On one class of algebras

Yuliia V. Zhuchok

Communicated by V. I. Sushchansky

Abstract. In this paper a g-dimonoid which is isomorphic to the free g-dimonoid is given and a free n-nilpotent g-dimonoid is constructed. We also present the least n-nilpotent congruence on a free g-dimonoid and give numerous examples of g-dimonoids.

1. Introduction

Recall that a dialgebra (dimonoid) [1] is a vector space (set) with two binary operations \dashv and \vdash satisfying the axioms $(x \dashv y) \dashv z=$ $x \dashv(y \dashv z)(D 1),(x \dashv y) \dashv z=x \dashv(y \vdash z)(D 2),(x \vdash y) \dashv z=$ $x \vdash(y \dashv z)(D 3),(x \dashv y) \vdash z=x \vdash(y \vdash z)(D 4),(x \vdash y) \vdash z=$ $x \vdash(y \vdash z)(D 5)$. In our time dimonoids are standard tool in the theory of Leibniz algebras. So, for example, free dimonoids were used for constructing free dialgebras and for studying a cohomology of dialgebras. There exist papers devoted to studying structural properties of dimonoids (see, e.g., $[2-4]$). If in the definition of a dialgebra delete the axioms $(D 1),(D 3),(D 5)$, then we obtain a 0 -dialgebra which was considered in [5]. Algebras obtained from the definition of a dimonoid by deleting the axioms $(D 2)$ and $(D 4)$ were considered in [6]. In the last paper the free object in the corresponding variety was constructed. Observe that dimonoids are closely connected with restrictive bisemigroups considered by B.M. Schein [7]. In [8-11] the notions of interassociativity, respectively,

[^0]strong interassociativity, related semigroups and doppelalgebras which are naturally connected with dimonoids were considered. Another reason for interest in dimonoids is their connection with n-tuple semigroups which were used in [12] for studying properties of n-tuple algebras of associative type. If in the definition of a dimonoid delete the axiom ($D 3$), then we obtain an algebraic system which is called a g-dimonoid (see $[13,14]$).

In this paper g-dimonoids are studied. In Section 2 we give numerous examples of g-dimonoids. In Section 3 we suggest a new concrete representation of a free g-dimonoid using the construction of a free g dimonoid from [14]. The main result of this section was announced in [13]. In Section 4 the construction of a free n-nilpotent g-dimonoid is given. Moreover, here we characterize the least n-nilpotent congruence on a free g-dimonoid.

2. Examples of g-dimonoids

In this section we give different examples of g-dimonoids.
a) Obviously, any dimonoid is a g-dimonoid.
b) Let X be an arbitrary nonempty set, $|X|>1$ and let X^{*} be the set of all finite nonempty words in the alphabet X. Denoting the first (respectively, the last) letter of a word $w \in X^{*}$ by $w^{(0)}$ (respectively, by $w^{(1)}$), define operations \dashv and \vdash on X^{*} by $w \dashv u=w^{(0)}, \quad w \vdash u=u^{(1)}$ for all $w, u \in X^{*}$. From the proof of Theorem $2[2]$ it follows that $\left(X^{*}, \dashv, \vdash\right)$ is a g-dimonoid but not a dimonoid.
c) Let $\left\{D_{i}\right\}_{i \in I}$ be a family of arbitrary g-dimonoids $D_{i}, i \in I$, and let $\bar{\Pi}_{i \in I} D_{i}$ be a set of all functions $f: I \rightarrow \bigcup_{i \in I} D_{i}$ such that if $\in D_{i}$ for any $i \in I$.

It is easy to prove the following lemma.
Lemma 1. $\bar{\Pi}_{i \in I} D_{i}$ with multiplications defined by

$$
\begin{equation*}
i\left(f_{1} \dashv f_{2}\right)=i f_{1} \dashv i f_{2}, \quad i\left(f_{1} \vdash f_{2}\right)=i f_{1} \vdash i f_{2} \tag{1}
\end{equation*}
$$

where $i \in I, f_{1}, f_{2} \in \bar{\prod}_{i \in I} D_{i}$, is a g-dimonoid.
The obtained algebra is called the Cartesian product of g-dimonoids $D_{i}, i \in I$. If I is finite, then the Cartesian product and the direct product coincide. The Cartesian product of a finite number of g-dimonoids D_{1}, D_{2}, \ldots, D_{n} is denoted by $D_{1} \times D_{2} \times \ldots \times D_{n}$. In particular, the Cartesian power of a g-dimonoid can be defined as follows. Let V be an arbitrary g-dimonoid and X be any nonempty set. Denote by $\operatorname{Map}(X ; V)$ the set of
all maps $X \rightarrow V$. Define operations \dashv and \vdash on $\operatorname{Map}(X ; V)$ by (1) for all $f_{1}, f_{2} \in \operatorname{Map}(X ; V)$ and $i \in X$. Then $(\operatorname{Map}(X ; V), \dashv, \vdash)$ is a g-dimonoid which is called the Cartesian power of V.
d) As usual, \mathbb{N} denotes the set of all positive integers.

Let $F[X]$ be the free semigroup in an alphabet X. We denote the length of a word $w \in F[X]$ by $l(w)$. Fix $n \in \mathbb{N}$ and define operations \dashv and \vdash on $F[X] \times \mathbb{N}$ by

$$
\begin{gathered}
\left(w_{1}, m_{1}\right) \dashv\left(w_{2}, m_{2}\right)=\left(w_{1} w_{2}, n\right), \\
\left(w_{1}, m_{1}\right) \vdash\left(w_{2}, m_{2}\right)=\left(w_{1} w_{2}, l\left(w_{1}\right)+m_{2}\right)
\end{gathered}
$$

for all $\left(w_{1}, m_{1}\right),\left(w_{2}, m_{2}\right) \in F[X] \times \mathbb{N}$. Denote the algebra $(F[X] \times \mathbb{N}, \dashv, \vdash)$ by $X \mathbb{N}_{n}$.

Lemma 2. The algebra $X \mathbb{N}_{n}$ is a g-dimonoid but not a dimonoid.
Proof. One can directly verify that $X \mathbb{N}_{n}$ is a g-dimonoid. Show that it is not a dimonoid. For all $\left(w_{1}, m_{1}\right),\left(w_{2}, m_{2}\right),\left(w_{3}, m_{3}\right) \in X \mathbb{N}_{n}$ obtain

$$
\begin{gathered}
\left(\left(w_{1}, m_{1}\right) \vdash\left(w_{2}, m_{2}\right)\right) \dashv\left(w_{3}, m_{3}\right)=\left(w_{1} w_{2}, l\left(w_{1}\right)+m_{2}\right) \dashv\left(w_{3}, m_{3}\right)= \\
=\left(w_{1} w_{2} w_{3}, n\right) \neq\left(w_{1} w_{2} w_{3}, l\left(w_{1}\right)+n\right)=\left(w_{1}, m_{1}\right) \vdash\left(w_{2} w_{3}, n\right)= \\
=\left(w_{1}, m_{1}\right) \vdash\left(\left(w_{2}, m_{2}\right) \dashv\left(w_{3}, m_{3}\right)\right) .
\end{gathered}
$$

e) Let S be an arbitrary semigroup, $a, b \in S$. By E_{S} denote the set of all idempotents of S. Define operations \dashv and \vdash on S by

$$
x \dashv y=a x, \quad x \vdash y=b y
$$

for all $x, y \in S$. Denote the algebra (S, \dashv, \vdash) by $S(a, b)$.
Lemma 3. Let S be an arbitrary right cancellative semigroup, $a, b \in E_{S}$.
(i) If a and b are non-commuting, then $S(a, b)$ is a g-dimonoid but not a dimonoid.
(ii) If a and b are commuting, then $S(a, b)$ is a dimonoid.

Proof. (i) The axioms $(D 1),(D 2),(D 4),(D 5)$ are checked directly. Besides,

$$
(x \vdash y) \dashv z=b y \dashv z=a b y, \quad x \vdash(y \dashv z)=x \vdash a y=b a y
$$

for all $x, y, z \in S$. Suppose that $a b y=b a y$. Then, using the right cancellability, obtain $a b=b a$. Thus, we arrive at a contradiction, i.e., the
assumption that $a b y=$ bay does not hold. Consequently, $S(a, b)$ is not a dimonoid.
(ii) If a and b are commuting, then, obviously, all axioms of a dimonoid hold.
f) Let S be an arbitrary semigroup, $a, b \in S$. Define operations \dashv and \vdash on S by

$$
x \dashv y=x a, \quad x \vdash y=y b
$$

for all $x, y \in S$. Denote the algebra (S, \dashv, \vdash) by $S[a, b]$.
Similarly to Lemma 3, the following lemma can be proved.
Lemma 4. Let S be an arbitrary left cancellative semigroup, $a, b \in E_{S}$.
(i) If a and b are non-commuting, then $S[a, b]$ is a g-dimonoid but not a dimonoid.
(ii) If a and b are commuting, then $S[a, b]$ is a dimonoid.
g) Let S be an arbitrary semigroup, $a, b \in S$. Define operations \dashv and \vdash on S by

$$
x \dashv y=a x b, \quad x \vdash y=a y b
$$

for all $x, y \in S$. Denote the algebra (S, \dashv, \vdash) by $S(a, b]$.
The following lemma could be proved immediately.
Lemma 5. If $a, b \in E_{S}$, then $S(a, b]$ is a dimonoid.
h) Let Y be an arbitrary nonempty set, $S=S_{Y}$ be some monoid defined on the set of finite words in the alphabet Y and $\theta \in S$ be an empty word which is a unit of S. Denote the operation on S by $*$ and the length of a word $w \in S$ by $l(w)$. By definition $l(\theta)=0, u^{0}=\theta$ for all $u \in S$. Fix elements $a, b \in Y, k \in \mathbb{N} \cup\{0\}$ and define operations \dashv and \vdash on S, assuming

$$
u_{1} \dashv u_{2}=u_{1} * a^{l\left(u_{2}\right)+k}, \quad u_{1} \vdash u_{2}=u_{2} * b^{l\left(u_{1}\right)+k}
$$

for all $u_{1}, u_{2} \in S$. The obtained algebra will be denoted by $S_{a}^{b}(k)$.
Lemma 6. Let T be the free monoid in the alphabet Y. Then for any $a, b \in Y, k \in \mathbb{N} \cup\{0\}$ the algebra $T_{a}^{b}(k)$ is a g-dimonoid. If $a \neq b$, then it is not a dimonoid.

Proof. Let $u_{1}, u_{2}, u_{3} \in T_{a}^{b}(k)$. In order to prove that $T_{a}^{b}(k)$ is a g-dimonoid we consider the following cases.

Case 1. Let $u_{1} \neq \theta, \quad u_{2} \neq \theta, \quad u_{3} \neq \theta$. Then

$$
\begin{gathered}
u_{1} \dashv\left(u_{2} \dashv u_{3}\right)=u_{1} \dashv\left(u_{2} * a^{l\left(u_{3}\right)+k}\right)= \\
=u_{1} * a^{l\left(u_{2} a^{l\left(u_{3}\right)+k}\right)+k}=u_{1} * a^{l\left(u_{2}\right)+l\left(u_{3}\right)+2 k}= \\
=u_{1} * a^{l\left(u_{2}\right)+k} * a^{l\left(u_{3}\right)+k}=\left(u_{1} * a^{l\left(u_{2}\right)+k}\right) \dashv u_{3}=\left(u_{1} \dashv u_{2}\right) \dashv u_{3}, \\
u_{1} \dashv\left(u_{2} \vdash u_{3}\right)=u_{1} \dashv\left(u_{3} * b^{l\left(u_{2}\right)+k}\right)= \\
=u_{1} * a^{l\left(u_{3} b^{l\left(u_{2}\right)+k}\right)+k}=u_{1} * a^{l\left(u_{3}\right)+l\left(u_{2}\right)+2 k}, \\
u_{1} \vdash\left(u_{2} \vdash u_{3}\right)=u_{1} \vdash\left(u_{3} * b^{l\left(u_{2}\right)+k}\right)= \\
=u_{3} * b^{l\left(u_{2}\right)+k} * b^{l\left(u_{1}\right)+k}=u_{3} * b^{l\left(u_{2}\right)+l\left(u_{1}\right)+2 k}= \\
=u_{3} * b^{l\left(u_{2} b^{l\left(u_{1}\right)+k}\right)+k}=\left(u_{2} * b^{l\left(u_{1}\right)+k}\right) \vdash u_{3}=\left(u_{1} \vdash u_{2}\right) \vdash u_{3}, \\
\left(u_{1} \dashv u_{2}\right) \vdash u_{3}=\left(u_{1} * a^{l\left(u_{2}\right)+k}\right) \vdash u_{3}= \\
=u_{3} * b^{l\left(u_{1} a^{l\left(u_{2}\right)+k}\right)+k}=u_{3} * b^{l\left(u_{1}\right)+l\left(u_{2}\right)+2 k} .
\end{gathered}
$$

Case 2. Let $u_{1}=u_{2}=u_{3}=\theta$. Then

$$
\begin{gathered}
\theta \dashv(\theta \dashv \theta)=\theta \dashv\left(\theta * a^{l(\theta)+k}\right)=\theta \dashv a^{k}=\theta * a^{l\left(a^{k}\right)+k}=a^{2 k}= \\
=a^{k} * a^{l(\theta)+k}=a^{k} \dashv \theta=\left(\theta * a^{l(\theta)+k}\right) \dashv \theta=(\theta \dashv \theta) \dashv \theta, \\
\theta \dashv(\theta \vdash \theta)=\theta \dashv\left(\theta * b^{l(\theta)+k}\right)=\theta \dashv b^{k}=\theta * a^{l\left(b^{k}\right)+k}=a^{2 k}, \\
\theta \vdash(\theta \vdash \theta)=\theta \vdash\left(\theta * b^{l(\theta)+k}\right)=\theta \vdash b^{k}=b^{k} * b^{l(\theta)+k}=b^{2 k}= \\
=\theta * b^{l\left(b^{k}\right)+k}=b^{k} \vdash \theta=\left(\theta * b^{l(\theta)+k}\right) \vdash \theta=(\theta \vdash \theta) \vdash \theta, \\
(\theta \dashv \theta) \vdash \theta=\left(\theta * a^{l(\theta)+k}\right) \vdash \theta=a^{k} \vdash \theta=\theta * b^{l\left(a^{k}\right)+k}=b^{2 k} .
\end{gathered}
$$

Case 3. Let $u_{1}=\theta, \quad u_{2} \neq \theta, \quad u_{3} \neq \theta$. Then

$$
\begin{gathered}
\theta \dashv\left(u_{2} \dashv u_{3}\right)=\theta \dashv\left(u_{2} * a^{l\left(u_{3}\right)+k}\right)=\theta * a^{l\left(u_{2} a^{l\left(u_{3}\right)+k}\right)+k}=a^{l\left(u_{2}\right)+l\left(u_{3}\right)+2 k}= \\
=a^{l\left(u_{2}\right)+k} * a^{l\left(u_{3}\right)+k}=\left(\theta * a^{l\left(u_{2}\right)+k}\right) \dashv u_{3}=\left(\theta \dashv u_{2}\right) \dashv u_{3}, \\
\theta \dashv\left(u_{2} \vdash u_{3}\right)=\theta \dashv\left(u_{3} * b^{l\left(u_{2}\right)+k}\right)=\theta * a^{l\left(u_{3} b^{l\left(u_{2}\right)+k}\right)+k}=a^{l\left(u_{2}\right)+l\left(u_{3}\right)+2 k}, \\
\theta \vdash\left(u_{2} \vdash u_{3}\right)=\theta \vdash\left(u_{3} * b^{l\left(u_{2}\right)+k}\right)=u_{3} * b^{l\left(u_{2}\right)+k} * b^{l(\theta)+k}=u_{3} * b^{l\left(u_{2}\right)+2 k}= \\
=u_{3} * b^{l\left(u_{2} * b^{l(\theta)+k}\right)+k}=\left(u_{2} * b^{l(\theta)+k}\right) \vdash u_{3}=\left(\theta \vdash u_{2}\right) \vdash u_{3}, \\
\left(\theta \dashv u_{2}\right) \vdash u_{3}=\left(\theta * a^{l\left(u_{2}\right)+k}\right) \vdash u_{3}=u_{3} * b^{l\left(a^{l\left(u_{2}\right)+k}\right)+k}=u_{3} * b^{l\left(u_{2}\right)+2 k} .
\end{gathered}
$$

Case 4. Let $u_{1}=\theta, \quad u_{2} \neq \theta, \quad u_{3}=\theta$. Then

$$
\begin{gathered}
\theta \dashv\left(u_{2} \dashv \theta\right)=\theta \dashv\left(u_{2} * a^{l(\theta)+k}\right)=\theta \dashv\left(u_{2} * a^{k}\right)=\theta * a^{l\left(u_{2} * a^{k}\right)+k}=a^{l\left(u_{2}\right)+2 k}= \\
=a^{l\left(u_{2}\right)+k} * a^{l(\theta)+k}=\left(\theta * a^{l\left(u_{2}\right)+k}\right) \dashv \theta=\left(\theta \dashv u_{2}\right) \dashv \theta, \\
\theta \dashv\left(u_{2} \vdash \theta\right)=\theta \dashv\left(\theta * b^{l\left(u_{2}\right)+k}\right)=\theta * a^{l\left(b^{l\left(u_{2}\right)+k}\right)+k}=a^{l\left(u_{2}\right)+2 k}, \\
\theta \vdash\left(u_{2} \vdash \theta\right)=\theta \vdash\left(\theta * b^{l\left(u_{2}\right)+k}\right)=b^{l\left(u_{2}\right)+k} * b^{l(\theta)+k}=b^{l\left(u_{2}\right)+2 k}= \\
=\theta * b^{l\left(u_{2} * b^{k}\right)+k}=\left(u_{2} * b^{l(\theta)+k}\right) \vdash \theta=\left(\theta \vdash u_{2}\right) \vdash \theta, \\
\left(\theta \dashv u_{2}\right) \vdash \theta=\left(\theta * a^{l\left(u_{2}\right)+k}\right) \vdash \theta=\theta * b^{l\left(a^{l\left(u_{2}\right)+k}\right)+k}=b^{l\left(u_{2}\right)+2 k} .
\end{gathered}
$$

The cases $u_{1} \neq \theta, u_{2}=\theta, u_{3} \neq \theta ; u_{1} \neq \theta, u_{2} \neq \theta, u_{3}=\theta ; u_{1}=u_{2}=\theta$, $u_{3} \neq \theta ; u_{1} \neq \theta, u_{2}=u_{3}=\theta$ are considered in a similar way.

Thus, $T_{a}^{b}(k)$ is a g-dimonoid.
Finally, show that $T_{a}^{b}(k)$ is not a dimonoid when $a \neq b$. For $u_{1} \neq \theta$, $u_{2} \neq \theta$ and $u_{3} \neq \theta$ we have

$$
\begin{gathered}
\left(u_{1} \vdash u_{2}\right) \dashv u_{3}=\left(u_{2} * b^{l\left(u_{1}\right)+k}\right) \dashv u_{3}=u_{2} * b^{l\left(u_{1}\right)+k} * a^{l\left(u_{3}\right)+k}= \\
=u_{2} b^{l\left(u_{1}\right)+k} a^{l\left(u_{3}\right)+k} \neq u_{2} a^{l\left(u_{3}\right)+k} b^{l\left(u_{1}\right)+k}= \\
=u_{2} * a^{l\left(u_{3}\right)+k} * b^{l\left(u_{1}\right)+k}=u_{1} \vdash\left(u_{2} * a^{l\left(u_{3}\right)+k}\right)=u_{1} \vdash\left(u_{2} \dashv u_{3}\right)
\end{gathered}
$$

and so, the axiom $(D 3)$ of a dimonoid does not hold.
The following lemma gives an answer on the question when $S_{a}^{b}(k)$ is a dimonoid.

Lemma 7. Let M be the free commutative monoid in the alphabet Y. For any $a, b \in Y, k \in \mathbb{N} \cup\{0\}$ algebras $M_{a}^{b}(k)$ and $T_{a}^{a}(k)$ are dimonoids.

Proof. From Lemma 6 it follows that $M_{a}^{b}(k)$ satisfies the axioms ($D 1$), $(D 2),(D 4),(D 5)$. Show that the axiom (D3) also holds.

Let $u_{1}, u_{2}, u_{3} \in M_{a}^{b}(k)$. Consider the following eight cases.
Case 1. Let $u_{1} \neq \theta, \quad u_{2} \neq \theta, \quad u_{3} \neq \theta$. Then

$$
\begin{aligned}
& \left(u_{1} \vdash u_{2}\right) \dashv u_{3}=\left(u_{2} * b^{l\left(u_{1}\right)+k}\right) \dashv u_{3}=u_{2} * b^{l\left(u_{1}\right)+k} * a^{l\left(u_{3}\right)+k}= \\
& =u_{2} * a^{l\left(u_{3}\right)+k} * b^{l\left(u_{1}\right)+k}=u_{1} \vdash\left(u_{2} * a^{l\left(u_{3}\right)+k}\right)=u_{1} \vdash\left(u_{2} \dashv u_{3}\right) .
\end{aligned}
$$

Case 2. Let $u_{1}=u_{2}=u_{3}=\theta$. Then

$$
(\theta \vdash \theta) \dashv \theta=\left(\theta * b^{l(\theta)+k}\right) \dashv \theta=b^{k} \dashv \theta=b^{k} * a^{l(\theta)+k}=b^{k} * a^{k}=
$$

$$
=a^{k} * b^{k}=a^{k} * b^{l(\theta)+k}=\theta \vdash a^{k}=\theta \vdash\left(\theta * a^{l(\theta)+k}\right)=\theta \vdash(\theta \dashv \theta) .
$$

Case 3. Let $u_{1}=\theta, \quad u_{2} \neq \theta, \quad u_{3} \neq \theta$. Then

$$
\begin{aligned}
& \left(\theta \vdash u_{2}\right) \dashv u_{3}=\left(u_{2} * b^{l(\theta)+k}\right) \dashv u_{3}=u_{2} * b^{l(\theta)+k} * a^{l\left(u_{3}\right)+k}=u_{2} * b^{k} * a^{l\left(u_{3}\right)+k}= \\
& =u_{2} * a^{l\left(u_{3}\right)+k} * b^{k}=u_{2} * a^{l\left(u_{3}\right)+k} * b^{l(\theta)+k}=\theta \vdash\left(u_{2} * a^{l\left(u_{3}\right)+k}\right)=\theta \vdash\left(u_{2} \dashv u_{3}\right) .
\end{aligned}
$$

Case 4. Let $u_{1} \neq \theta, \quad u_{2}=\theta, \quad u_{3} \neq \theta$. Then

$$
\begin{aligned}
& \left(u_{1} \vdash \theta\right) \dashv u_{3}=\left(\theta * b^{l\left(u_{1}\right)+k}\right) \dashv u_{3}=b^{l\left(u_{1}\right)+k} * a^{l\left(u_{3}\right)+k}= \\
& =a^{l\left(u_{3}\right)+k} * b^{l\left(u_{1}\right)+k}=u_{1} \vdash\left(\theta * a^{l\left(u_{3}\right)+k}\right)=u_{1} \vdash\left(\theta \dashv u_{3}\right) .
\end{aligned}
$$

Case 5. Let $u_{1} \neq \theta, \quad u_{2} \neq \theta, \quad u_{3}=\theta$. Then

$$
\begin{gathered}
\left(u_{1} \vdash u_{2}\right) \dashv \theta=\left(u_{2} * b^{l\left(u_{1}\right)+k}\right) \dashv \theta=u_{2} * b^{l\left(u_{1}\right)+k} * a^{l(\theta)+k}=u_{2} * b^{l\left(u_{1}\right)+k} * a^{k}= \\
=u_{2} * a^{k} * b^{l\left(u_{1}\right)+k}=u_{1} \vdash\left(u_{2} * a^{l(\theta)+k}\right)=u_{1} \vdash\left(u_{2} \dashv \theta\right) .
\end{gathered}
$$

Case 6. Let $u_{1}=u_{2}=\theta, \quad u_{3} \neq \theta$. Then

$$
\begin{gathered}
(\theta \vdash \theta) \dashv u_{3}=\left(\theta * b^{l(\theta)+k}\right) \dashv u_{3}=b^{k} \dashv u_{3}=b^{k} * a^{l\left(u_{3}\right)+k}= \\
=a^{l\left(u_{3}\right)+k} * b^{k}=a^{l\left(u_{3}\right)+k} * b^{l(\theta)+k}=\theta \vdash\left(\theta * a^{l\left(u_{3}\right)+k}\right)=\theta \vdash\left(\theta \dashv u_{3}\right) .
\end{gathered}
$$

Case 7. Let $u_{1} \neq \theta, \quad u_{2}=u_{3}=\theta$. Then

$$
\begin{gathered}
\left(u_{1} \vdash \theta\right) \dashv \theta=\left(\theta * b^{l\left(u_{1}\right)+k}\right) \dashv \theta=b^{l\left(u_{1}\right)+k} * a^{l(\theta)+k}=b^{l\left(u_{1}\right)+k} * a^{k}= \\
=a^{k} * b^{l\left(u_{1}\right)+k}=u_{1} \vdash a^{k}=u_{1} \vdash\left(\theta * a^{l(\theta)+k}\right)=u_{1} \vdash(\theta \dashv \theta) .
\end{gathered}
$$

Case 8. Let $u_{1}=\theta, \quad u_{2} \neq \theta, \quad u_{3}=\theta$. Then

$$
\begin{aligned}
& \left(\theta \vdash u_{2}\right) \dashv \theta=\left(u_{2} * b^{l(\theta)+k}\right) \dashv \theta=u_{2} * b^{k} * a^{l(\theta)+k}=u_{2} * b^{k} * a^{k}= \\
& =u_{2} * a^{k} * b^{k}=u_{2} * a^{k} * b^{l(\theta)+k}=\theta \vdash\left(u_{2} * a^{l(\theta)+k}\right)=\theta \vdash\left(u_{2} \dashv \theta\right) .
\end{aligned}
$$

Thus, $M_{a}^{b}(k)$ is a dimonoid.
A proof is the same for $T_{a}^{a}(k)$.
Note that independence of axioms of a g-dimonoid follows from independence of axioms of a dimonoid (see [2], Theorem 2).

3. Free g-dimonoids

In this section we construct a g-dimonoid which is isomorphic to the free g-dimonoid of an arbitrary rank and consider separately free g-dimonoids of rank 1 .

A nonempty subset A of a g-dimonoid (D, \dashv, \vdash) is called a g-subdimonoid, if for any $a, b \in D, a, b \in A$ implies $a \dashv b, a \vdash b \in A$.

Note that the class of all g-dimonoids is a variety as it is closed under taking of homomorphic images, g-subdimonoids and Cartesian products. A g-dimonoid which is free in the variety of all g-dimonoids is called a free g-dimonoid.

In order to prove the main result of this section we need the construction of a free g-dimonoid from [14].

Let e be an arbitrary symbol. Consider the following sets:

$$
\begin{gathered}
I^{1}=\{e\}, I^{n}=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \mid \varepsilon_{k} \in\{0,1\}, 1 \leqslant k \leqslant n-1\right\}, n>1 \\
I=\bigcup_{n \geqslant 1} I^{n}
\end{gathered}
$$

If $l=0$, we will regard the sequence $\varepsilon_{1}, \ldots, \varepsilon_{l}$ without brackets as empty, and the sequence $\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right)$ with brackets as e. Define operations \dashv and \vdash on I by

$$
\begin{aligned}
& \left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \dashv\left(\theta_{1}, \ldots, \theta_{m-1}\right)=(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, \underbrace{1,1, \ldots, 1}_{m}) \\
& \left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \vdash\left(\theta_{1}, \ldots, \theta_{m-1}\right)=(\theta_{1}, \ldots, \theta_{m-1}, \underbrace{0,0, \ldots, 0}_{n}) .
\end{aligned}
$$

By Lemma 3 from [14] (I, \dashv, \vdash) is a g-dimonoid. Observe that $e \dashv e=(1)$, $e \vdash e=(0)$ and (I, \dashv, \vdash) is not a dimonoid.

Let X be an arbitrary nonempty set and $F[X]$ be the free semigroup in the alphabet X. Define operations \dashv and \vdash on $F G=\{(w, \varepsilon) \mid w \in$ $\left.F[X], \varepsilon \in I^{l(w)}\right\}$ by

$$
\begin{aligned}
& \left(w_{1}, \varepsilon\right) \dashv\left(w_{2}, \xi\right)=\left(w_{1} w_{2}, \varepsilon \dashv \xi\right), \\
& \left(w_{1}, \varepsilon\right) \vdash\left(w_{2}, \xi\right)=\left(w_{1} w_{2}, \varepsilon \vdash \xi\right)
\end{aligned}
$$

for all $\left(w_{1}, \varepsilon\right),\left(w_{2}, \xi\right) \in F G$. The algebra $(F G, \dashv, \vdash)$ is denoted by $F G[X]$. By Theorem 4 from [14] $F G[X]$ is the free g-dimonoid.

Using notations from Section 2, introduce the set

$$
X T_{a}^{b}(k)=\left\{(w, u) \in F[X] \times T_{a}^{b}(k) \mid l(w)-l(u)=1\right\} .
$$

If $s=1$, we will regard the sequence $y_{1} y_{2} \ldots y_{s-1} \in T_{a}^{b}(k)$ as θ.
The main result of this section is the following.
Theorem 1. The g-dimonoid $X T_{a}^{b}(1)$ is free if $|Y|=2$ and $a \neq b$.
Proof. By Lemma $1 F[X] \times T_{a}^{b}(k)$ is a g-dimonoid. It is not difficult to check that $X T_{a}^{b}(1)$ is a g-subdimonoid of $F[X] \times T_{a}^{b}(1)$.

Let $|Y|=2$ and $a \neq b$. Let us show that $X T_{a}^{b}(1)$ is free. Take $\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) \in X T_{a}^{b}(1)$, where $x_{i} \in X, 1 \leqslant i \leqslant s, y_{j} \in Y$, $1 \leqslant j \leqslant s-1$, and define a map

$$
\begin{aligned}
\pi: X T_{a}^{b}(1) & \rightarrow F G[X]: \\
\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) & \mapsto\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) \pi
\end{aligned}
$$

assuming

$$
\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) \pi=\left(x_{1} x_{2} \ldots x_{s},\left(\widetilde{y}_{1}, \widetilde{y}_{2}, \ldots, \widetilde{y}_{s-1}\right)\right)
$$

where

$$
\widetilde{y}_{i}=\left\{\begin{array}{c}
1, y_{i}=a \\
0, y_{i}=b
\end{array}\right.
$$

for all $1 \leqslant i \leqslant s-1, s \neq 1$, and $\left(\widetilde{y}_{1}, \widetilde{y}_{2}, \ldots, \widetilde{y}_{s-1}\right)$ is e for $s=1$. Show that π is an isomorphism.

For all

$$
\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right),\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m-1}\right) \in X T_{a}^{b}(1)
$$

where $a_{i} \in X, 1 \leqslant i \leqslant m, b_{j} \in Y, 1 \leqslant j \leqslant m-1$, obtain

$$
\begin{gathered}
\left(\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) \dashv\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m-1}\right)\right) \pi= \\
=\left(x_{1} x_{2} \ldots x_{s} a_{1} a_{2} \ldots a_{m}, y_{1} y_{2} \ldots y_{s-1} * a^{m}\right) \pi= \\
=(x_{1} x_{2} \ldots x_{s} a_{1} a_{2} \ldots a_{m},(\widetilde{y}_{1}, \widetilde{y}_{2}, \ldots, \widetilde{y}_{s-1}, \underbrace{\widetilde{a}, \widetilde{a}, \ldots, \widetilde{a}}_{m}))= \\
=(x_{1} x_{2} \ldots x_{s} a_{1} a_{2} \ldots a_{m},(\widetilde{y}_{1}, \widetilde{y}_{2}, \ldots, \widetilde{y}_{s-1}, \underbrace{1,1, \ldots, 1}_{m}))= \\
=\left(x_{1} x_{2} \ldots x_{s},\left(\widetilde{y}_{1}, \widetilde{y}_{2}, \ldots, \widetilde{y}_{s-1}\right)\right) \dashv\left(a_{1} a_{2} \ldots a_{m},\left(\widetilde{b}_{1}, \widetilde{b}_{2}, \ldots, \widetilde{b}_{m-1}\right)\right)= \\
=\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) \pi \dashv\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m-1}\right) \pi
\end{gathered}
$$

$$
\begin{gathered}
\left(\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) \vdash\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m-1}\right)\right) \pi= \\
=\left(x_{1} x_{2} \ldots x_{s} a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m-1} * b^{s}\right) \pi= \\
=(x_{1} x_{2} \ldots x_{s} a_{1} a_{2} \ldots a_{m},(\widetilde{b}_{1}, \widetilde{b}_{2}, \ldots, \widetilde{b}_{m-1}, \underbrace{\widetilde{b}, \widetilde{b}, \ldots, \widetilde{b}}_{s}))= \\
=(x_{1} x_{2} \ldots x_{s} a_{1} a_{2} \ldots a_{m},(\widetilde{b}_{1}, \widetilde{b}_{2}, \ldots, \widetilde{b}_{m-1}, \underbrace{0,0, \ldots, 0}_{s}))= \\
=\left(x_{1} x_{2} \ldots x_{s},\left(\widetilde{y}_{1}, \widetilde{y}_{2}, \ldots, \widetilde{y}_{s-1}\right)\right) \vdash\left(a_{1} a_{2} \ldots a_{m},\left(\widetilde{b}_{1}, \widetilde{b}_{2}, \ldots, \widetilde{b}_{m-1}\right)\right)= \\
=\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right) \pi \vdash\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m-1}\right) \pi .
\end{gathered}
$$

So, π is a homomorphism. Obviously, π is a bijection and thus, π is an isomorphism. Hence we obtain that $X T_{a}^{b}(1)$ is the free g-dimonoid.

The following lemma gives one property of $S_{a}^{b}(k)$.
Lemma 8. If $S_{a}^{b}(k)$ is a dimonoid, then a^{k} and b^{k} are commuting in S. Proof. Let $S_{a}^{b}(k)$ be a dimonoid. Then

$$
\begin{aligned}
& (\theta \vdash \theta) \dashv \theta=\left(\theta * b^{l(\theta)+k}\right) \dashv \theta=b^{k} \dashv \theta=b^{k} * a^{l(\theta)+k}=b^{k} * a^{k}, \\
& \theta \vdash(\theta \dashv \theta)=\theta \vdash\left(\theta * a^{l(\theta)+k}\right)=\theta \vdash a^{k}=a^{k} * b^{l(\theta)+k}=a^{k} * b^{k}
\end{aligned}
$$

and, using the axiom $(D 3)$, obtain $b^{k} * a^{k}=a^{k} * b^{k}$.
Now we construct a g-dimonoid which is isomorphic to the free g dimonoid of rank 1.

Let $|Y|=2, a \neq b$. Define operations \dashv and \vdash on
by

$$
\begin{gathered}
\left(m_{1}, u_{1}\right) \dashv\left(m_{2}, u_{2}\right)=\left(m_{1}+m_{2}, u_{1} * a^{l\left(u_{2}\right)+1}\right) \\
\left(m_{1}, u_{1}\right) \vdash\left(m_{2}, u_{2}\right)=\left(m_{1}+m_{2}, u_{2} * b^{l\left(u_{1}\right)+1}\right)
\end{gathered}
$$

for all $\left(m_{1}, u_{1}\right),\left(m_{2}, u_{2}\right) \in \widetilde{\mathbb{N}}_{a}^{b}(1)$. By Lemma $1(\mathbb{N},+) \times T_{a}^{b}(1)$ is a g-dimonoid. An immediate verification shows that operations \dashv and \vdash are well-defined. Thus, $\left(\widetilde{\mathbb{N}}_{a}^{b}(1), \dashv, \vdash\right)$ is a g-subdimonoid of $(\mathbb{N},+) \times T_{a}^{b}(1)$. Denote it by $\mathbb{N} T_{a}^{b}(1)$.

Lemma 9. The free g-dimonoid of rank 1 is isomorphic to the g-dimonoid $\mathbb{N} T_{a}^{b}(1)$.

Proof. Let $X=\{r\}$. An easy verification shows that a map

$$
\xi: X T_{a}^{b}(1) \rightarrow \mathbb{N} T_{a}^{b}(1)
$$

defined by $\omega \xi=(k, u) \Leftrightarrow \omega=\left(r^{k}, u\right)$, is an isomorphism.

4. Free n-nilpotent g-dimonoids

In this section we construct a free n-nilpotent g-dimonoid of an arbitrary rank and consider separately free n-nilpotent g-dimonoids of rank 1 . We also characterize the least n-nilpotent congruence on a free g-dimonoid.

An element 0 of a g-dimonoid (D, \dashv, \vdash) will be called zero, if $x \star 0=$ $0=0 \star x$ for all $x \in D$ and $\star \in\{\dashv, \vdash\}$.

A g-dimonoid (D, \dashv, \vdash) with zero will be called nilpotent, if for some $n \in \mathbb{N}$ and any $x_{i} \in D, 1 \leqslant i \leqslant n+1$, and $*_{j} \in\{\dashv, \vdash\}, 1 \leqslant j \leqslant n$, any parenthesizing of

$$
\begin{equation*}
x_{1} *_{1} x_{2} *_{2} \ldots *_{n} x_{n+1} \tag{2}
\end{equation*}
$$

gives $0 \in D$. The least such n we shall call the nilpotency index of (D, \dashv, \vdash). For $k \in \mathbb{N}$ a nilpotent g-dimonoid of nilpotency index $\leqslant k$ is said to be k-nilpotent.

Note that from (2) it follows that operations of any 1-nilpotent g dimonoid coincide and it is a zero semigroup.

It is not difficult to see that the class of all n-nilpotent g-dimonoids is a subvariety of the variety of all g-dimonoids. A g-dimonoid which is free in the variety of n-nilpotent g-dimonoids will be called a free n-nilpotent g-dimonoid.

Fix $n \in \mathbb{N}$ and, using notations from Section 3, assume

$$
G_{n}=\left\{(w, u) \in X T_{a}^{b}(1) \mid l(w) \leqslant n\right\} \cup\{0\} \quad(|Y|=2, a \neq b)
$$

Define operations \prec and \succ on G_{n} by

$$
\begin{aligned}
& \left(w_{1}, u_{1}\right) \prec\left(w_{2}, u_{2}\right)=\left\{\begin{array}{cl}
\left(w_{1} w_{2}, u_{1} * a^{l\left(u_{2}\right)+1}\right), & l\left(w_{1} w_{2}\right) \leqslant n \\
0, & l\left(w_{1} w_{2}\right)>n
\end{array}\right. \\
& \left(w_{1}, u_{1}\right) \succ\left(w_{2}, u_{2}\right)=\left\{\begin{array}{cl}
\left(w_{1} w_{2}, u_{2} * b^{l\left(u_{1}\right)+1}\right), & l\left(w_{1} w_{2}\right) \leqslant n \\
0, & l\left(w_{1} w_{2}\right)>n
\end{array}\right.
\end{aligned}
$$

$$
\left(w_{1}, u_{1}\right) \star 0=0 \star\left(w_{1}, u_{1}\right)=0 \star 0=0
$$

for all $\left(w_{1}, u_{1}\right),\left(w_{2}, u_{2}\right) \in G_{n} \backslash\{0\}$ and $\star \in\{\prec, \succ\}$. The algebra $\left(G_{n}, \prec, \succ\right)$ will be denoted by $G_{n}(X)$.

Theorem 2. $G_{n}(X)$ is the free n-nilpotent g-dimonoid.
Proof. Prove that $G_{n}(X)$ is a g-dimonoid. Let $\left(w_{1}, u_{1}\right),\left(w_{2}, u_{2}\right)$, $\left(w_{3}, u_{3}\right) \in G_{n} \backslash\{0\}$. If $l\left(w_{1} w_{2}\right)>n$ or $l\left(w_{2} w_{3}\right)>n$, then the proof is straightforward. The fact that axioms of a g-dimonoid hold when $l\left(w_{1} w_{2} w_{3}\right) \leqslant n$ follows from Theorem 1. In the case $l\left(w_{1} w_{2}\right) \leqslant n$, $l\left(w_{2} w_{3}\right) \leqslant n$ and $l\left(w_{1} w_{2} w_{3}\right)>n$ we have

$$
\left(\left(w_{1}, u_{1}\right) *_{1}\left(w_{2}, u_{2}\right)\right) *_{2}\left(w_{3}, u_{3}\right)=0=\left(w_{1}, u_{1}\right) *_{1}\left(\left(w_{2}, u_{2}\right) *_{2}\left(w_{3}, u_{3}\right)\right)
$$

for $*_{1}, *_{2} \in\{\prec, \succ\}$. The proofs of the remaining cases are obvious. Thus, $G_{n}(X)$ is a g-dimonoid.

For any $\left(w_{i}, u_{i}\right) \in G_{n} \backslash\{0\}, 1 \leqslant i \leqslant n+1$, and $*_{j} \in\{\prec, \succ\}, 1 \leqslant j \leqslant n$, any parenthesizing of

$$
\left(w_{1}, u_{1}\right) *_{1}\left(w_{2}, u_{2}\right) *_{2} \ldots *_{n}\left(w_{n+1}, u_{n+1}\right)
$$

gives 0 , hence $G_{n}(X)$ is nilpotent. Moreover, for any $\left(x_{i}, \theta\right) \in G_{n} \backslash\{0\}$, where $x_{i} \in X, 1 \leqslant i \leqslant n$,

$$
\left(x_{1}, \theta\right) \prec\left(x_{2}, \theta\right) \prec \ldots \prec\left(x_{n}, \theta\right)=\left(x_{1} x_{2} \ldots x_{n}, a^{n-1}\right) \neq 0
$$

It means that $G_{n}(X)$ has nilpotency index n.
Let us show that $G_{n}(X)$ is free in the variety of n-nilpotent g-dimonoids.

The g-dimonoid $(\mathcal{G}(X), \dashv, \vdash)$ which is isomorphic to $F G[X]$ from Section 3 was constructed in [14]. The corresponding isomorphism $(\mathcal{G}(X), \dashv, \vdash) \rightarrow F G[X]$ is denoted by σ (see [14], Theorem 4). In the last paper for an arbitrary g-dimonoid $(\mathcal{D}, \dashv, \vdash)$ the homomorphism ψ_{0} from $(\mathcal{G}(X), \dashv, \vdash)$ to $(\mathcal{D}, \dashv, \vdash)$ was given. We will call ψ_{0} as a canonical homomorphism. Observe that ψ_{0} sends an arbitrary term with elements x_{1}, \ldots, x_{n} to the product of some n elements from \mathcal{D}.

Let $\left(P, \dashv^{\prime}, \vdash^{\prime}\right)$ be an arbitrary n-nilpotent g-dimonoid, α be the canonical homomorphism from $(\mathcal{G}(X), \dashv, \vdash)$ to $\left(P, \dashv^{\prime}, \vdash^{\prime}\right)$ and $\mu=\pi \sigma^{-1} \alpha$ (see Section 3). Obviously, μ is a homomorphism from $X T_{a}^{b}(1)$, where $|Y|=2, a \neq b$, to $\left(P, \dashv^{\prime}, \vdash^{\prime}\right)$. Define a map

$$
\delta: G_{n}(X) \rightarrow\left(P, \vdash^{\prime}, \vdash^{\prime}\right): \omega \mapsto \omega \delta
$$

assuming

$$
\omega \delta=\left\{\begin{array}{c}
\omega \mu, \omega \in G_{n} \backslash\{0\} \\
0, \omega=0
\end{array}\right.
$$

Show that δ is a homomorphism.
Let $\omega_{1}=\left(x_{1} x_{2} \ldots x_{s}, y_{1} y_{2} \ldots y_{s-1}\right), \omega_{2}=\left(a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m-1}\right) \in$ $G_{n} \backslash\{0\}$, where $x_{i} \in X, 1 \leqslant i \leqslant s, y_{j} \in Y, 1 \leqslant j \leqslant s-1, a_{i} \in X, 1 \leqslant i \leqslant m$, $b_{j} \in Y, 1 \leqslant j \leqslant m-1$. Assume $s+m \leqslant n$. As $\omega_{1} \prec \omega_{2} \in G_{n} \backslash\{0\}$, then

$$
\left(\omega_{1} \prec \omega_{2}\right) \delta=\left(\omega_{1} \prec \omega_{2}\right) \mu=\left(\omega_{1} \dashv \omega_{2}\right) \mu=\omega_{1} \mu \dashv^{\prime} \omega_{2} \mu=\omega_{1} \delta \dashv^{\prime} \omega_{2} \delta .
$$

Analogously, $\left(\omega_{1} \succ \omega_{2}\right) \delta=\omega_{1} \delta \vdash^{\prime} \omega_{2} \delta$. Taking into account the previous arguments, in the remaining cases the equalities

$$
\left(\omega_{1} \prec \omega_{2}\right) \delta=\left(\omega_{1} \succ \omega_{2}\right) \delta=0=\omega_{1} \delta \vdash^{\prime} \omega_{2} \delta=\omega_{1} \delta \dashv^{\prime} \omega_{2} \delta
$$

hold. Thus, δ is a homomorhism.
The proof is complete.
Now we construct a g-dimonoid which is isomorphic to the free n nilpotent g-dimonoid of rank 1 .

Assume $|Y|=2, a \neq b$. For any $n \in \mathbb{N}$ let

$$
\widetilde{\mathbb{L}}_{n}=\left\{(m, u) \in \mathbb{N} \times T_{a}^{b}(1) \mid m-l(u)=1, m \leqslant n\right\} \cup\{0\}
$$

Define operations \dashv and \vdash on $\widetilde{\mathbb{L}}_{n}$ by the rule

$$
\begin{gathered}
\left(m_{1}, u_{1}\right) \dashv\left(m_{2}, u_{2}\right)=\left\{\begin{array}{cl}
\left(m_{1}+m_{2}, u_{1} * a^{l\left(u_{2}\right)+1}\right), & m_{1}+m_{2} \leqslant n \\
0, & m_{1}+m_{2}>n
\end{array}\right. \\
\left(m_{1}, u_{1}\right) \vdash\left(m_{2}, u_{2}\right)=\left\{\begin{array}{cl}
\left(m_{1}+m_{2}, u_{2} * b^{l\left(u_{1}\right)+1}\right), & m_{1}+m_{2} \leqslant n \\
0, & m_{1}+m_{2}>n
\end{array}\right. \\
\left(m_{1}, u_{1}\right) \star 0=0 \star\left(m_{1}, u_{1}\right)=0 \star 0=0
\end{gathered}
$$

for all $\left(m_{1}, u_{1}\right),\left(m_{2}, u_{2}\right) \in \widetilde{\mathbb{L}}_{n} \backslash\{0\}$ and $\star \in\{\dashv, \vdash\}$. An immediate verification shows that axioms of a g-dimonoid hold concerning operations \dashv and \vdash. So, $\left(\widetilde{\mathbb{L}}_{n}, \dashv, \vdash\right)$ is a g-dimonoid. Denote it by \mathbb{L}_{n}.

Lemma 10. If $|X|=1$, then $G_{n}(X) \cong \mathbb{L}_{n}$.
Proof. Let $X=\{r\}$. An easy verification shows that a map $\varrho: G_{n}(X) \rightarrow$ \mathbb{L}_{n}, defined by

$$
\omega \varrho= \begin{cases}(k, u), & \omega=\left(r^{k}, u\right) \\ 0, & \omega=0\end{cases}
$$

is an isomorphism.

We finish this section with the description of the least n-nilpotent congruence on a free g-dimonoid.

If $f: D_{1} \rightarrow D_{2}$ is a homomorphism of g-dimonoids, then the corresponding congruence on D_{1} will be denoted by Δ_{f}. If ρ is a congruence on a g-dimonoid (D, \dashv, \vdash) such that $(D, \dashv, \vdash) / \rho$ is an n-nilpotent g-dimonoid, then we say that ρ is an n-nilpotent congruence.

Let $X T_{a}^{b}(1)$ be the free g-dimonoid $(|Y|=2, a \neq b)$ (see Section 3). Fix $n \in \mathbb{N}$ and define a relation $\kappa(n)$ on $X T_{a}^{b}(1)$ by

$$
\begin{gathered}
\left(w_{1}, u_{1}\right) \kappa(n)\left(w_{2}, u_{2}\right) \text { if and only if } \\
\left(w_{1}, u_{1}\right)=\left(w_{2}, u_{2}\right) \text { or } l\left(w_{1}\right)>n, l\left(w_{2}\right)>n
\end{gathered}
$$

Theorem 3. The relation $\kappa(n)$ on the free g-dimonoid $X T_{a}^{b}(1)$ is the least n-nilpotent congruence.

Proof. Define a map $\tau: X T_{a}^{b}(1) \rightarrow G_{n}(X)$ by

$$
(w, u) \tau=\left\{\begin{array}{cl}
(w, u), & l(w) \leqslant n \\
0, & l(w)>n
\end{array} \quad(w, u) \in X T_{a}^{b}(1)\right.
$$

Similarly to the proof of Theorem 4 from [4], the facts that τ is a surjective homomorphism and $\Delta_{\tau}=\kappa(n)$ can be proved.

References

[1] J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin (2001), 7-66.
[2] A.V. Zhuchok, Dimonoids, Algebra and Logic 50 (2011), no. 4, 323-340.
[3] A.V. Zhuchok, Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 196-208.
[4] A.V. Zhuchok, Free n-nilpotent dimonoids, Algebra and Discrete Math. 16 (2013), no. 2, 299-310.
[5] A.P. Pozhidaev, 0-dialgebras with bar-unity and nonassociative Rota-Baxter algebras, Sib. Math. J. 50 (2009) no. 6, 1070-1080.
[6] T. Pirashvili, Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169-183.
[7] B.M. Schein, Restrictive bisemigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (44) (1965), 168-179 (in Russian).
[8] M. Gould, K.A. Linton, A.W. Nelson, Interassociates of monogenic semigroups, Semigroup Forum 68 (2004), 186-201.
[9] M. Gould, R.E. Richardson, Translational hulls of polynomially related semigroups, Czechoslovak Math. J. 33 (1983), no. 1, 95-100.
[10] E. Hewitt, H.S. Zuckerman, Ternary operations and semigroups, Semigroups, Proc. Sympos. Detroit, Michigan 1968. (1969), 95-100.
[11] B. Richter, Dialgebren, Doppelalgebren und ihre Homologie, Diplomarbeit, Universitat Bonn. (1997). Available at http://www.math.uni-bonn.de/people/richter/.
[12] N.A. Koreshkov, n-tuple algebras of associative type, Izv. Vyssh. Uchebn. Zaved. Mat. 12 (2008), 34-42 (in Russian).
[13] Yul. V. Zhuchok, On one class of algebras, International Algebraic Conference dedicated to the 100th anniversary of L.A. Kaluzhnin: Abstracts, Kyiv, Ukraine (2014), p. 91.
[14] Y. Movsisyan, S. Davidov and Mh. Safaryan, Construction of free g-dimonoids, Algebra and Discrete Math. 18 (2014), no. 1, 138-148.

Contact information

Yul. V. Zhuchok $\left.\quad \begin{array}{l}\text { Department of Algebra and System Analysis, } \\ \text { Luhansk Taras Shevchenko National University, } \\ \text { Gogol square, 1, Starobilsk, 92700, Ukraine } \\ \\ \\ \\ \end{array}\right]=$-Mail(s): yulia.mih@mail.ru
Received by the editors: 10.11.2014
and in final form 12.01.2015.

[^0]: 2010 MSC: 08B20, 20M10, 20M50, 17A30, 17 A 32.
 Key words and phrases: dimonoid, g-dimonoid, free g-dimonoid, free n-nilpotent g-dimonoid, semigroup, congruence.

