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The effect of correlated hopping on the charge and heat transport is investigated for the Falicov-Kimball model.
Exact solutions for the electrical and thermal conductivities and thermoelectric power are obtained within the
dynamical mean field theory. The temperature dependences of the transport coefficients are analysed for par-
ticular values of correlated hopping which correspond to the significant reconstruction of the density of states
and transport function. The cases with strong enhancement of thermoelectric properties are elucidated.
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1. Introduction

Direct transformation of the heat flow into the electric current and vice versa attracts much attention
in science and engineering [1], but its applications are limited by the low thermoelectric figure of merit
of the traditional bulk materials — metals and semiconductors — good electric conductors are also good
heat conductors. On the other hand, bad metals or compounds with strong electron correlations, possess-
ing large variability of their band spectrum and density of states depending on the chemical structure
and doping, are considered as possible new candidates for thermoelectric materials [1}2]. In many cases,
the anomalous properties of strongly correlated materials are ascribed to the on-site Coulomb or spin
interactions, which are the leading contributions.

It was already noticed by Hubbard in his seminal article [3] that besides the local Coulomb-type in-
teraction U} ; A;1 ;) there should be other nonlocal contributions: the intersite Coulomb interaction
2.ij Vijhin; and the so-called correlated hopping

@pn _n o T A (6PN
Z tl.]. (g + Rjs)c,,Cjo  and Z tij RigC; CjoNjs, (1.1)
ijo ijo

which reflects the fact that different many-body states can overlap in different extent and, as a result, the
value of intersite hopping depends on the occupation of these states. The origin of the correlated hopping
can be either a direct intersite interaction or an indirect effective one [4}[5]. The effect of local Coulomb
interaction is the subject of the famous Hubbard model which is widely investigated in the theory of
strongly correlated electron systems.

The correlated hopping is less popular. Even the term used is not well established. Apart from the
term “correlated hopping”, many other terms circulate, such as “assisted hopping”, “bond-charge interac-
tion (repulsion)”, “occupation-dependent hopping”, “correlated hybridization”, etc. Similar contributions
in the theory of disordered systems are also known as an “off-diagonal disorder” [6]. Correlated hopping
was considered in connection with the new mechanisms of high temperature superconductivity [7 8],
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electron-hole asymmetry [9], and enhancement of magnetic properties [10]. Recently, the correlated hop-
ping has been examined in relation to the quantum dots [11H13] and optical lattices [14H16].

In this article we shall consider the effect of correlated hopping on the charge and heat transport
for the Falicov-Kimball model [17], which possesses exact solutions in the dynamical mean field the-
ory (DMFT) [18H21]]. In section [2] we recall the main arguments of the linear response Kubo theory for
the charge and heat transport which will be important in further considerations. Section [3|provides the
DMFT solutions for the Falicov-Kimball model with correlated hopping and derivations of the charge and
energy current operators and transport coefficients in the homogeneous phase. It should be noted that at
low temperatures, the phase transitions to the ordered phases could occur, e.g., the ground state phase
diagrams for the one-dimensional (D = 1) and two-dimensional (D = 2) models display a variety of the
modulated phases [22H25], but phase diagrams for the D = oo Falicov-Kimball model with correlated hop-
ping are unknown so far and we assume that a homogeneous solution is valid down to T = 0. In section[4]
we consider peculiarities of the charge and heat transport with the change of correlated hopping value
and doping and we summarize in section 5]

2. Macroscopic and microscopic levels in the description of thermoelec-
tric effect
In the linear response Kubo theory, the charge j.(r) and energy (heat) j,(r) currents are caused

by the electro-chemical potential gradient, including electrical field and charge distribution inhomo-
geneities, and temperature gradient and can be obtained from the following equations [26]]

VT(r')

jor)= —efLu(r,r’)Vﬂ(r’)dr’—eleg(r,r’) o) dr’, 2.1)
. . VT(r')
Jor= —szl(r,r')Vu(r’)dr’—ngg(r, r) e dr’, 2.2)

where [i(r) = u— eV (r) is an electro-chemical potential.
For the uniform (steady) dc charge and energy currents, we can define the dc electric conductivity

oac= €Ly, (2.3
Seebeck coefficient (thermoelectric power E =SV T)
s= Lt (2.4)
- eT 11 L12, .
and electronic contribution in thermal conductivity
1 -1
Ke=— [Loz —Lo1Ly; Liz] 2.5)
in terms of the generalized transport integrals L;;,. The efficiency of the thermoelectric material is char-

acterized by the dimensionless figure of merit

04cS?
ZT=T———. (2.6)
Ke + Kph
The standard route to introduce macroscopic currents in the microscopic lattice models is as fol-
lows [26]. First of all, one can define the charge polarization by

ﬁzZRizaﬁia; 2.7
ia
where R; is the lattice site vector and 7i;, is the particle number operator at site i for particles of the kind
a with charge z,. Now, the charge current can be defined using the continuity equation as follows:

[oN
>
| =
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In a similar way, one can define the energy polarization by

ﬁQZZRiI:Ij, (2.9)
i

where H; are the single site (local) contributions in total energy H = ¥°; H;, and the energy current by

j - 9Po 1 [Po, A 2.10)
Jo= g, Tyl :

Let us recall how it works for the case of noninteracting electrons. The Hamiltonian for noninteracting
electrons on the lattice can be written as follows:

N N N 1
H:ZHi, H; = EZ(tijchcjg+tj,-cjacig)—u;c;cig, (2.11)
i jo

where H; is a “local” contribution for site i. Notice that the intersite hopping term contributes to different
sites with a half weight.
The electrical charge polarization and current operators are defined by

—eZR,c i, Jj=-ie) (Ri-R)) tl]cjacjg (2.12)

ijo

and the energy polarization and current operators now take the form

L1 s
Po=2Y (Ri+R))tijcl,cjo,  jo=-i) (Ri-R))

ijo ijo

Ztiltlj) C;.TUC]'U. (2.13)
I

On the other hand, the energy current operator can be rewritten as follows:

dejo  dc] . 1rd d
T JU 10 ) A - . 1
]Q ;;; RJ lij (cio' dr _ dr C}U) or Jo }}EZ(dt dt’) j(t, 1), (2.14)
where we have introduced
jtthy=—ie) (Ri—Rj)tijcl (Dcjo(t). (2.15)
ijo

Relation is very important. In the cases when it holds, one can immediately write down an ex-
pressions for the generalized transport integrals L;,,, [27], the so-called Boltzmann relations, also known
as the Johnson-Mahan theorem in the theory of metals and semiconductors [28]29]. In the simplest form,
when the dynamical screening effects can be ignored, the Boltzmann relations state that the generalized
transport integrals for electrons L;;, Lj» = Loy, and Ly, can be written in terms of one transport function
(relaxation time) I(w):

+00
lez"_gfdw[—df(w)]l(w)w“m‘z, (2.16)
e . dw

where f(w) =1/ (eﬁ‘” + 1) is the Fermi distribution function. Once the screening effects and inelastic scat-
tering being taken into account, one have to replace these relations by the generalized one [27].
For the case of noninteracting electrons, the transport function has the form

Oej Oe
Flw) = = Zak’; ak’l‘;a( +p— k), 2.17)

where ¢ is the band energy (Fourier transform of the hopping integral ¢;;), and we get the known rela-
tions

ap _ 001 aé‘k at‘k
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The main consequences from equations are as follows. The values of the transport integrals
L;,, are determined by the features of the transport function I(w) only within the Fermi window (n = 0)
of width ~ 4T and its “moments”

- . x=2"H (2.19)
4T cosh? % 4  cosh®x/2 T

_df(w—y)]_ (w—w" _T"‘1 x" w-u
dw -

(-w"

which spread over a larger energy interval (see figure[I). For the metals, the transport function I(w) is
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Figure 1. (Color online) Dimensionless Fermi window (7 = 0) and its “moments” with extrema at points
Xxo =0, x; = +1.543404638, and xp = £2.399357280, respectively.

almost constant within the Fermi window which results in a weak temperature dependence of electrical
dc conductivity, the absence of thermoelectric power, and the linear temperature dependence of ther-
mal conductivity in agreement with the Wiedemann-Franz law. On the other hand, it is obvious from
equation that large values of the figure of merit could be obtained when the thermal conductiv-
ity is strongly reduced, and it was shown by Mahan and Sofo [30] that these could be achieved for the
o-function like transport function I(w) ~ 6 (w — €p), when the electronic contribution in thermal conduc-
tivity vanishes.

In order to get high values of the figure of merit ZT for thermoelectric properties in some tem-
perature interval, one has to look for the systems with strongly asymmetric, within the Fermi window,
transport function I(w) with sharp peak at (w—u)/T =1.543404638 or —1.543404638 to enhance the See-
beck coefficient and minima at (w—p)/ T = +2.399357280 to reduce the thermal conductivity. That is why,
the materials with strong electron correlations as well as disordered systems attract much attention as
prospective thermoelectric applications. This is due to the strong variability of their band structure and
density of states in the Fermi window depending on the chemical structure and doping. In particular,
it was already shown that the doping of Mott insulator can strongly improve its thermoelectric proper-
ties [31}[32]. In this case, the doping shifts the chemical potential into the lower or upper Hubbard band
which produces a strongly asymmetric density of states (d.o.s.) and transport function. Besides the Hub-
bard type local Coulomb interaction, one can also consider the non-local contributions which can produce
additional enhancements.

3. Charge and energy current operators and transport coefficients for
the Falicov-Kimball model with correlated hopping
A simplest model in the theory of strongly correlated electron systems is the Falicov-Kimball one [17],

which considers the local interaction between the itinerant d electrons and localized f electrons. It is
a binary alloy type model and it has an exact solution in the dynamical mean field theory (DMFT) [18].
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Its enhancement by correlated hopping was also considered, and the DMFT solutions with a nonlocal
self-energy were obtained [19H21].

The Hamiltonian of the Falicov-Kimball model with correlated hopping contains two contributions:
the local correlations Hjo. and the nearest-neighbour intersite hopping H; on the D-dimensional hyper-
cubic lattice

H = Hyoc + Hy, I'Iloc=Z[Unidnif_ﬂfnif_ﬂdnid]r

1

2\/_;)[1'1de +Z’2d d [ ,f+n]f)+t3d d; nlfn]f] 3.1)
ij

It is convenient to project on the occupation of the local f-states by introducing operators P;r = nif,
P; =1-n;r and to rewrite the Hamiltonian in matrix notations

H; =

++p+ gt + —— T +-p+ gt - —+p— gt +
;}[r Pidld;Pt+ 177 Py dld;P}+ 1t} Ptdld;P;+ 1 Py dld; P}
i

Pﬂ'd‘ t++ t.+._
Y dlt;dj, d,-:( L ’), t;j (” Y. (3.2)
2\/_<t/> T Py d; I AP o

The connection between the elements of the hopping matrix t;; and the initial hopping amplitudes is as
follows

= I, h=t ,
=ttt =410, =10,
tftt=hn+20+13, =ttt Tttt (3.3)

In infinite dimensions D — oo, the self-energy is nonlocal but an irreducible over the hopping part
E(w) of matrix Green’s function Gy (w), when one performs an expansion around the atomic limit, is
local which allows one to develop the DMFT approach for the systems with correlated hopping [20} [21].
In terms of this irreducible part, the lattice Green’s function can be written as follows:

Grlw) = [E ) -t] ", (3.4)

where for the hopping matrix, we neglect the possible chirality

e
te = (t_+ t__)é'k, 3.5)

and assume that each term is proportional to the unperturbed band energy

1 D
ek =—= ) coskq. (3.6)
a=1
Below we shall use the hopping amplitude over empty states as an energy unit: t~~ =f; = 1.

An irreducible part E(w) as well as the matrix of the A-fields A(w) = |A*F(w)|| are solutions of the
system of equations

1 _ _
S [E 0 -t L= 27N @) - A@)] T = Gimp(@), 3.7)
k

where the expressions for the Green’s function Gimp(w) of the local impurity problem for the Falicov-
Kimball model are known

(P")
G;r“:rp( )_w+,ud—U—/1++(w)’ 3.8
Gipp (@) = Gy — >__ , (3.9)
W+ ,ud -1 (w)
Gipnp (@) = Gy (@) = 0. (3.10)

43704-5



A.M. Shvaika

N
N

Q) t/1,=0 = ImG () ©) /=05 = ImG"(w) € t/t,=1 = ImG"(w)
15k --ImG (w) | 15k --ImG (w) 4 15k --ImG (w)
_ i} —Im G.mp(‘*)) l —Im Glmp(w) * — Im Glmp(oo)
3 3 3
G 1t {1 O 1 {1 O 4 E
£ £ £
E E E A
0.5t E 0.5k E 0.5F I\ E
! - =
’ \(
4
0 1 = L 0 o] = T S L
6 -4 2 4 6 3 6 6 472 02 4 6
2 T T T T T 2 T T T T T 2 T T T T T
b) t/t,=-0.5 = ImG"(w) d) tft=-1 = ImG"(w) f) t/t;=-2 = ImG"(w)
L --ImG (w) | | --ImG (w)({ | --ImG (w)({
Al.S —Im Gimp(w) Al.S — Im G.mp(‘*’) A1.5 — Im G.mp(‘*’)
3 3 3
o 1 {1 O 4 {1 O 1 E
E E E
05F . 0.5F . 0.5F NN .
1 X
L Ir’ \\
7 50 2z 4 6 L 6 071 2 9: > 4 6

Figure 2. (Color online) Evolution of the one-particle d.o.s. with a change of the correlated hopping am-
plitude £ (13 =0, t; =1, U = 2) (from reference [21]]).

Previous investigations of the Falicov-Kimball model with correlated hopping [20,21] have elucidated
several special cases with a strong reconstruction of the one-particle d.o.s., which in the considered case
is equal to:

1
Adw)=—= Y Im Gi"r‘fp(w). 3.11)
a,f=+

These crossover points correspond to the special forms of the hopping matrix (3.5):

1. The regular Falicov-Kimball model without correlated hopping corresponds to the case of t, = t3 =
0, when all components of the hopping matrix (3.5) are the same t% = £, and its determinant is
equal to zero dett = 0 [figure[2](a)].

2. The case when one or both of the diagonal components of the hopping matrix are equal to
zero,e.g. ttT =0for 1, = —%(tl + t3), with strong reduction of the band widths and an orthogonality
singularity at the edge of one or both bands [figure|2|(b)].

3. The case of diagonal hopping matrix , when = - and t¥~ = 7% = 0 and d.o.s. consists of
independent bands [figure[2|(d)].

In other cases, the correlated hopping results in the break of the electron-hole symmetry with strong
asymmetry of the d.o.s. and in the spread of the bands due to an effective increase of the hopping am-
plitude. The similar behaviour could be also predicted for the transport function and will be considered
below.

The Falicov-Kimball model with correlated hopping is similar to the binary alloy model with off-
diagonal disorder, and the first calculations of the thermoelectric power for the last one were done by
Hoshino and Niizeki [33] based on the Mott’s relation and for the special case of the zero determinant
detty = 0 of hopping matrix (3.5). Below we shall provide a more general approach.

First of all, one has to rederive the charge and energy current operators in the presence of correlated
hopping. Starting from the expression for charge polarization which contains contributions both from
the d and f particles P=YR; (zahia + zfﬁ,-f), one can get an expression for the charge current in the
presence of correlated hopping

jo=-iza Y (Ri-Rj)e;PPrala;pP!. (3.12)
)
af=+

The dc electric conductivity

1
ART
=-z;lim —1 Q 3.13
Oac = ~Z; im = Imy(Q) (3.13)
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is connected with the current-current Green’s function, which in the considered case has the following
form:
. __T 1 af ~Ba’ ap ~Bla .
x@v) = —Z —Z Z t Gk (lwm,)t Gk (iwsy, +1v), (3.14)
2% N k afa’'f=+

where for the D — oo hypercubic lattice with unperturbed band energy (3.6), a rigorous replacement
(deg/ dk)2 — % was used. After substituting the components of the lattice Green’s function in
and performing summation over the momentum k, one can get an expression for the dc conductivity in
a standard form through the transport function

+00
Oac=25L11, Luzfdw[— I(w). (3.15)

df (w) ]
dw

Analytic expressions for the transport function I(w) in the homogeneous phase in terms of the solutions
of the DMFT impurity problem were derived and are presented in the appendix[A]

On the other hand, the energy polarization operator for the Falicov-Kimball model with correlated
hopping is equal to

. 1
Bo=Y Ri[Unjanis—upnis—pania) + 3 (Z) (Ri+R)) tfjﬁp;*djdjpf. (3.16)
i L]
af=+

Now, from the continuity equation we get an expression for the energy current operator
Jo=—= (R,-—Rj)P?djdef{t?jﬁ[U(nif+njf)—2,ud]+Ztgypglt;/jﬁ} 3.17)
ly

and one can check that it is equal to

ph t
d(d;Py)  d(pgd))
dr dr

s _ 1 ap t
Jo=35 (IZ]) (Ri—R;) ;5 | Pi'd;
af=+

PP
djPl b (3.18)

This means that the connection between the energy and charge current operators holds in the case
of correlated hopping, and the Boltzmann relations (2.16) can be also used in this case. The numerical
results for the charge and heat transport in the systems with correlated hopping are presented in the
next section.

4. Charge and heat transport in presence of correlated hopping

It was already mentioned above that for different values of correlated hopping, different shapes of
the one-particle d.o.s. can be realized (figure[2) and the crossover from one regime to another takes place
at special forms of the hopping matrix (3.5): either its determinant or some matrix elements are equal to
zero. Let us check the behaviour of the charge and heat transport in the vicinity of these crossover points.

First of all, we consider the small values of correlated hopping #, (below we shall put f3 = 0). In the
absence of correlated hopping #, = 0 and for small values of the Coulomb interaction U (figure [3), the
shape of the d.o.s. A;(w) deviates by a small amount from the unperturbed one (Gaussian for the D — co
hypercubic lattice). In this case, the transport function I(w) slightly varies in the vicinity of the chemical
potential value u; = U/2 and approaches the constant value at large frequencies. The last feature is
caused by the Gaussian d.o.s. [31], when for the large energy values we still have an exponentially small
density of states with a finite relaxation rate (see appendix[A), which cannot be observed in real systems.
Thus, we consider only the small and moderate temperature values when the Fermi window and its
moments (see figure[T) are inside the features of the d.o.s.
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Figure 3. (Color online) Density of states A;(w), transport function I(w), and temperature dependences
of the dc electric o4, and thermal xe conductivities, Seebeck coefficient S, and figure of merit ZT at half

filling np=ng= 1for U=0.5,1 =1,and t» =0.1, 0, —0.1.

The correlated hopping #, being switched on leads to slight changes of the d.o.s., which become asym-
metric, and to tremendous changes in the shape and values of the transport function I(w) with a strong
enhancement at the band edges. At low temperatures, the effect of correlated hopping on the electric
04c and thermal k. conductivities is minor and leads to the appearance of the Seeback effect due to
electron-hole asymmetry. At higher temperature values, we observe an enhancement of all transport co-
efficients because the moments of the Fermi window (figure [I) now start to cover the sharp features of
the transport function at the band edges and this behaviour could be non-physical as a consequence of
the Gaussian d.o.s.

In the Mott insulator phase for U = 2, the effect of small values of correlated hopping is much smaller
(figure[d). Both the d.o.s. A;(w) and the transport function I(w) change only slightly with respect to the
case without correlated hopping f, = 0. The temperature dependence of the electric 4. and thermal
Ke conductivities is almost the same and we observe only an increase of the Seeback effect at low tem-
peratures similar to the one in the doped Mott insulators [31] (non-zero correlated hopping breaks the

0.2

0.15F 2
0.2

Figure 4. (Color online) Same as in figure3]for U = 2.
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005

Ssxi0”f R

Figure 5. (Color online) Density of states A;(w), transport function I(w), and temperature dependences
of the dc electric o4, and thermal xe conductivities, Seebeck coefficient S, and figure of merit ZT at half
filling np=ng= lforU=2,t1=1,and to =-0.9, -1, -1.1.

electron-hole symmetry like doping in the case without correlated hopping). It is known that the tem-
perature behaviour of thermoelectric properties in Mott insulator to a great extent is determined by the
temperature dependence of the chemical potential [31}32], and due to the numerical issues we were not
able to determine the chemical potential values in the gap at very low temperatures with a precision
sufficient to get smooth dependences of the Seebeck coefficient.

For the opposite case of almost independent bands, when #, = —1 and off-diagonal elements of the
hopping matrix are small and change the sign ("~ = ~* — 0), the d.o.s. and transport function are
very smooth in the Fermi window, which results in the metallic behaviour of the electric and thermal con-
ductivity and in weak thermoelectric properties (figure[5). The Coulomb interaction U is less important
in this case.

In the vicinity of another crossover point at £, = —0.5 (no direct hopping between the sites occupied

0.5F % g
)
!
.

&
|
o
Wl
w|
IS

R AT~ n L Ao
-3 -2 -1 0 1 2 3 4 h 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Figure 6. (Color online) Density of states A;(w), transport function I(w), and temperature dependences
of the dc electric o4, and thermal ke conductivities, Seebeck coefficient S, and figure of merit ZT at half
filling ng=ng=1for U=05, 11 =1,and 1 = 0.4, 0.5, -0.6.
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by f-particles: t** = 0) the behaviour is altogether different (figure @ Exactly at the £, = —0.5 value, the
d.o.s. A4 (w) contains two bands separated by a small gap, and the upper band possesses a singularity at
the gap edge. It could be imagined that similar features should be observed for the transport function
I(w). However, the transport function displays only a finite abrupt change instead of a singularity above
the gap. For the value of correlated hopping # = —0.6, the gap closes and the transport function is much
smoother. On the other side of the crossover point, for the , = —0.4 value, the gap also closes and the
shape of the d.o.s. does not change significantly in comparison with the case of , = —0.6 value, but now
the transport function displays a strong enhancement with a narrow peak. It should be noted that in
many theoretical simulations, the calculation of two-particle quantities, including the transport function,
is problematic, and sometimes an approximation I(w) = nl'A;(w), replacing by one-particle quantity,
is used instead (see, e.g. [13]). Our results definitely show that such an approximation is not valid and
produces altogether different transport functions for many cases.

Different shapes of the transport function in the vicinity of the #, = —0.5 value manifest themselves
in different transport properties. Exactly at the crossover point #, = —0.5, the temperature dependences
of the electric 4. and thermal x. conductivities as well as of the Seebeck coefficient are similar to the
one in the doped small gap Mott insulator. For the #, = —0.6 value, a metallic behaviour is observed,
i.e., weak temperature dependence of the electric conductivity and small thermoelectric power. On the
other side of the crossover point, an enhancement of all transport coefficients is observed which is more
prominent for the electric conductivity and Seebeck coefficient than for the thermal conductivity and
causes an increase of the thermoelectric figure of merit ZT.

For large values of the Coulomb interaction U = 2, the behaviour is quite different (figure [7). Now,

T T 0.2 T

0.1+
0.5

I(w)

q

=T

)
T

.....

Figure 7. (Color online) Same as in figure[§]for U = 2.

the d.o.s. always possesses the gap and the width of the upper band strongly reduces. Exactly at the
crossover point #, = —0.5, there is a singularity on the d.o.s. and there is only an abrupt change on the
transport function similar to the small-U case. For the £, = —0.6 value, sharp features on the d.o.s. and
transport function become smoother. On the other hand, for the #, = —0.4 value, the d.o.s. is almost the
same and the transport function develops a sharp peak. But now this peak is outside the Fermi window
and less effects the transport properties. For the #, = —0.5 value, the chemical potential is sticked at
the upper edge of the lower band which results in a weak metallic behaviour of electric and thermal
conductivities though the thermoelectric power behaves like in the doped Mott insulator. For other values
of the correlated hopping, t, = —0.6 and —0.4, the chemical potential shifts inside the gap, approaching the
features of the transport function in the upper band, and the electric and thermal conductivities manifest
the temperature dependences typical of the Mott insulator phase. Now, the Seebeck coefficient shows
an enhancement and anomalous behaviour at low temperatures, when the extrema of the moments of
Fermi window (figure [1) overlap with the features of the transport function following the change of the
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Figure 8. (Color online) Density of states A, (w), transport function /(w), and temperature dependences of
the dc electric o, and thermal ke conductivities, Seebeck coefficient S, and figure of merit ZT for U =2,
1 =1, fp = 0.3, and different doping of f-states ny (ng+ny =1).

temperature.

Such an enhancement of thermoelectric properties by correlated hopping is more prominent with
doping. In figure [§] we present the results for the case of Mott insulator U = 2 and for the intermediate
value of correlated hopping #, = —0.3. The doping by f-particles over the half-filling ny > 0.5 and a
simultaneous decrease of the d-states occupation (ngy = 1 — ny) reduces the peak on a transport function
below the chemical potential, while the peak above it enhances and moves inside the Fermi window. Due
to the fancy profile of the transport function, different trajectories of the chemical potential and Fermi
window cover its features, with the change of temperature at different doping levels, at different energies
and produce anomalous temperature dependences of the Seebeck coefficient and an enhancement of
thermoelectric properties at low temperatures. On the other hand, a decrease of the doping of f-states
ny < 0.5 makes the d.o.s. and transport function more symmetric within the Fermi window and reduces
the thermoelectric properties.

5. Conclusions

In this article we have investigated the effect of correlated hopping on the charge and heat transport
and thermoelectric power in a correlated material described by the Falicov-Kimball model. Exact expres-
sions for the transport function are derived for a homogeneous phase, which is assumed to be valid at
low temperatures. We do not consider the possible phase transitions into the modulated phases [22H25]],
which should be the subject of a separate investigation.

Depending on the value of correlated hopping, the crossover points which separate the regions with
different shapes of the d.o.s. and transport function are clarified. The temperature dependences of the
electrical and thermal conductivities and thermoelectric power are strongly effected by the presence of
singularities and peaks on the transport function and by the temperature evolution of the chemical po-
tential. The largest enhancement of thermoelectric properties is observed for the values of correlated
hopping —#,/2 < £, < 0, when a direct hopping between the same many-body states at different sites
reduces and an indirect hopping becomes important. It should be noted that the calculations of the corre-
lated hopping amplitudes for different compounds, see e.g. [11}[12], provide absolute values close to this
interval but disagree by its sign, which is the main factor according to our results.

Unfortunately, the use of the Gaussian d.o.s. produces non-physical results for the transport function
outside the bands, which does not allow us to get reasonable values for the chemical potential at very low
and very high temperatures and calls for additional investigations with another unperturbed density of
states.
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A. Transport function in presence of correlated hopping

After substitution of equation (3.14) in (3.13) we get an expression for the transport function in the
form

1 g1 / y
W= Y ¥ =Y MG )ImG}“w). (A1)
2T apap N7

The components of the lattice Green’s function (3.4) can be written as follows:

Apq (@) — Bggk

Ba
G = , A2
K @) C(w) - D(w)e + P& 4.2)
where
Apr(w) =277 (w), A () =-Z" (w),
A =-Z""(w), A_()=Z""(w), (A.3)
B++:[77’ B+_:_t+7,
B_,=-t", B__=1t*", (A.4)
and
Cw=Z""wZ  (w-Z" (0 Z ¥ (w) =detZ(w),
D) =Z*" "t +Z  wtT"-Z" ()t -Z ()",
AR A
P=t""t -t = det(t_+ t“) (A.5)

and we introduce a notation for the inverse irreducible part Z(w) = =~1(w). The final analytic expression
depends on the value of parameter P.

In the case of P =0, we have detty = 0, and the expression for the transport function is as follows:
Agg (W) Aprg (W) o ( Clw) )]
D2 (w) *“\D(w)

Re|Ag, Ag
_ Re[Apar(w) ﬁa(w)]Ime(C(w))/ImC(w) }
|D(w)? D(w) D(w)

1 -y
Iw=— Y t“ﬁr"‘f"{Re
”aﬂa’ﬁ’

(A.6)

where

dF(0)
d¢

+00
Faol0) = f a9 pg- A7)

are a Hilbert transform of the unperturbed density of states and its first derivative, respectively, and for
the Gaussian d.o.s.

1 —_e2 W2
=— A.8
p(e) W\/ﬁe (A.8)

we have

p 2
FOO(C)ZW[I—CFoo([)]- (A.9)
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In the general case of P # 0, the transport function takes a more complicated form

It Agy! — Bgy E Ag — Bg o, E
I(w) = 1 5 > 1P 2'F oRe [Apa @)~ Bpo Er(@)] | ﬂa(az)) Pa 1(w)]F(;O(El(w))
8P g [E2 (w) — Eq (w)]
Agy! — Bgy E: Ag — By, E:
+2Re [Apa (@) = Bgg Ex(@)] | ﬁa((lz)) Bla Z(M)]Féo(Ez(w))
[E1(w) — Bz (w)]
1 Foo( Er (@) % %
- I Agy' — By E Ay —-B, E
ImEuw)nl[Eﬂw)—Euwnugmn—Euwﬂ([ﬁ““” o E1(0)][Af, (©) — By, E1 ()]
+[A;a(w)—B;ﬂEﬂwﬂ[Aﬁw(wy—BﬁaEﬂwﬂ)
1 Foo(E2 (@) . .
- I Agy — Bgy E Ay —B; E
ImE, @) m [E1 (@) — B (@)] [Ef(a))_EZ(w)] ([ Pa (w) Ba Z(w)][ ﬁa(w) Ba 2((1))]
+[A45,(©) = By B2 (@] [Apa(©) - B o Fo (@) },(Aim
where Ej »(w) are roots of the denominator in equation
D(w) Dw)]* Cw)
El,g(w)— >p + [ >p - P - (A.11)

For large energy values and for unperturbed Gaussian d.o.s., the imaginary parts in the last terms of
equations and (A.10) are small but their ratios are finite and produce a strong enhancement of the
transport function and make its shape altogether different from the one-particle d.o.s.
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BnaviB KOpe/ibOBaHOT0 NEPEHOCY Ha TepMOoesIeKTPUYUHI
BJ1IaCTUBOCTI: TOUHUW PO3B'A30K ANA Moaeni PanikoBa-Kimbana

A.M. WBaiika

IHCTUTYT di3nkm KoHAeHcoBaHMX cmctem HAH YkpaiHu, Byn. I. CBeHuiybkoro, 1, 79011 JibBiB, YkpaiHa

JocnigxeHo BNAVB kOpenbOBaHOIO NepeHoCy Ha nepeHoc 3apsy i Tenna B mogeni ®anikosa-Kimbana. B pam-
Kax Teopii AMHaMIYHOro CepefHbLOro Nos OTPMMAaHO TOYHI PO3B'A3KN ANA eNnekTpo- Ta TenaonpoBiAHOCTI i
Tepmo-e.p.c. locnigxeHo TeMnepaTypHi 3aneXHOCTi KoediLlieHTiB NepeHoCy AN MeBHUX 3Ha4YeHb Kope/boBa-
HOro nepeHocy, Lo BiANOBiAalTb CYTTEBI NepebyAoBi r'yCTUHYM CTaHIB Ta TpaHCMOPTHOT GyHKLji. BcTaHoBNeHO
BMMNaAKW, SKi BiANOBIAal0Tb 3HAYHOMY MOKpPaLLLeHHI0 TeEPMOeNeKTPUYHUX BNacTUBOCTEN.

KntouoBi cioBa: TepMo-€.p.c., KOPeNboBaHWi nepeHoc, Moge/s danikosa-Kimbana
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