Form of filters of semisimple modules and direct sums

Yuriy Maturin

Communicated by A. I. Kashu

Abstract. Some collections of submodules of a module defined by certain conditions are studied. A generalization of the notion of radical (preradical) filter is considered. We study the form of filters of semisimple modules and direct sums.

All rings are considered to be associative with unit $1 \neq 0$ and all modules are left and unitary.

Let R be a ring. Put

$$
\begin{gathered}
(N: f)_{M}=\{x \in M \mid f(x) \in N\} \\
\operatorname{End}(M)_{N}=\{f \in \operatorname{End}(M) \mid f(M) \subseteq N\}
\end{gathered}
$$

Let E be some non-empty collection of submodules of a left R-module M. We consider the following conditions:
(1) $L \in E, L \leq N \leq M \Rightarrow N \in E$;
(2) $L \in E, f \in \operatorname{End}(M) \Rightarrow(L: f)_{M} \in E$;
(3) $N, L \in E \Rightarrow N \cap L \in E$;
(4) $N \in E, N \in \operatorname{Gen}(M), L \leq N \leq M \wedge$
$\wedge \forall g \in E n d(M)_{N}:(L: g)_{M} \in E \Rightarrow L \in E ;$
(5) $N, L \in E, N \in \operatorname{Gen}(M) \Rightarrow N \cap L \in E$.

Key words and phrases: ring, module, filter.

Consider a generalization of the notion of radical (preradical) filter (see $[3,4]$).

A non-empty collection E of submodules of a left R-module M satisfying $((1)),((2)),((3))$ is called a preradical filter of M (see [4]).

A non-empty collection E of submodules of a left R-module M satisfying $((1)),((2)),((4))$ is called a radical filter of M (see [4]). It is easy to see that for every radical filter of $M((5))$ is held.

A preradical (radical) filter E of a left R-module M is said to be trivial if either $E=\{L \mid L \leq M\}$ or $E=\{M\}$.

Let M be a semisimple left R-module with a unique homogeneous component and let $M=\underset{i \in I}{\oplus} M_{i}$, where M_{i} is simple for each $i \in I$.

If $N=\underset{i \in J}{\oplus} N_{i}$, where N_{i} is simple for each $i \in J$ and $M \cong N$, then $\operatorname{Card}(I)=\operatorname{Card}(J)$.

Put

$$
\operatorname{Card}_{s}(M):=\operatorname{Card}(I)
$$

Let M be a semisimple R-module with a unique homogeneous component. If $\operatorname{Card}_{s}(M)$ is infinite, then we set

$$
E_{p}(M):=\left\{L \mid L \leq M, \operatorname{Card}_{s}(M / L)<p\right\}
$$

where p is an infinite cardinal number.
Theorem 1. Let M be a semisimple R-module with a unique homogeneous component. If $\operatorname{Card}_{s}(M)$ is infinite, then every non-trivial radical [preradical] filter of M is of the form

$$
E_{p}(M)
$$

for some infinite cardinal number $p \leq \operatorname{Card}_{s}(M)$.
Proof. Let M be a semisimple R-module with a unique homogeneous component, $\operatorname{Card}_{s}(M)=\infty$, and E a non-trivial radical [preradical] filter of M. Put

$$
q:=\operatorname{Card}_{s}(M)
$$

It is obvious that for each $L \in E$ there exists $H \leq M$ such that $M=L \oplus H$. Hence $\operatorname{Card}_{s} H \leq q$.

We claim that $\operatorname{Card}_{s} H \neq q$. Indeed, suppose, contrary to our claim, that $\operatorname{Card}_{s} H=q$. Since M is a semisimple R-module with a unique homogeneous component, for some set I we have that $M=\underset{i \in I}{\oplus} M_{i}$, where M_{i}
is simple for each $i \in I$ and for every $i, j \in I$ there exists an isomorphism $f_{i j}: M_{i} \rightarrow M_{j}$. Hence $\operatorname{CardI}=\operatorname{Card}_{s}(M)=q$. Taking into account that $\operatorname{Card}_{s}(M)$ is infinite, by (2.1) [5, p. 417],

$$
q+q=q
$$

Consider a set X such that $\operatorname{Card} X=q$ and $X \cap I=\emptyset$. Since $q+q=q$, there exists a bijection $w: X \cup I \rightarrow I$. Put

$$
Y:=w(X), Z:=w(I)
$$

Therefore, $I=Y \cup Z, Y \cap Z=\emptyset, q=C a r d I=C \operatorname{ard} Y=C a r d Z$. Now we obtain $M=A \oplus B$, where $A=\underset{i \in Y}{\oplus} M_{i}, B=\underset{i \in Z}{\oplus} M_{i}$. Since $H \leq M$, there exists an isomorphism $u: H \rightarrow \underset{i \in T}{\oplus} M_{i}$ for some $T \subseteq I$ (see Proposition 9.4 [1]). It is clear that $\operatorname{Card}_{s} H=\operatorname{CardT}=q$. Whence $q=\operatorname{Card} Y=$ $\operatorname{CardZ}=\operatorname{CardT}$. Let $g: Y \rightarrow T, c: Z \rightarrow T$ be bijections. Consider the following maps:

$$
G: A \rightarrow H, C: B \rightarrow H
$$

where

$$
\begin{aligned}
& G\left(\sum_{i \in Y} m_{i}\right)=u^{-1}\left(\sum_{i \in Y} f_{i, g(i)}\left(m_{i}\right)\right) \\
& \quad\left(m_{i} \in M_{i}(i \in I), \operatorname{Card}\left\{i \in Y \mid m_{i} \neq 0\right\}<\infty\right), \\
& C\left(\sum_{i \in Z} m_{i}\right)=u^{-1}\left(\sum_{i \in Z} f_{i, c(i)}\left(m_{i}\right)\right) \\
& \quad\left(m_{i} \in M_{i}(i \in I), \operatorname{Card}\left\{i \in Z \mid m_{i} \neq 0\right\}<\infty\right)
\end{aligned}
$$

It is easily seen that these maps are isomorphisms. Let $n, r: M \rightarrow M$ are maps such that $n(a+b)=G(a),(a \in A, b \in B)$ and $r(a+b)=$ $C(b),(a \in A, b \in B)$. It is clear that $n, r: M \rightarrow M$ are endomorphisms. Since $L \cap H=0$ and G, C are isomorphisms, $(L: n)_{M}=B$ and $(L:$ $r)_{M}=A$. As $L \in E$, by $((2))$, we get $B \in E$ and $A \in E$. By ((3)) or $((5)), 0=A \cap B \in E$. Consequently, E is trivial. This contradicts our assumption. Hence $\operatorname{Card}_{s} H<q$. The natural isomorphism $H \cong M / L$ implies that $\operatorname{Card}_{s}(M / L)<q$. Now we consider the set Ω of all cardinal numbers v such that

$$
v \leq q \forall L \in E: \operatorname{Card}_{s}(M / L)<v
$$

$\Omega \neq \emptyset$, because $q \in \Omega$. By [2, p. 82], there exists the least element p belonging to Ω. Thus $\forall L \in E: \operatorname{Card}_{s}(M / L)<p$. It means that $E \subseteq E_{p}(M)$.

Let $L \in E_{p}(M)$. Whence $\operatorname{Card}_{s}(M / L)<p$. We claim that there exists $D \in E$ such that $\operatorname{Card}_{s}(M / L) \leq \operatorname{Card}_{s}(M / D)$. Conversely, suppose that

$$
\forall D \in E: \operatorname{Card}_{s}(M / D)<\operatorname{Card}_{s}(M / L)
$$

But $\operatorname{Card}_{s}(M / L)<p \leq q$. Hence $\operatorname{Card}_{s}(M / L) \in \Omega$. Since p is the least element belonging to $\Omega, p \leq \operatorname{Card}_{s}(M / L)$, contrary to $\operatorname{Card}_{s}(M / L)<p$.

Now we have that there exists $D \in E$ such that $\operatorname{Card}_{s}(M / L) \leq$ $\operatorname{Card}_{s}(M / D)$. It is easily seen that for L, D there exist $H, K \leq M$ such that $M=L \oplus H, M=D \oplus K$. Since $M / L \cong H, M / D \cong K, \operatorname{Card}_{s}(H) \leq$ $\operatorname{Card}_{s}(K)$. Since $H \leq M$ and $K \leq M$, there exist isomorphisms $u: H \rightarrow$ $\underset{i \in T}{\oplus} M_{i}$ for some $T \subseteq I$ and $w: K \rightarrow \underset{i \in S}{\oplus} M_{i}$ for some $S \subseteq I$. Therefore $C a r d T \leq \operatorname{Card} S$. From this we have that there exists an injective map $\gamma: T \rightarrow S$.

Consider the following map:

$$
\psi: \underset{i \in T}{\oplus} M_{i} \rightarrow \underset{i \in S}{\oplus} M_{i}
$$

where

$$
\begin{gathered}
\psi\left(\sum_{i \in T} m_{i}\right)=\sum_{i \in Y} f_{i, \gamma(i)}\left(m_{i}\right) \\
\left(m_{i} \in M_{i}(i \in I), \operatorname{Card}\left\{i \in T \mid m_{i} \neq 0\right\}<\infty\right)
\end{gathered}
$$

It is obvious that ψ is a monomorphism. Now consider the following map:

$$
\eta: M \rightarrow M
$$

where

$$
\eta(l+h)=w^{-1} \psi u(h), \quad(l \in L, h \in H) .
$$

It is clear that $\eta \in \operatorname{End}(M)$. Since $D \cap K=0$ and $\operatorname{im} \eta \subseteq K$, for every $l \in K, h \in H: \eta(l+h) \in D \Leftrightarrow w^{-1} \psi u(h) \in D \Leftrightarrow w^{-1} \psi u(h)=0$. Since u, w are isomorphisms and ψ is monomorphism, for every $h \in H$: $w^{-1} \psi u(h)=0 \Leftrightarrow h=0$. From the above it follows that $(D: \eta)_{M}=L$. Since E is a radical [preradical] filter of M and $D \in E,(D: \eta)_{M}=L$ shows that $L \in E$, by $((2))$. It means that $E_{p}(M) \subseteq E$. But $E \subseteq E_{p}(M)$. Hence $E=E_{p}(M)$

Theorem 2. If M is a left R-module such that $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}$, where $M_{i}=\operatorname{Tr}_{M}\left(M_{i}\right)$ for each $i \in\{1,2, \ldots, n\}$ and $\forall S: S \leq M \Rightarrow S \in$ Gen (M), then every radical [preradical] filter E of M is of the form

$$
E=\left\{J_{1}+J_{2}+\ldots+J_{n} \mid J_{i} \in E_{i}(i \in\{1,2, \ldots, n\})\right\}
$$

where E_{i} is a radical [preradical] filter of M_{i} for each $i \in\{1,2, \ldots, n\}$.
Proof. Let E be a radical [preradical] filter of M and $M=M_{1} \oplus M_{2} \oplus$ $\ldots \oplus M_{n}$, where $M_{i}=\operatorname{Tr}_{M}\left(M_{i}\right)$ for each $i \in\{1,2, \ldots, n\}$. Put

$$
E_{i}:=\left\{f_{i}(K) \mid K \in E\right\}
$$

for each $i \in\{1,2, \ldots, n\}$, where $f_{i}: M \rightarrow M, f_{i}\left(m_{1}+m_{2}+\ldots+m_{n}\right)=$ $m_{i},\left(m_{1} \in M_{1}, m_{2} \in M_{2}, \ldots, m_{n} \in M_{n}\right)$ for each $i \in\{1,2, \ldots, n\}$.
(1) Let $L \in E_{i}, L \leq N \leq M_{i}$. Hence there exists $P \in E$ such that $L=f_{i}(P)$. Since $L \leq N, P \leq f_{i}^{-1}(N)$. By (1), $f_{i}^{-1}(N) \in E$, because $P \in E$. Therefore $N=f_{i}\left(f_{i}^{-1}(N)\right) \in E_{i}$.
(2) Let $L \in E_{i}, f \in \operatorname{End}\left(M_{i}\right)$. Hence there exists $P \in E$ such that $L=f_{i}(P)$. Consider

$$
F: M \rightarrow M
$$

where $F: m_{1}+m_{2}+\ldots+m_{i}+\ldots+m_{n} \mapsto f\left(m_{i}\right),\left(m_{1} \in M_{1}, \ldots, m_{n} \in\right.$ $\left.M_{n}\right)$. Thus $F \in \operatorname{End}(M)$.
We claim that $f_{i}\left((P: F)_{M}\right) \leq(L: f)_{M_{i}}$. Indeed, let $x_{i} \in f_{i}((P$: $\left.F)_{M}\right)$. We have that $x_{i} \in M_{i}$. Thus there exists $x \in(P: F)_{M}$ such that $f_{i}(x)=x_{i}$. Hence $f\left(x_{i}\right)=F(x) \in P$. It is clear that $f\left(x_{i}\right) \in M_{i}$. Therefore $f\left(x_{i}\right)=f_{i}\left(f\left(x_{i}\right)\right) \in f_{i}(P)=L$. Whence $x_{i} \in(L: f)_{M_{i}}$. We obtain $f_{i}\left((P: F)_{M}\right) \leq(L: f)_{M_{i}}$.
Since $P \in E$ and $F \in \operatorname{End}(M),(P: F)_{M} \in E$, by $(2) .(P: F)_{M} \in$ E implies $f_{i}\left((P: F)_{M}\right) \in E_{i}$. Since $f_{i}\left((P: F)_{M}\right) \leq(L: f)_{M_{i}},(1)$ implies $(L: f)_{M_{i}} \in E_{i}$.
(3) Let $L, N \in E_{i}$. Hence there exist $P, T \in E$ such that $L=f_{i}(P)$ and $N=f_{i}(T)$. By (3) (for the preradical filter E), $P \cap T \in E$. Therefore $f_{i}(P \cap T) \in E_{i}$. Since $f_{i}(P \cap T) \subseteq f_{i}(P) \cap f_{i}(T)=L \cap N$ and $f_{i}(P \cap T) \in E_{i}$, we obtain $L \cap N \in E_{i}$, by (1).
(4) Let $N \in E_{i}, N \in \operatorname{Gen}\left(M_{i}\right), L \leq N \leq M_{i} \wedge \forall g \in \operatorname{End}\left(M_{i}\right)_{N}:(L:$ g) $M_{i} \in E_{i}$.

Hence $N=f_{i}(T)$ for some $T \in E$. Since $T \subseteq f_{i}^{-1}(N), f_{i}^{-1}(N) \in E$, by (1). And $f_{i}^{-1}(N) \in G e n(M)$. $L \leq N$ implies $f_{i}^{-1}(L) \leq f_{i}^{-1}(N)$.

Let G be an arbitrary element of $\operatorname{End}(M)_{f_{i}^{-1}(N)}$. By Proposition 8.16 [1],$M_{s}=\operatorname{Tr}_{M}\left(M_{s}\right)$ is a fully invariant submodule of M for each $s \in\{1,2, \ldots, n\}$. Hence $G\left(M_{s}\right) \subseteq M_{s}$ for each $s \in\{1,2, \ldots, n\}$. Consider

$$
g: M_{i} \rightarrow M_{i}, m \mapsto G(m),\left(m \in M_{i}\right)
$$

Since $\forall g \in \operatorname{End}\left(M_{i}\right)_{N}:(L: g)_{M_{i}} \in E_{i}$, there exists $Y_{g} \in E_{i}$ such that $g\left(Y_{g}\right) \leq L$. Since $G\left(M_{s}\right) \subseteq M_{s}$ for each $s \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
& G\left(f_{i}^{-1}\left(Y_{g}\right)\right)=G\left(M_{1} \oplus \ldots \oplus M_{i-1} \oplus Y_{g} \oplus M_{i+1} \oplus \ldots \oplus M_{n}\right) \subseteq \\
& \quad \subseteq M_{1} \oplus \ldots \oplus M_{i-1} \oplus G\left(Y_{g}\right) \oplus M_{i+1} \oplus \ldots \oplus M_{n}= \\
& \quad=M_{1} \oplus \ldots \oplus M_{i-1} \oplus g\left(Y_{g}\right) \oplus M_{i+1} \oplus \ldots \oplus M_{n} \subseteq \\
& \quad \subseteq M_{1} \oplus \ldots \oplus M_{i-1} \oplus L \oplus M_{i+1} \oplus \ldots \oplus M_{n}=f_{i}^{-1}(L)
\end{aligned}
$$

Hence $f_{i}^{-1}\left(Y_{g}\right) \subseteq\left(f_{i}^{-1}(L): G\right)_{M}$. Since $Y_{g} \in E_{i}$, there exists $P \in E$ such that $Y_{g}=f_{i}(P)$. Thus $P \subseteq f_{i}^{-1}\left(Y_{g}\right)$. Hence $P \subseteq$ $\left(f_{i}^{-1}(L): G\right)_{M} \& P \in E$. By (1), $\left(f_{i}^{-1}(L): G\right)_{M} \in E$. Since $f_{i}^{-1}(N) \in E, \quad f_{i}^{-1}(N) \in \operatorname{Gen}(M), f_{i}^{-1}(L) \leq f_{i}^{-1}(N) \leq M$ and $\forall G \in E n d(M)_{f_{i}^{-1}(N)}:\left(f_{i}^{-1}(L): G\right)_{M} \in E$, obtain $f_{i}^{-1}(L) \in E$. Therefore $L=f_{i}\left(f_{i}^{-1}(L)\right) \in E_{i}$.

Let $J \in E$. Put $J_{i}:=f_{i}(J),(i \in\{1,2, \ldots, n\})$. By Proposition 8.20 [1], $\operatorname{Tr}_{J}(M)=\operatorname{Tr}_{J}\left(M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}\right)=\sum_{i=1}^{n} \operatorname{Tr}_{J}\left(M_{i}\right)$. Since $J \leq M$, $\operatorname{Tr}_{J}\left(M_{i}\right) \leq \operatorname{Tr}_{M}\left(M_{i}\right)=M_{i}$ for any $i \in\{1,2, \ldots, n\}$, by Proposition 8.16 [1]. Hence $\operatorname{Tr}_{J}(M)=\stackrel{n}{i=1} \operatorname{Tr}_{J}\left(M_{i}\right)$, because $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}$. Since $J \in \operatorname{Gen}(M), \operatorname{Tr}_{J}(M)=J$, by Proposition 8.12 [1]. Whence

$$
J=\stackrel{n}{i=1} \operatorname{Tr}_{J}\left(M_{i}\right) \& \forall i \in\{1,2, \ldots, n\}: \operatorname{Tr}_{J}\left(M_{i}\right) \leq M_{i} .
$$

Therefore $\operatorname{Tr}_{J}\left(M_{i}\right)=J_{i}$ for any $i \in\{1,2, \ldots, n\}$. Thus $J=J_{1}+J_{2}+$ $\ldots+J_{n}$, where $J_{1} \in E_{1}, J_{2} \in E_{2}, \ldots, J_{n} \in E_{n}$.

Let $P_{i} \in E_{i}$ for each $i \in\{1,2, \ldots, n\}$. Hence there exists $H_{i} \in E$ such that $P_{i}=f_{i}\left(H_{i}\right)$. Thus $H_{i} \subseteq f_{i}^{-1}\left(P_{i}\right)$. By (1), $f_{i}^{-1}\left(P_{i}\right) \in E . f_{i}^{-1}\left(P_{i}\right) \in$ $\operatorname{Gen}(M)$ for any $i \in\{1,2, \ldots, n\}$. By ((3)) or $((5)), f_{1}^{-1}\left(P_{1}\right) \cap f_{2}^{-1}\left(P_{2}\right) \cap$ $\ldots \cap f_{n}^{-1}\left(P_{n}\right) \in E$. Since $f_{i}^{-1}\left(P_{i}\right)=M_{1}+\ldots+M_{i-1}+P_{i}+M_{i+1}+\ldots+M_{n}$ for any $i \in\{1,2, \ldots, n\}, P_{1}+P_{2}+\ldots+P_{n} \in E$.

References

[1] F.W. Anderson, K.R. Fuller, Rings and categories of modules. Springer, Berlin-Heidelberg-New York, 1973.
[2] F. Hausdorff, Set theory. Second edition. Chelsea Publishing Company, New York, 2005.
[3] A.I. Kashu, Radicals and torsions in modules. Stiintca, Chisinau, 1983. (in Russian).
[4] Yu.P. Maturin, Preradicals and submodules. Algebra and Discrete Mathematics, Vol. 10 (2010), No.1, pp. 88-96.
[5] W. Sierpinski, Cardinal and ordinal numbers. Second edition. PWN, Warsaw, 1965.

Contact information

Yuriy Maturin Institute of Physics, Mathematics and Computer
Science,Drohobych Ivan Franko State Pedagog-
ical University, Stryjska, 3, Drohobych 82100, Lviv Region, Ukraine
E-Mail: yuriy_maturin@hotmail.com
URL: www.drohobych.net/ddpu/

Received by the editors: 16.10.2012
and in final form 14.08.2013.

