consider the map φ : Ω → L given by ω 7→ (Lω, Tω). φ is continuous
since, if wn converges to w, then by Theorem 1 (Gωn

, Sωn
) converges to

(Gω, Sω) and hence by Lemma 1 (Lωn
, Tωn

) converges to (Lω, Tω). To see
that φ is injective: By [Gri84, Section 5], the following is true: Given
ω1 6= ω2 in Ω, there exists u ∈ F4 (depending on ω1 and ω2), such that
u is trivial in Gω1

and nontrivial in Gω2
(this amounts to saying that

the map a 7→ a, bω1
7→ bω2

, cω1
7→ cω2

, dω1
7→ dω2

does not extend to an
isomorphism from Gω1

to Gω2
i.e., (Gω1

, Sω1
) and (Gω2

, Sω2
) are distinct

points in M4). One observes that such u is a 2 power and (since Lω

has index 2 in Gω) its image in Gω lies in Lω. Therefore the image of
u in Lω1

is trivial but its image in Lω2
is nontrivial which implies that

(Lω1
, Tω1

) and (Lω2
, Tω2

) are distinct. This shows that φ is injective and
by compactness we have that φ is a homeomorphism.

b) This follows from Theorem 1 and the fact that Lω has finite index
in Gω.

c) By Theorem 2 L000... is isomorphic to L and it is immediate from
the definition of the groups that G000...

∼= G111...
∼= G222... and L000...

∼=
L111...

∼= L222....
d) This follows from part a).
As a corollary we obtain the following:

Corollary 1. The Lamplighter group L is a condensation group.
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4. Minimal presentations of the Lamplighter groups

For a subset A ⊂ G of a group let 〈〈A〉〉 denote the normal subgroup
generated by A. A presentation 〈X | R〉 is called minimal if for every
r ∈ R we have r /∈ 〈〈R \ {r}〉〉. The following is well known.

Proposition 1. Let 〈X | r1, r2, . . .〉 be an infinite minimal presentation
where |X| = k. Then the marked group (G,X) lies in the condensation
part of Mk.

Proof. It is enough to show that any open ball around (G,X) is uncount-
able. Let B = B((G,X), 2−N ) be a ball of radius 2−N around (G,X).
A marked group (H,T ) ∈ Mk lies in B if and only if for all w ∈ Fk

such that |w| 6 2N + 1, we have w = 1 in G ⇐⇒ w = 1 in H. Let
A = {w ∈ Fk | |w| 6 2N + 1 and w = 1 in G}. Choose M = M(N) ∈ N

large enough so that A ⊂ 〈〈r1, r2, . . . , rM 〉〉. For any subset U ⊂ N such
that {1, 2, . . . ,M} ⊂ U , let (GU , X) be the group 〈X | ri, i ∈ U〉. Clearly
all (GU , X) ∈ B and since the initial presentation is minimal all of them
are distinct marked groups. Hence B is uncountable.

We will give an alternative proof of Corollary 1 by showing that the
standard presentation of L is minimal.

For a group G and a subset S ⊂ G let

TS = {(s1g, s2g) | s1, s2 ∈ S, g ∈ G} ⊂ G×G

Theorem 3 ([Bau61]). Let G and H be two groups and S ⊂ G be a
subset. Then there exists a group W = W (H,G, S) (called the circle
product of G and H with respect to S) with the following properties:

• W contains subgroups Hg, g ∈ G all isomorphic to H,

• W is generated by G and H1,

• The subgroup K = 〈Hg | g ∈ G〉 is normal in Wand W = K ⋊G,

• For hg1
∈ Hg1

and g2 ∈ G we have hg2

g1
∈ Hg1g2

,

• [Hg1
, Hg2

] = 1 if and only if (g1, g2) ∈ TS.

Note that W can also be realized by using graph products: Let Γ be
the graph with vertex set G and edges TS , and let K be the graph product
where each vertex group is H. Clearly G acts on K and one can see that
W ∼= K ⋊G.
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Proposition 2. For every n > 2,the presentation

〈

s, t | sn, [s, sti

] i > 1
〉

is a minimal presentation of Zn ≀ Z.

Proof. Clearly the relation sn is not redundant. For i > 1 let ri = [s, sti

]
and suppose that for some m > 1 rm is redundant. Let

a0 = 0 , a2j = j(m+ 1) + (1 + . . .+ j) j > 1

and

a2j+1 =

{

a2j + j + 1 if j < m− 1
a2j + j + 2 if j > m− 1

, j > 0 .

Note that

a2j+1 − a2j =

{

j + 1 if j < m− 1
j + 2 if j > m− 1

, j > 0

and
|ak − aℓ| > m if |k − ℓ| > 2.

Finally let S = {a0, a1, a2, . . .} ⊂ Z and observe that the set S − S =
Z \ {−m,m}. Form the circle product W = W (Zn,Z, S) with generators
x, y. By the properties of W we have for i > 1

[x, xyi

] = 1 ⇐⇒ (0, i) ∈ TS ⇐⇒ i ∈ S − S ⇐⇒ i 6= m.

Therefore, under the assumption that rm is redundant in Zn ≀ Z, the map
s 7→ x, t 7→ y defines a homomorphism from Zn ≀Z to W which contradicts
the fact that rm = 1 in Zn ≀ Z but [x, xym

] 6= 1 in W .
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