Associative words in the symmetric group of degree three

Ernest Płonka

Communicated by V. I. Sushchansky

Abstract

Let G be a group. An element $w(x, y)$ of the absolutely free group on free generators x, y is called an associative word in G if the equality $w\left(w\left(g_{1}, g_{2}\right), g_{3}\right)=w\left(g_{1}, w\left(g_{2}, g_{3}\right)\right)$ holds for all $g_{1}, g_{2} \in G$. In this paper we determine all associative words in the symmetric group on three letters.

1. Introduction

Let G be a group and let $F=F(x, y)$ be the absolutely free group on free generators x, y. Let $V=V(G)$ be the subgroup of F consisting of all words w such that $w\left(g_{1}, g_{2}\right)=1$ for all $g_{1}, g_{2} \in G$. An element $w \in F$ is said to be associative in G if the equality

$$
\begin{equation*}
w\left(w\left(g_{1}, g_{2}\right), g_{3}\right)=w\left(g_{1}, w\left(g_{2}, g_{3}\right)\right) \tag{1.1}
\end{equation*}
$$

holds for all elements $g_{1}, g_{2}, g_{3} \in G$. The words $1, x, y, x y$ and $y x$ are, of course, associative (trivial words) for any group. It is known that in the absolutely free group ($[6,7]$) and in the class of all abelian groups ([4]) there are no other associative words. In other groups $(G ; \cdot)$ such nontrivial word w can exist, however. Moreover, in some free nilpotent groups there are nontrivial associative words $w(x, y)=x \circ y$ such that $(G ; \circ)$ is a group and the group operation $x \cdot y$ can be expressed as a

2010 MSC: 20B30, 08A40,20F12.
Key words and phrases: associative words, symmetric group S_{3}.
word in the group $(G ; \circ)$: see $[1,2,5,9]$. In this paper we are looking for the associative words in the symmetric group of degree three which is metabelian but not nilpotent. We show that each associative word in S_{3} is equivalent modulo $V\left(S_{3}\right)$ to one of the five words mentioned above or to one of $x^{3}, y^{3}, x^{4}, y^{4}, x^{4} y^{4},[x, y]^{x+y},[y, x]^{x+y}$.

2. Preliminaries

We use standard notations:
$x^{-1} y x=y^{x}, \quad[y, x]=y^{-1} x^{-1} y x, \quad[y, x]^{-1}=[x, y] \quad x^{\beta y}=\left(x^{y}\right)^{\beta}$,

$$
x^{\alpha+\beta y+z+0}=x^{\alpha}\left(x^{\beta}\right)^{y} x^{z}
$$

for arbitrary group elements x, y, z and all integers α, β.
Let us recall the following simple facts about the identities in S_{3}.
(i) The relations

$$
[x y, z]=[x, z]^{y}[y, z],[x, y z]=[x, z][x, y]^{z}
$$

are identities in any group.
(ii) The commutator subgroup S_{3}^{\prime} of S_{3} consists of all even permutations and the square of each element from S_{3} is in S_{3}^{\prime}.

This yields
(iii) For all products C of commutators the equality

$$
C^{(1-x)(1+x)}=1
$$

is an identity in S_{3}.
(iv) The equalities

$$
\begin{aligned}
x^{6} & =[y, x]^{3}=1,[[y, x],[u, v]]=1,\left[x^{2},[y, z]\right]=1, \\
{\left[y^{2}, x\right] } & =[y, x]^{y+1},\left[y^{3}, x\right]=[y, x]^{y-1},\left[y^{4}, x\right]=[y, x]^{-y-1}
\end{aligned}
$$

are identities in the group S_{3}.
From (ii) and (iv) one can derived
(v) The equality

$$
[y, x]^{x y}=[y, x]^{-1-x-y}
$$

is an identity in S_{3}.

The following consequence of Corollary 2 in [8] plays very important role in our considerations.
(vi) If for some $A, B, C \in Z_{3}$ the equality

$$
[y, x]^{A+B x+C y}=1
$$

holds for all $x, y \in S_{3}$, then $A=B=C=0$.
Proposition 2.1. Any 2 -word in S_{3} is equivalent $(\bmod V)$ to some word of the form

$$
\begin{equation*}
w(x, y)=x^{\alpha} y^{\beta}[y, x]^{A+B x+C y} \tag{2.1}
\end{equation*}
$$

where $\alpha, \beta \in Z_{6}$ and $A, B, C \in Z_{3}$.
Proof. It is enough to apply Hall's classical collection process from [3].
Proposition 2.2. The word

$$
w(x, y)=x^{\alpha} y^{\beta}[y, x]^{A+B x+C y}
$$

is asociative in S_{3}, then $\alpha, \beta \in\{0,1,3,4\}$.
Proof. By putting $y=z=1$ and $x=y=1$ into (2.2) we get

$$
\begin{equation*}
x^{\alpha^{2}}=x^{\alpha}, \text { and } x^{\beta^{2}}=x^{\beta} \tag{2.2}
\end{equation*}
$$

and therefore $\alpha(\alpha-1) \equiv \beta(\beta-1) \equiv 0(\bmod 6)$.
Proposition 2.3. If $w(x, y)$ is associative in a group G, then the word $u(x, y)=w(y, x)$ is also associative in G.

Proof. We have

$$
u(u(x, y), z)=w(z, w(y, x))=w(w(z, y), x)=u(x, u(y, z))
$$

3. Associative words

First of all we show that for some pairs (α, β) no word of the form (2.1) is associative in S_{3}. It what follows we shall always assume that $A, B, C \in Z_{3}$ and sometimes we write $\gamma(s, t)$ instead of $A+B s+C t$.

Theorem 3.1. There are no associative words in the group S_{3} which are of the form

$$
\begin{equation*}
x^{\alpha} y^{\beta}[y, x]^{A+B x+C y} \tag{3.1}
\end{equation*}
$$

where (α, β) is one of the following pairs

$$
(1,3),(3,1),(1,4),(4,1),(3,4),(4,3),(3,3)
$$

Proof. Case $\alpha=1, \beta=3$.
Let us begin with an auxiliary result

$$
\begin{gathered}
w(x, y)^{3}=x y^{3}[y, x]^{\gamma} x y^{3}[y, x]^{\gamma} x y^{3}[y, x]^{\gamma} \\
=x y^{3} x^{2}[y, x]^{\gamma} y^{3}\left[y^{3}, x\right][y, x]^{x \gamma} y^{3}[y, x]^{\gamma} \\
=x y^{3} x^{2}[y, x]^{\gamma}\left[y^{3}, x\right]^{y}[y, x]^{x y \gamma}[y, x]^{\gamma} \\
=x y^{3} x^{3}[y, x]^{x+1}[y, x]^{\gamma}\left[y^{3}, x\right]^{(y-1) y}[y, x]^{x y \gamma}[y, x]^{\gamma} \\
=x y^{3} x^{3}[y, x]^{x+1}[y, x]^{\gamma}\left[y^{3}, x\right]^{(y-1) y}[y, x]^{x y \gamma}[y, x]^{\gamma} .
\end{gathered}
$$

We have thus established

$$
\begin{equation*}
\left(x y^{3}[y, x]^{\gamma}\right)^{3}=x^{3} y^{3}[y, x]^{-1+x-y+(1-x-y) \gamma} \tag{3.2}
\end{equation*}
$$

Further we have

$$
\begin{gathered}
L=w(w(1, y), z)=w\left(y^{3}, z\right)=y^{3} z^{3}\left[z, y^{3}\right]^{\gamma(y, z)}=y^{3} z^{3}[z, y]^{(y-1) \gamma(y, z)} \\
R=w(1, w(y, z))=w(y, z)^{3}=\left(y z^{3}[z, y]^{\gamma(y, z)}\right)^{3} \\
=y z^{3}\left(z^{3} y\left[y, z^{3}\right]\right) y z^{3}[z, y]^{(y z-1) \gamma(y, z)}=y^{3} z^{3}[z, y]^{-1-z+y+(y z-1) \gamma(y, z)}
\end{gathered}
$$

Thus $L=R$ is equivalent to the equality

$$
[z, y]^{(-1-A-B+C)+(1+A-C) y+(-1-A+B+C)) z}=1
$$

By (vi) we have $-1-A-B+C=0,1+A-C=0$ and $-1-A+B+C=$ 0 , which has the solution $B=0, C=A+1$. Therefore the associative word (3.1) has to be of the form $w(x, y)=x y^{3}[y, x]^{C-1+C y}$. Let us put $z=x$ into the associative low (1.1). We get

$$
\begin{gathered}
L=w(w(x, y), x)=x y^{3}[y, x]^{\gamma(x, y)} w(x, y) x^{3}\left[x, x y^{3}[y, x]^{\gamma(x, y)}\right]^{\gamma(x y, x)} \\
\quad x^{4} y^{3}[y, x]^{x+y}[y, x]^{x \gamma(x, y)}[y, x]^{(1-x+y) \gamma(x y, x)}[y, x]^{(1-x) \gamma(x, y) \gamma(x y, x)},
\end{gathered}
$$

which in the case $B=0, A=C-1$ gives

$$
\begin{gathered}
L=x^{4} y^{3}[y, x]^{x+y+x(C-1+C y)+(1-x+y)(C-1+C x)+(1-x)((C+C x)-1)(C-1+C y)} \\
x^{4} y^{3}[y, x]^{x+y+x(C-1+C y)+(1-x+y)(C-1+C x)+(x-1)(C-1+C y)} .
\end{gathered}
$$

After some calculations we get

$$
L=x^{4} y^{3}[y, x]^{C+C(x+1) y}
$$

Similarly we have

$$
\begin{aligned}
R= & w(x, w(y, x))=x w(y, x)^{3}\left[y x^{3}[x, y]^{\gamma(y, x)}, x\right]^{\gamma(x, x y)} \\
& =x w(y, x)^{3}\left[y x^{3}, x\right]^{\gamma(x, x y)}\left[[x, y]^{\gamma(y, x)}, x\right]^{\gamma(x, x y)} \\
& =x w(y, x)^{3}[y, x]^{x \gamma(x, x y)}[y, x]^{(1-x) \gamma(y, x) \gamma(x, x y)},
\end{aligned}
$$

which in the case $B=0$ and $A=C-1$ implies

$$
\begin{gathered}
R=x w(y, x)^{3}[y, x]^{x(C-1+C x y}[y, x]^{(1-x)(C+C x-1)(C+1+C x y)} \\
=x w(y, x)^{3}[y, x]^{-C+C x+(1+C) y} .
\end{gathered}
$$

Now from the equality $L=R$ we obtain

$$
w(x, y)^{3}=x^{3} y^{3}[y, x]^{-x}
$$

We get a contradiction, because formula (3.2) for $\gamma=C-1+C y$ gives

$$
w(x, y)^{3}=x^{3} y^{3}[y, x]^{C+1-x+(C+1) y}
$$

Case $\alpha=1, \beta=4$.
We have

$$
L=w(w(1, y), z)=w\left(y^{4}, z\right)=y^{4} z^{4}\left[z, y^{4}\right]^{\gamma(1, z)}=y^{4} z^{4}[z, y]^{-(y+1) \gamma(1, z)}
$$

Similarly

$$
\begin{gathered}
R=w(1, w(y, z))=\left(y z^{4}[z, y]^{y \gamma(y, z)} y z^{4}[z, y]^{\gamma(y, z)}\right)^{2} \\
=\left(y^{2} z^{4}\left[z^{4}, y\right][z, y]^{y \gamma(y, z)} y z^{4}[z, y]^{\gamma(y, z)}\right)^{2}=y^{4} z^{4}[z, y]^{(z+1)-(y+1) \gamma(y, z)} .
\end{gathered}
$$

Hence $L=R$ yields $[z, y]^{1+z}=1$ which, by (vi), is not an identity in S_{3}.
Case $\alpha=3, \beta=4$.
We have

$$
L=w(w(1, y), z)=w\left(y^{4}, z\right)=z^{4}\left[z, y^{4}\right]^{\gamma(1, z)}=z^{4}[z, y]^{-(y+1) \gamma(1, z)}
$$

Since y^{2} commutes both z^{4} and $[z, y]^{\gamma(y, z)}$, we can use of the previous case. We obtain

$$
\begin{aligned}
R=w & (1, w(y, z))=w(y, z)^{4}=\left(y^{2} y z^{4}[z, y]^{\gamma(y, z)} y^{2} y z^{4}[z, y]^{\gamma(y, z)}\right)^{2}= \\
& =y^{2}\left(y z^{4}[z, y]^{\gamma(y, z)} y z^{4}[z, y]^{\gamma(y, z)}\right)^{2}=z^{4}[z, y]^{-(z+1)-(y+1) \gamma(y, z)}
\end{aligned}
$$

Thus the condition $L=R$ yields the equality

$$
[z, y]^{z+1}=1
$$

which is not an identity in S_{3}.
Case $\alpha=3, \beta=3$. We have

$$
\begin{aligned}
& L=w(w(x, 1), z)=x^{3} z^{3}\left[z, x^{3}\right]^{\gamma(x, z)}=x^{3} z^{3}[z, x]^{(x-1)(A+B x+C z)} \\
& R=w(x, w(1, z))=x^{3} z^{3}\left[z^{3}, x\right]^{\gamma(x, z)}=x^{3} z^{3}[z, x]^{(z-1)(A+B x+C z)}
\end{aligned}
$$

Thus the equality $L=R$ implies, in view of (vi),

$$
C-B \equiv A-C+B \equiv B-A-C \equiv 0 \quad(\bmod 3)
$$

which yields $A=0$ and $B-C=0$. So every word of the form $w(x, y)=$ $x^{3} y^{3}[x, y]^{B(x+y)}$ satisfies the equation $w(w(x, 1), z)=w(x, w(1, z))$ but none of them is associative. Indeed,for such words we have

$$
\begin{gathered}
L=w(w(1, y), z)=w\left(y^{3}, z\right)=y^{3} z^{3}\left[z^{3}, y^{3}\right]^{B(y+z)} \\
=y^{3} z^{3}[z, y]^{B(y-1)(z-1)(y+z)}=y^{3} z^{3} \\
R=w(1, w(y, z))=w(y, z)^{3} \\
=y^{3} z^{3}[z, y]^{B(y+z)} y^{3} z^{3}[z, y]^{B(y+z)} y^{3} z^{3}[z, y]^{B(y+z)} \\
=y^{3} z^{3}[z, y]^{B(y+z)} y^{3} z^{3} y^{3} z^{3}[z, y]^{B(y z+1)(y+z)} \\
=y^{3} z^{3}[z, y]^{B(y+z)}[z, y]^{(z-1)(y-1)}[z, y]^{-B(y+z)} \\
=y^{3} z^{3}[z, y]^{(B+1)(y+z)}
\end{gathered}
$$

Thus $L=R$ implies the equation $[z, y]^{y+z}=1$, which is not an identity in S_{3}.

Now by Proposition 2.3 we know that if the word $w(x, y)$ of the form (2.1) is associative in S_{3}, then $w(y, x)$ is also associative in S_{3}. Since

$$
w(y, x)=y^{i} x^{j}[x, y]^{A+B x+C z}=x^{j} y^{i}[y, x]^{A^{\prime}+B^{\prime} x+C^{\prime} y}
$$

for some $A^{\prime}, B^{\prime}, C^{\prime} \in Z_{3}$ the proof of Theorem 3.1 is complete.
In the following lemmas we consider the cases of pairs (α, β) for which there exist associative words in S_{3}.

Lemma 3.2. The word

$$
\begin{equation*}
w(x, y)=x[y, x]^{A+B x+C y}=x[y, x]^{\gamma(x, y)} \tag{3.3}
\end{equation*}
$$

is associative in S_{3} if and only if $A=B=C=0$.

Proof. Using the identities (ii), (iv) and (v) we have

$$
\begin{gathered}
w(x, w(y, y))=x[y, x]^{\gamma(x, y)}, \\
w(w(x, y), y)=x[y, x]^{\gamma(x, y)}\left[y, x[y, x]^{\gamma(x, y)}\right]^{\gamma(x, y)} \\
=x[y, x]^{\gamma(x, y)}[y, x]^{\gamma(x, y)}[y, x]^{(1-y) \gamma(x, y) \gamma(x, y)} .
\end{gathered}
$$

Taking into account (iii) we see that if w is associative, then

$$
[y, x]^{A+B x+C y+(1-y)(A-C+B x)^{2}}=1,
$$

which, by (vi) ensures the following system of congruences

$$
\left\{\begin{array}{l}
A+(A-C)^{2}+B^{2}+2(A-C) B \equiv 0 \quad(\bmod 3) \\
B+2(A-C) B+2(A-C) B \equiv 0 \quad(\bmod 3) \\
C-(A-C)^{2}-B^{2}+2(A-C) B \equiv 0 \quad(\bmod 3)
\end{array}\right.
$$

The solution of the system are four triples (A, B, C) of the form $(0,0,0)$, $(2,2,0),(2,0,1)$ and $(0,1,1)$. In order to exclude the last three cases we put $y=x$ into (3.3). Then we get

$$
\begin{gathered}
L=w(w(x, x), z)=x[z, x]^{\gamma(x, z)} \\
R=w(x, w(x, z))=x\left[x[z, x]^{\gamma(x, z)}, x\right]^{\gamma(x, x)} \\
=x[z, x]^{(x-1) \gamma(x, x) \gamma(x, z)} .
\end{gathered}
$$

Thus the condition $L=R$ together with (iii) gives the equality

$$
[z, x]^{(x-1)(A-B-C)(A+B x+C z)}=[z, x]^{A+B x+C z} .
$$

The equality is, by (vi), an identity in S_{3} if and only if the triples (A, B, C) satisfies the following system of congruences

$$
\begin{cases}(A-B-C)(B-A-C) \equiv A & (\bmod 3) \\ (A-B-C)(A-B-C) \equiv B & (\bmod 3) \\ (A-B-C)(B-A-C) \equiv C & (\bmod 3)\end{cases}
$$

The proof of the lemma is complete, because none of the triples $(2,2,0)$, $(2,0,1)$ and $(0,1,1)$ do satisfy the system.

By Proposition 2.3 we have also

Corollary 3.3. The word

$$
y[y, x]^{A+B x+C y}
$$

satisfies the associativity low if and only if $A=B=C=0$.
Lemma 3.4. The word

$$
w(x, y)=x y[y, x]^{A+B x+C y}
$$

is associative in S_{3} if and only if $B=C=A=0$ or $A-1=B=C=0$. Proof. We have

$$
\begin{aligned}
& w(w(x, y), z)=x y[y, x]^{\gamma(x, y)} z\left[z, x y[y, x]^{\gamma(x, y)}\right]^{\gamma(x y, z)} \\
= & x y z[y, x]^{z \gamma(x, y)+(z-1) \gamma(x, y) \gamma(x y, z)}[z, x]^{y \gamma(x y, z)}[z, y]^{\gamma(x y, z)}
\end{aligned}
$$

and

$$
\begin{aligned}
& w(x, w(y, z))=x y z[z, y]^{\gamma(y, z)}\left[y z[z, y]^{\gamma(y, z)}, x\right]^{\gamma(x, y z)} \\
= & x y z[y, x]^{z \gamma(x, y z)}[z, x]^{\gamma(x, y z)}[z, y]^{\gamma(y, z)+(x-1) \gamma(y, z) \gamma(x y, z)} .
\end{aligned}
$$

Hence we get

$$
\begin{gather*}
(w(x, w(y, z)))^{-1} w(w(x, y), z) \tag{3.4}\\
=[y, x]^{(1-z)\{-C y+\gamma(x, y) \gamma(x y, z)\}}[z, x]^{(1-y)(-A)}[z, y]^{(1-x)\{-B y+\gamma(y, z) \gamma(x y, z)\}}
\end{gather*}
$$

By putting $z=y$ into (3.4) we obtain

$$
\begin{gathered}
(w(x, w(y, y)))^{-1} w(w(x, y), y)= \\
{[y, x]^{(1-y)\{-A-C y+(A+B x+C y)(A+B x y+C y)\}}}
\end{gathered}
$$

which in view of (iii) and (v) can be rewritten as

$$
[y, x]^{\left.(1-y)\left\{(A-C)^{2}-(A-C)-B^{2}\right)\right\}}
$$

Now we put $y=x$ into (3.4). This gives

$$
\begin{aligned}
& w(x, w(x, z))^{-1} w(w(x, x), z)= \\
& {[z, x]^{\left.(1-x)\left\{(A-B)^{2}-(A-B)-C^{2}\right\}\right\}}}
\end{aligned}
$$

In view of (vi) if the word $w(x, y)$ is associative in S_{3}, then the following system of congruences

$$
\begin{cases}(A-C)^{2}-(A-C)-B^{2} \equiv 0 & (\bmod 3) \\ (A-B)^{2}-(A-B)-C^{2} \equiv 0 & (\bmod 3)\end{cases}
$$

has to satisfy. The solution of the system is $B=C=0$ and $A=0$ or $A=1$. Since the words $x y$ and $y x$ are associative, Lemma 3.4 follows.

Lemma 3.5. The 2 -word

$$
\begin{equation*}
w(x, y)=x^{3}[y, x]^{A+B x+C y} \tag{3.5}
\end{equation*}
$$

is associative in S_{3} if and only if $A=B=C=0$.
Proof. Clearly, the word x^{3} is associative in the group S_{3}. We have

$$
\begin{gathered}
R=w(x, w(1, z))=x^{3} \\
L=w(w(x, 1) z)=w\left(x^{3}, z\right)=x^{3}[z, x]^{\gamma(x, z)}=x^{3}[z, x]^{(x-1)(A+B x+C z)} \\
{[z, x]^{(-A+B-C)+(A-B-C) x+C z}}
\end{gathered}
$$

So the equality $R=L$ is equivalent to the conditions $C=0$ and $A=B$.
Further we have

$$
\begin{aligned}
& w(w(x, x), z)=x^{3}\left[z, x^{3}\right]^{A+B x+C z}=x^{3}[z, x]^{(x-1)(A+B x+C z)} \\
& w(x, w(x, z))=x^{3}\left[x^{3}[z, x]^{A+B x+C z}, x\right]^{A+B x+C x} \\
&=x^{3}[z, x]^{(A-B-C)(x-1)(A-B+C z)}
\end{aligned}
$$

Hence the equality $w(w(x, x), z)=w(x, w(x, z))$ after using (v) and (vi), yields the system of equalities

$$
\left\{\begin{array}{l}
(A-B-C)(B-A-C) \equiv 2 A+B-C \quad(\bmod 3) \\
(A-B-C)^{2} \equiv A-B-C \quad(\bmod 3) \\
C(A-B-C) \equiv C \quad(\bmod 3)
\end{array}\right.
$$

The system has four solutions for $(A, B, C):(0,0,0),(1,0,0),(1,1,0)$ and $(2,2,0)$. We check that the last three triple do not produce associative words of the form $w(x, y)=x^{3}[y, x]^{\gamma}(x, y)$. To do this let us calculate

$$
\begin{aligned}
& w(x, y)^{3}=x^{3}[y, x]^{\gamma(x, y)}\left(x^{3}[y, x]^{\gamma(x, y)} x^{3}\right)[y, x]^{\gamma(x, y)} \\
= & x^{3}[y, x]^{\gamma(x, y)}[y, x]^{x \gamma(x, y)}[y, x]^{\gamma(x, y)}=x^{3}[y, x]^{(x-1) \gamma(x, y)}
\end{aligned}
$$

Taking this into account we get

$$
\begin{gathered}
L(A, B, C)=w(w(x, y), y)=w(x, y)^{3}\left[y, w(x, y)^{\gamma(x, y)}=\right. \\
x^{3}[y, x]^{(x-1) \gamma(x, y)+(1-y) \gamma(x, y) \gamma(x, y)}, \\
R(A, B, C)=w\left((x, w(y, y))=x^{3}\left[y^{3}, x\right]^{\gamma(x, y)}=x^{3}[y, x]^{(y-1) \gamma(x, y)}\right.
\end{gathered}
$$

Now it easy to check the following equalities

$$
\begin{aligned}
L(1,0,0)=x^{3}[y, x]^{x-y}, R(1,0,0) & =x^{3}[y, x]^{y-1} \\
L(1,1,0)=x^{3}[y, x]^{x+y}, R(1,1,0) & =x^{3}[y, x]^{x+1} \\
L(2,2,0)=x^{3}[y, x]^{-x-y}, R(2,2,0) & =x^{3}[y, x]^{-x-1}
\end{aligned}
$$

The proof is thus complete.
Lemma 3.6. The 2 -word

$$
w(x, y)=x^{4}[y, x]^{A+B x+C y}
$$

is associative in S_{3} if and only if $A=B=C=0$.
Proof. We put $z=1$ into the associativity law and we make use of the formulas (i), (ii), (iii) and (iv). We have

$$
\begin{gathered}
L=w(w(x, y), 1)=w(x, y)^{4}=\left(x^{4}[y, x]^{A+B x+C y}\right. \\
R=w(x, w(y, 1))=w\left(x, y^{4}\right)=x^{4}\left[y^{4}, x\right]^{\gamma(x, y)}=x^{4}[y, x]^{-(y+1) \gamma(x, y)} \\
=x^{4}[y, x]^{(B-A-C)+y(B-A-C)}
\end{gathered}
$$

Therefore the equality $L=R$ ensures $B=0$ and $A=C$. Taking this into account we get

$$
\begin{gathered}
w(w(x, x), z)=w\left(x^{4}, z\right)=x^{4}\left[z, x^{4}\right]^{\gamma(1, z)}=x^{4}[z, x]^{-(x+1)(A+A z)}=x^{4} \\
w(x, w(x, z))=x^{4}\left[x^{4}[z, x]^{\gamma(x, z)}, x\right]^{\gamma(1, z)}=x^{4}[z, x]^{A(1-x)}
\end{gathered}
$$

which shows that $A=B=C=0$ and Lemma 3.6 follows.
Lemma 3.7. The word

$$
w(x, y)=x^{4} y^{4}[y, x]^{A+B x+C y}
$$

is associative in S_{3} if and only if $A=B=C=0$.

Proof. We have

$$
\begin{array}{r}
L=w(w(1, y), z)=w\left(y^{4}, z\right)=y^{4} z^{4}\left[z, y^{4}\right]^{\gamma(1, z)} \\
=y^{4} z^{4}[z, y]^{-(y+1)(A+B+C z)}=y^{4} z^{4}[z, y]^{(C-A-B)+(C-A-B) y}
\end{array}
$$

and

$$
R=w(1, w(y, z))=w(y, z)^{4}=y^{4} z^{4}[z, y]^{A+B y+C z}
$$

Hence $C=0$ and $A=B$. Taking this into account we check

$$
\begin{gathered}
L=w(w(x, y), x)=x^{2} y^{4}[y, x]^{\gamma(x, y)}\left[x, x^{4} y^{4}[y, x]^{\gamma(x, y)}\right]^{\gamma(1, x)} \\
=x^{2} y^{4}[y, x]^{\gamma(x, y)}[y, x]^{(y+1) A(x+1))}[y, x]^{(1-x) A(x+1) \gamma(x, y)} \\
=x^{2} y^{4}[y, x]^{A(1+x)}
\end{gathered}
$$

and also

$$
\begin{gathered}
R=w(x, w(y, x))=x^{4} y^{4} x^{4}[x, y]^{\gamma(y, x)}\left[y^{4} x^{4}[x, y]^{\gamma(y, x)}, x\right]^{\gamma(x, 1)} \\
x^{4} y^{4} x^{4}[x, y]^{\gamma(y, x)}[y, x]^{-(y-1) \gamma(x, 1)}[x, y]^{(x-1) \gamma(x, 1) \gamma(x, y)} \\
=x^{2} y^{4}[y, x]^{A(1+y)} .
\end{gathered}
$$

By (vi) $L=R$ if and only if $A=0$. Clearly, $x^{4} y^{4}$ is associative word in S_{3}. The proof is thus completed.

Lemma 3.8. If the word

$$
w(x, y)=[y, x]^{A+B x+C y}=[y, x]^{\gamma(x, y)}
$$

is associative, then $A=B-C=0$. Conversely, the word

$$
\begin{equation*}
w(x, y)=[y, x]^{B(x+y)} \tag{3.6}
\end{equation*}
$$

satisfies the associativity law for all $B \in Z_{3}$.
Proof. Using the identities (i), (ii),(ii) and (iv) we have
$L=w(w(x, y), z))=\left[z,[y, x]^{\gamma(x, y)}\right]^{\gamma(1, z)}=[y, x]^{(1-z)(A+B x+C y)(A+B+C z)}$
and similarly

$$
\begin{aligned}
R= & w(x, w(y, z))=[w(y, z), x]^{\gamma(x, 1)} \\
& =[z, y]^{(x-1)(A+B y+C z)(A+B x+C)} .
\end{aligned}
$$

Thus if w is an associative word in S_{3}, then in the case $y=x$, we get

$$
\begin{equation*}
[z, x]^{(x-1)(A-B+C)(A-B+C z)}=1 \tag{3.7}
\end{equation*}
$$

because of (iii) and (v). Similarly, in the case $z=y$ we obtain the equation

$$
\begin{equation*}
[y, x]^{(1-y)(A+B-C)(A-C+B x)}=1 \tag{3.8}
\end{equation*}
$$

Now (3.7), (3.8) and (vi) imply the system of congruences

$$
\left\{\begin{array}{l}
(A+C-B)^{2} \equiv 0 \quad(\bmod 3) \\
(A+C-B)(A-B-C) \equiv 0 \quad(\bmod 3) \\
(A+C-B) C \equiv 0 \quad(\bmod 3) \\
(A+B-C)^{2} \equiv 0 \quad(\bmod 3) \\
(A+B-C) B \equiv 0 \quad(\bmod 3) \\
(A+B-C)(B+C-A) \equiv 0 \quad(\bmod 3)
\end{array}\right.
$$

which have the solution $A=B-C=0$.
Conversely, we check that the word $w(x, y)=[y, x]^{B x+B y}$ is associative. Indeed, by (ii) and (iii) we have

$$
w(w(x, y), z)=\left[z,[y, x]^{B(x+y)}\right]^{B(1+z)}=[y, x]^{B^{2}(1-z)(1+z)(x+y)}=1
$$

and

$$
w(x, w(y, z))=\left[[z, y]^{B(z+y)}, x\right]^{B(1+x)}=[z, y]^{B^{2}(y+z)(x-1)(x+1)}=1
$$

as required.
We have thus established our main result
Theorem 3.9. There are precisely (modulo $V\left(S_{3}\right)$) twelve associative words in the group S_{3}. Namely $1, x, x^{3}, x^{4}, y, y^{3}, y^{4}, x y, y x, x^{4} y^{4},[y, x]^{x+y}$ and $[x, y]^{x+y}$.

References

[1] Bender, H., Über den grossten p^{\prime}-Normalteiler in p-auflösbaren Gruppen, Arch. Math. 18 (1967), 15-16.
[2] Cooper, C. D. H., Words which give rise another group operation for a given group in: Proceedings of the Second International Conference on the Theory of Groups, (Australian Nat. Univ., Canberra, 1973), Lecture Notes in Math. Vol. 372, Springer, Berlin 1974, pp. 221-225.
[3] Hall, M., The theory of groups The Macmillan Company, New York, 1959.
[4] Higman, G., Neumann, B. H.,Groups as grupoids with one law, Publ. Math. Debrecen 2(1951-2), 215-221.
[5] Hulanicki, A., Świerczkowski, S., On group operations other that $x y$ or $y x$, Publ. Math. Debrecen 9 (1962), 142-146.
[6] Krstić, S., On a theorem of Hanna Neumann Publ. Math. Debrecen 31 (1994), 71-76.
[7] Neumann, H., On a question of Kertesz, Publ. Math. Debrecen 8 (1961), 75-78.
[8] Płonka, E., On symmetrric words in the symmetric group of degree three, Math. Scand. 99 (2006), 5-16.
[9] Street, A. P., Subgroup-determining functions on groups, Illinois J. Math. 12 (1968), 99-120.

Contact information

Ernest Płonka
Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland E-Mail: eplonka@polsl.pl

Received by the editors: 19.10.2011
and in final form 26.06.2012.

