Generalised triangle groups of type (3, q, 2)

James Howie

Communicated by V. I. Sushchansky

Abstract. If G is a group with a presentation of the form $\left\langle x, y \mid x^{3}=y^{q}=W(x, y)^{2}=1\right\rangle$, then either G is virtually soluble or G contains a free subgroup of rank 2 . This provides additional evidence in favour of a conjecture of Rosenberger.

1. Introduction

A generalised triangle group is a group G with a presentation of the form

$$
\left\langle x, y \mid x^{p}=y^{q}=W(x, y)^{r}=1\right\rangle
$$

where $p, q, r \geq 2$ are integers and $W(x, y)$ is a word of the form

$$
x^{\alpha(1)} y^{\beta(1)} \cdots x^{\alpha(k)} y^{\beta(k)}
$$

$(0<\alpha(i)<p, 0<\beta(i)<q)$. We say that G is of type (p, q, r). The parameter k is called the length-parameter. (The syllable-length, or freeproduct length, of W regarded as a word in $\mathbb{Z}_{p} * \mathbb{Z}_{q}$ is $2 k$.) Without loss of generality, we assume that $p \leq q$.

A conjecture of Rosenberger [20] asserts that a Tits alternative holds for generalised triangle groups:

Conjecture A (Rosenberger). Let G be a generalised triangle group. Then either G is soluble-by-finite or G contains a non-abelian free subgroup.

2010 MSC: 20F05, 20F06, 20E05.
Key words and phrases: Generalized triangle groups, Tits alternative.

This conjecture has been verified in a large number of special cases. (See for example the survey in [10].) In particular it is now known:

- when $r \geq 3$ [9];
- when $\frac{1}{p}+\frac{1}{q} \geq \frac{1}{2}[3,14]$;
- when $q \geq 6[19,22,4,5,1,7,17]$;
- when $k \leq 6[20,19,21] ;$
- for $(p, q, r)=(3,4,2)[2,18]$;
- for $(p, q, r)=(2,4,2)$ and k odd [6].

In the present article we describe a proof of the Rosenberger Conjecture for the cases $(p, q, r)=(3,3,2)$ and $(p, q, r)=(3,5,2)$, hence completing the proof of the following

Theorem B. Let G be a generalised triangle group of type (p, q, r) with $p, q \geq 3$ and $r \geq 2$. Then either G is soluble-by-finite or G contains a non-abelian free subgroup.

Thus the Rosenberger Conjecture is now reduced to three cases, where $p=r=2$ and $q \in\{3,4,5\}$.

The results presented here have been posted online at $[15,16]$, where the arguments are given in more detail. In particular, the proof in the case $q=3$ requires a certain amount of computer calculation using GAP [11]: [15] provides full details of the computations involved, including code and output. Also included in [15] are some partial results on the case $(p, q, r)=(2,3,2)$ of the Rosenberger Conjecture.

Our strategy of proof is essentially the same for the two cases $q=3$ and $q=5$, but the details differ substantially. A theoretical analysis of the trace polynomial (see § 2.2 for details) reduces the problem to a finite set of candidate words W by finding an upper bound for the length-parameter k. In the case $q=5$ the analysis is more detailed and yields the bound $k \leq 4$; the conjecture has already been proved when $k \leq 4$ by Levin and Rosenberger [19].

In the case $q=3$ the analysis yields only the bound $k \leq 20$. This however is sufficient for a computer-based attack on the problem: a computer search using GAP [11] refines the set of candidates to a list of 19 words. The conjecture is known for the 8 shortest words in the list, by work of Levin and Rosenberger [19] and Williams [21]. The remainder of the words satisfy a small cancellation condition, which ensures the existence of nonabelian free subgroups.

Section 2 below contains some preliminary results on trace polynomials and equivalence of words. The proof of the main result for the case $q=3$ is contained in Section 3, and for the case $q=5$ in Section 4 .

Acknowledgement

I am grateful to Gerald Williams for helpful discussions on some of the work presented in this paper.

2. Preliminaries

2.1. Equivalence of words

Our object of study is a group

$$
G=\left\langle x, y \mid x^{p}=y^{q}=W(x, y)^{r}=1\right\rangle
$$

where

$$
W(x, y)=x^{\alpha(1)} y^{\beta(1)} \cdots x^{\alpha(k)} y^{\beta(k)}
$$

and $0<\alpha(i)<p, 0<\beta(i)<q$ for each i.
We think of the word W as a cyclically reduced word in the free product

$$
\mathbb{Z}_{p} * \mathbb{Z}_{q}=\left\langle x, y \mid x^{p}=y^{q}=1\right\rangle .
$$

We regard two such words W, W^{\prime} as equivalent if one can be transformed to the other by moves of the following types:

- cyclic permutation of W,
- inversion of W,
- automorphism of \mathbb{Z}_{p} or of \mathbb{Z}_{q}, and
- (if $p=q$) interchange of x, y.

It is clear that, if W, W^{\prime} are equivalent words, then the resulting groups

$$
G=\left\langle x, y \mid x^{p}=y^{q}=W(x, y)^{r}=1\right\rangle
$$

and

$$
G^{\prime}=\left\langle x, y \mid x^{p}=y^{q}=W^{\prime}(x, y)^{r}=1\right\rangle
$$

are isomorphic. Hence for the purposes of studying the Rosenberger Conjecture (Conjecture A) it is enough to consider words up to equivalence.

2.2. Trace Polynomials

Suppose that $X, Y \in S L(2, \mathbb{C})$ are matrices, and $W=W(X, Y)$ is a word in X, Y. Then the trace of W can be calculated as the value of a 3 -variable polynomial, where the variables are the traces of X, Y and $X Y$ [12]. We can use this to find and analyse essential representations from G to $\operatorname{PSL}(2, \mathbb{C})$. (A representation of G is essential if the images of $x, y, W(x, y)$ have orders p, q, r respectively.)

We can force the images x, y to have orders p, q in $P S L(2, \mathbb{C})$ by mapping them to matrices $X, Y \in S L(2, \mathbb{C})$ of trace $2 \cos (\pi / p)$ and $2 \cos (\pi / q)$ respectively. Then the trace of $W(X, Y) \in S L(2, \mathbb{C})$ is given by a one-variable polynomial $\tau_{W}(\lambda)$, where λ denotes the trace of $X Y$. We will refer to τ_{W} as the trace polynomial of W. Since we are in practice interested in the case where $r=2$, we obtain an essential representation by choosing λ to be a root of τ_{W}.

We recall here some properties of τ_{W}. Details can be found, for example, in [10]. (Complete formulae for the coefficients of τ_{W} are given in [17, Appendix].)

Lemma 2.1. - τ_{W} has degree k;

- when $p, q \leq 3, \tau_{W}(\lambda)$ is monic and has integer coefficients;
- in general, the coefficients of τ_{W} are real algebraic integers.

We also note a few more elementary properties.
Lemma 2.2. 1) Let J denote the interval

$$
J=[2 \cos (\pi / p+\pi / q), 2 \cos (\pi / p-\pi / q)] \subset \mathbb{R}
$$

Then $\tau_{W}(J) \subset[-2,2]$.
2) If $p=q=3$ and G does not contain a non-abelian free subgroup, then the roots of τ_{W} belong to $\left\{0,1, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right\}$.
3) If $p=3, q=5$ and G does not contain a non-abelian free subgroup, then the roots of τ_{W} belong to $\left\{0,1, \frac{1+\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right\}$.

Proof. The space \mathcal{M}_{q} of matrices in $S U(2) \subset S L_{2}(\mathbb{C})$ with trace $2 \cos (\pi / q)$ is path-connected. (Indeed, it is homeomorphic to the 2 -sphere S^{2}.) Writing D_{p} for the diagonal matrix with diagonal entries $e^{i \pi / p}, e^{-i \pi / p}$, fix $X=D_{p} \in M_{p}$ and let Y vary continuously in M_{q} from D_{q} to D_{q}^{-1}. Then $\lambda=\operatorname{tr}(X Y)$ will vary continuously from $\operatorname{tr}\left(D_{p} D_{q}\right)=2 \cos (\pi / p+\pi / q)$ to $\operatorname{tr}\left(D_{p} D_{q}^{-1}\right)=2 \cos (\pi / p-\pi / q)$. By the Intermediate Value Theorem
every $j \in J$ arises as $\operatorname{tr}(X Y)$ for some $Y \in M_{q}$ and $X=D_{p} \in M_{p}$, so $\tau_{W}(j)=\operatorname{tr}(W(X, Y)) \in[-2,2]$ since $W(X, Y) \in S U(2)$.

Any root λ of τ_{W} corresponds to an essential representation $\rho: G \rightarrow$ $\operatorname{PSL}(2, \mathbb{C})$. When $p=q=3$, the image of ρ is a subgroup of $\operatorname{PSL}(2, \mathbb{C})$ generated by two elements of order 3 and containing an element of order 2. Any such subgroup contains a free non-abelian subgroup unless it is isomorphic to A_{4} or A_{5}, in which case each of $\rho(x y), \rho\left(x y^{-1}\right)$ has order 2,3 or 5 . so $\lambda=\operatorname{tr}(\rho(x y))$ and $1-\lambda=\operatorname{tr}(\rho(x)) \operatorname{tr}(\rho(y))-\operatorname{tr}(\rho(x y))=$ $\operatorname{tr}\left(\rho\left(x y^{-1}\right)\right)$ both belong to $\left\{0, \pm 1, \frac{ \pm 1 \pm \sqrt{5}}{2}\right\}$. This is possible only for $\lambda \in\left\{0,1, \frac{1 \pm \sqrt{5}}{2}\right\}$, as claimed.

A similar argument applies when $p=3$ and $q=5$. Here the image of ρ is generated by an element of order 3 and an element of order 5 , and it contains an element of order 2 . Such a subgroup of $\operatorname{PSL}(2, \mathbb{C})$ contains a non-abelian free subgroup unless it is isomorphic to A_{5}, in which case each of $\rho(x y), \rho\left(x y^{ \pm 1}\right)$ has order 2,3 or 5 . In this case $\operatorname{tr}(\rho(x)) \operatorname{tr}(\rho(y))=$ $2 \cos (\pi / 5)=\frac{1+\sqrt{5}}{2}$, so $\lambda, \frac{1+\sqrt{5}}{2}-\lambda \in\left\{0, \pm 1, \frac{ \pm 1 \pm \sqrt{5}}{2}\right\}$, which is possible only if $\lambda \in\left\{0,1, \frac{ \pm 1+\sqrt{5}}{2}\right\}$, as claimed.

Lemma 2.3. If $p=q=3$ and W, W^{\prime} are equivalent with length-parameter k, then either $\tau_{W}(\lambda)=\tau_{W^{\prime}}(\lambda)$ or $\tau_{W}(\lambda)=(-1)^{k} \tau_{W^{\prime}}(1-\lambda)$.

Proof. Since the trace of a matrix is a conjugacy invariant, it follows that the trace polynomial is unchanged by cyclically permuting W. Moreover, if $X \in S L(2, \mathbb{C})$ then the traces of X, X^{-1} are equal, so the trace polynomial is unchanged by inverting W.

If $\operatorname{tr}(X)=1=\operatorname{tr}(Y)$, then $\operatorname{tr}\left(Y^{-1}\right)=1$ also. Interchanging x, y in W has the effect on $\tau_{W}(\lambda)=\operatorname{tr}(W(X, Y))$ of replacing $\lambda=\operatorname{tr}(X Y)$ by $\operatorname{tr}(Y X)=\lambda-$ in other words, no change.

Finally,

$$
\operatorname{tr}\left(X Y^{-1}\right)+\operatorname{tr}(X Y)=\operatorname{tr}(X) \operatorname{tr}(Y)=1
$$

Hence replacing y by y^{2} has the effect of replacing $\tau_{W}(\lambda)=\operatorname{tr}(W(X, Y)$ by

$$
\begin{aligned}
& \operatorname{tr}\left(W\left(X, Y^{2}\right)\right)=\operatorname{tr}\left(W\left(X,-Y^{-1}\right)\right)= \\
& \quad=(-1)^{k} \operatorname{tr}\left(W\left(X, Y^{-1}\right)\right)=(-1)^{k} \tau_{W}(1-\lambda)
\end{aligned}
$$

as claimed.

Theorem 2.4. Let $G=\left\langle x, y \mid x^{3}=y^{3}=W(x, y)^{2}=1\right\rangle$ where $W=$ $x^{\alpha(1)} y^{\beta(1)} \cdots x^{\alpha(k)} y^{\beta(k)}$ with $\alpha(i), \beta(i) \in\{1,2\}$ for each i. If G does not contain a free subgroup of rank 2 , then $\tau_{W}(\lambda)$ has the form

$$
\tau_{W}(\lambda)=\lambda^{a}(\lambda-1)^{b}\left(\lambda^{2}-\lambda-1\right)^{c}
$$

with $a, b \leq 1$ and $c \leq 3(a+b+1)$. In particular $k=a+b+2 c \leq 20$.
Proof. By Lemma 2.2 we may assume that the roots of τ_{W} all lie in $\left\{0,1, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right\}$. Moreover, τ_{W} is monic with integer coefficients by Lemma 2.1, so the the two potential roots $\frac{1 \pm \sqrt{5}}{2}$ occur with equal multiplicity c say, and τ_{W} has the form

$$
\tau_{W}(\lambda)=\lambda^{a}(\lambda-1)^{b}\left(\lambda^{2}-\lambda-1\right)^{c}
$$

for some non-negative integers a, b, c.
We deduce the desired bounds on a, b, c from Lemma 2.2 as follows. In this case the interval J in Lemma 2.2 is $J=[-1,2]$. Hence $2^{a}=$ $\left|\tau_{W}(2)\right| \leq 2$ and $2^{b}=\left|\tau_{W}(-1)\right| \leq 2$, so $a \leq 1$ and $b \leq 1$. In addition,

$$
\left(\frac{5}{4}\right)^{c}\left(\frac{1}{2}\right)^{a+b}=\left|\tau_{W}\left(\frac{1}{2}\right)\right| \leq 2
$$

It follows that

$$
c \ln (5) \leq(a+b+2 c+1) \ln (2),
$$

which implies the desired conclusion

$$
c \leq 3(a+b+1)
$$

given that $a+b \in\{0,1,2\}$.

3. The case $q=3$

3.1. Small Cancellation

In this section we prove a result on one-relator products of groups where the relator satisfies a certain small cancellation condition. We will apply this specifically to generalised triangle groups of types $(3,3,2)$, but as the result seems of independent interest, we prove it in the widest generality available.

Suppose that Γ_{1}, Γ_{2} are groups, and $U \in \Gamma_{1} * \Gamma_{2}$ is a cyclically reduced word of length at least 2. (Here and throughout this section, length means
length in the free product sense.) A word $V \in \Gamma_{1} * \Gamma_{2}$ is called a piece if there are words $V^{\prime}, V^{\prime \prime}$ with $V^{\prime} \neq V^{\prime \prime}$, such that each of $V \cdot V^{\prime}, V \cdot V^{\prime \prime}$ is cyclically reduced as written, and each is equal to a cyclic conjugate of U or of U^{-1}. A cyclic subword of U is a non-piece if it is not a piece.

By a one-relator product $\left(\Gamma_{1} * \Gamma_{2}\right) / U$ of groups Γ_{1}, Γ_{2} we mean the quotient of their free product $\Gamma_{1} * \Gamma_{2}$ by the normal closure of a cyclically reduced word U of positive length. Recall [13] that a picture over the one-relator product $G=\left(\Gamma_{1} * \Gamma_{2}\right) / U$ is a graph \mathcal{P} on a surface Σ (which for our purposes will always be a disc) whose corners are labelled by elements of $\Gamma_{1} \cup \Gamma_{2}$, such that

1) the labels around any vertex, read in clockwise order, spell out a cyclic permutation of U or U^{-1};
2) the labels in any region of $\Sigma \backslash \mathcal{P}$ either all belong to Γ_{1} or all belong to Γ_{2};
3) if a region has k boundary components labelled by words $W_{1}, \ldots, W_{k} \in$ Γ_{i} (read in anti-clockwise order; with $i=1,2$), then the quadratic equation

$$
\prod_{j=1}^{k} X_{j} W_{j} X_{j}^{-1}=1
$$

is solvable for X_{1}, \ldots, X_{k} in Γ_{i}. (In particular, if $k=1$ then $W_{1}=1$ in Γ_{i}).

Note that edges of \mathcal{P} may join vertices to vertices, or vertices to the boundary $\partial \Sigma$, or $\partial \Sigma$ to itself, or may be simple closed curves disjoint from the rest of \mathcal{P} and from $\partial \Sigma$.

The boundary label of \mathcal{P} is the product of the labels around $\partial \Sigma$. By a version of van Kampen's Lemma, there is a picture with boundary label $W \in \Gamma_{1} * \Gamma_{2}$ if and only if W belongs to the normal closure of U.

A picture is minimal if it has the fewest possible vertices among all pictures with the same (or conjugate) boundary labels. In particular every minimal picture is reduced: no edge e joins two distinct vertices in such a way that the labels of these two vertices that start and finish at the endpoints of e are mutually inverse.

In a reduced picture, any collection of parallel edges between two vertices (or from one vertex to itself) corresponds to a collection of consecutive 2-gonal regions, and the labels within these 2-gonal regions spell out a piece.

Since U is cyclically reduced, no corner of an interior vertex is contained in a 1-gonal region.

Theorem 3.1. Let ℓ be an even positive integer. Suppose that $U \equiv$ $U_{1} \cdot U_{2} \cdot U_{3} \cdot U_{4} \cdot U_{5} \cdot U_{6} \in \Gamma_{1} * \Gamma_{2}$ with each U_{i} a non-piece of length at least ℓ. Suppose also that $A, B \in \Gamma_{1} * \Gamma_{2}$ are reduced words of length ℓ such that A is not equal to any cyclic conjugate of $B^{ \pm 1}$ and such that no U_{i} is equal to a subword of a power of A. Then $G:=\left(\Gamma_{1} * \Gamma_{2}\right) /\langle\langle U\rangle\rangle$ contains a non-abelian free subgroup.

Proof. Since ℓ is even and positive, any reduced word of length ℓ in $\Gamma_{1} * \Gamma_{2}$ is cyclically reduced. Replacing A by A^{-1} and/or B by B^{-1} if necessary, we may assume that each of A, B begins with a letter from Γ_{1} and ends with a letter from Γ_{2}. Choose a large positive integer $N>20 K \ell$, where K is the length of U, and define $X:=A^{N} B^{N}, Y:=B^{N} A^{N}$. We claim that X, Y freely generate a free subgroup of G.

We prove this claim by contradiction. Suppose that $Z(X, Y)$ is a non-trivial reduced word in X, Y such that $Z(X, Y)=1$ in G. Then there exists a picture \mathcal{P} on the disc D^{2} over the one-relator product G with boundary label $Z(X, Y)$. Without loss of generality, we may assume that \mathcal{P} is minimal, hence reduced.

Suppose that v is an interior vertex of \mathcal{P}. The vertex label of v is U or U^{-1} - by symmetry we can assume it is U. The subword U_{1} of U corresponds to a sequence of consecutive corners of v; at least one of these corners does not belong to a 2 -gonal region of \mathcal{P}, since U_{1} is a non-piece. It follows that at least one of the corners of v within the subword U_{1} of the vertex label does not belong to a 2 -gonal region. The same follows for the subwords U_{2}, \ldots, U_{6}, so v has at least 6 non-2-gonal corners.

Now consider the (cyclic) sequence of boundary (that is, non-interior) vertices of $\mathcal{P}, v_{1}, \ldots, v_{n}$ say. This is intended to mean that the closed path ∂D^{2}, with an appropriate choice of starting point, meets a sequence of arcs that go to v_{1}, separated by 2 -gons, then a sequence of arcs that go to v_{2}, separated by 2 -gons, and so on, finishing with a sequence of arcs that go to v_{n}, separated by 2 -gons, before returning to its starting point. Note that it is possible that an arc of \mathcal{P} joins two points on ∂D^{2}; any such arc is ignored here. Note also that we do not insist that $v_{i} \neq v_{j}$ for $i \neq j$ in general. It is possible for the sequence of boundary vertices to visit a vertex v several times. Nevertheless it is important to regard such visits as pairwise distinct, so the notation v_{1}, v_{2}, \ldots is convenient. We say that a boundary vertex is simple if it appears only once in this sequence.

If v_{j} is connected to ∂D^{2} by k arcs separated by $k-12$-gons, then this corresponds to a common (cyclic) subword W_{j} of $Z(X, Y)$ and U, of length $k-1$. Let $\kappa(j) \leq 6$ be the maximum integer t such that, for
some $s \in\{1, \ldots, 6\}, W_{j}$ contains a subword equal to $\left(U_{s} \cdot U_{s+1} \cdots U_{s+t}\right)^{ \pm 1}$ (indices modulo 6). If no such t exsits, we define $\kappa(j)=-1$.

If v_{j} is a simple boundary vertex with only $r \leq 4$ corners not belonging to 2 -gons, then it is easy to see that $\kappa(j) \geq 5-r$:

There are more complex rules for non-simple boundary vertices. Nevertheless, it is an easy consequence of Euler's formula, together with the fact that interior vertices have 6 or more non-2-gonal corners, that

$$
\sum_{j=1}^{n} \kappa(j) \geq 6 .
$$

Now consider the word $Z(X, Y)$ as a cyclic word in $\Gamma_{1} * \Gamma_{2}$. Where a letter $X=A^{N} B^{N}$ or $Y=B^{N} A^{N}$ is followed by another letter X or Y, then there is no cancellation in $\Gamma_{1} * \Gamma_{2}$. Similarly there is no cancellation where X^{-1} or Y^{-1} is followed by X^{-1} or Y^{-1}. Where X is followed by Y^{-1} or vice versa, or where Y is followed by X^{-1} or vice versa, then there is possible cancellation, but since $A \neq B$ the amount of cancellation is limited to at most ℓ letters from either side.

If Z has length L as a word in $\left\{X^{ \pm 1}, Y^{ \pm 1}\right\}$, then after cyclic reduction in $\Gamma_{1} * \Gamma_{2}$ it consists of L subwords of the form $A^{ \pm(N-1)}, L$ subwords of the form $B^{ \pm(N-1)}$, and L subwords V_{1}, \ldots, V_{L}, each of length at most 2ℓ.

Now suppose that v_{j} is a boundary vertex of \mathcal{P} with $\kappa(j) \geq 0$. Then $U_{i}^{ \pm 1}$ is equal to a subword of W_{j} for some i. Since U_{i} cannot be a subword of a power of A, W_{j} is not entirely contained within one of the segments labelled $A^{ \pm(N-1)}$.

If, in addition, $\kappa(j)>0$, then W_{j} has a subword of the form $\left(U_{i} U_{i+1}\right)^{ \pm 1}$ (subscripts modulo 6) As above, W_{j} cannot be contained in one of the subwords $A^{ \pm(N-1)}$. If it is contained in a subword of $B^{ \pm(N-1)}$, then it is a periodic word of period ℓ (that is, its i-th letter is equal to its $(i+\ell$)th letter for all i for which this makes sense). Since U_{i+1} has length at least ℓ, there are at least two distinct subwords of $U_{i} U_{i+1}$ equal to U_{i}, contradicting the fact that U_{i} is a non-piece in U.

Thus we see that the subwords W_{j} of $Z(X, Y)$ corresponding to boundary vertices v_{j} with $\kappa(j)>0$ can occur only at certain points of $Z(X, Y)$: where an $A^{ \pm(N-1)}$-segment meets a $B^{ \pm(N-1)}$-segment; or at part of one of the words V_{i}.

In particular, the number of boundary vertices v_{j} with $\kappa(j)>0$ is bounded above by $L(2 \ell+1)$. It follows that

$$
\kappa:=\sum_{j} \kappa(j) \leq 5 L(2 \ell+1),
$$

where the sum is taken over those boundary vertices v_{j} with $\kappa(j) \geq 0$.
The goal is to show that the total positive contribution to the sum κ from those v_{j} with $\kappa(j)>0$ is cancelled out by negative contributions to κ from other boundary vertices. This will show that $\kappa \leq 0$, contradicting the assertion above that $\kappa \geq 6$.

Recall that K is the length of U. Thus each $A^{ \pm(N-1)}$-segment of $\partial \mathcal{P}$ is joined to at least $(N-1) \ell / K$ boundary vertices, at most 2 of which (those at the ends of the segment) can make non-negative contributions to κ. The remaining vertices each contribute at most -1 to κ. Since $N>20 K \ell$, it follows that the negative contributions outweigh the positive contributions, as required.

This gives the desired contradiction, which proves the theorem.

Corollary 3.2. Let Γ_{1} and Γ_{2} be groups, and suppose $x \in \Gamma_{1}$ and $y \in \Gamma_{2}$ are elements of order greater than 2. Suppose that $W \equiv U_{1} \cdot U_{2} \cdot U_{3} \in \Gamma_{1} * \Gamma_{2}$ with each U_{i} a non-piece of length at least 4 . Then $G=\left(\Gamma_{1} * \Gamma_{2}\right) /\left\langle\left\langle W^{2}\right\rangle\right\rangle$ contains a non-abelian free subgroup.

Proof. Let $A_{1}=x y x y, A_{2}=x y^{-1} x y^{-1}, A_{3}=x y x y^{-1}$ and $A_{4}=x y x^{-1} y^{-1}$. Then for $i \neq j, A_{i}$ is not equal to a cyclic conjugate of $A_{j}^{ \pm 1}$. Hence if (say) U_{1} is equal to a subword of a power of A_{i}, it cannot be equal to a subword of a power of A_{j}. Hence there is at least one $A \in\left\{A_{i}, 1 \leq i \leq 4\right\}$ with the property that no U_{i} is equal to a subword of a power of A. Now choose $B \in\left\{A_{i}, 1 \leq i \leq 4\right\} \backslash\{A\}$ and apply the theorem, with $U_{4}=U_{1}$, $U_{5}=U_{2}$ and $U_{6}=U_{3}$.

3.2. Conclusion

Theorem 3.3. Let $G=\left\langle x, y \mid x^{3}=y^{3}=W(x, y)^{2}=1\right\rangle$ be a generalised triangle group of type $(3,3,2)$. Then the Rosenberger Conjecture holds for G : either G is soluble-by-finite, or G contains a non-abelian free subgroup.

Proof. Write

$$
W=x^{\alpha(1)} y^{\beta(1)} \cdots x^{\alpha(k)} y^{\beta(k)}
$$

A computer search using GAP [11] (see [15] for details) produces a list of all words W, up to equivalence, for which the trace polynomial τ_{W} has the form indicated in Theorem 2.4: see Table 1. If W is not equivalent to a word in the list, then G has a nonabelian free subgroup by Theorem 2.4, so we may restrict our attention to the words W in Table 1.

	$W(x, y)$	SCC
1	$x y$	NO
2	$x y x y^{2}$	NO
3	$x y x^{2} y^{2}$	NO
4	$x y x y x^{2} y^{2}$	NO
5	$x y x y x^{2} y x^{2} y^{2}$	NO
6	$x y x y^{2} x^{2} y x^{2} y^{2}$	NO
7	$x y x y x^{2} y^{2} x^{2} y x y^{2}$	NO
8	$x y x y x^{2} y^{2} x^{2} y x^{2} y x y^{2}$	NO
9	$(x y x y x)\left(y^{2} x^{2} y^{2} x\right)\left(y x^{2} y x^{2} y^{2}\right)$	YES
10	$(x y x y)\left(x^{2} y^{2} x^{2} y x\right)\left(y^{2} x^{2} y x^{2} y^{2} x y^{2}\right)$	YES
11	$(x y x y)\left(x^{2} y^{2} x^{2} y x^{2}\right)\left(y^{2} x y^{2} x y x^{2} y^{2}\right)$	YES
12	$(x y x y)\left(x^{2} y^{2} x y^{2} x^{2} y^{2}\right)\left(x y x^{2} y x^{2} y^{2}\right)$	YES
13	$(x y x y)\left(x^{2} y^{2} x^{2} y^{2}\right)\left(x y^{2} x^{2} y^{2} x y x^{2} y x^{2} y^{2}\right)$	YES
14	$(x y x y)\left(x^{2} y^{2} x y^{2} x^{2} y x y\right)\left(x^{2} y^{2} x^{2} y x^{2} y^{2} x y^{2}\right)$	YES
15	$(x y x y)\left(x^{2} y^{2} x^{2} y^{2}\right)\left(x y^{2} x^{2} y x^{2} y^{2} x^{2} y x y x^{2} y^{2} x y^{2}\right)$	YES
16	$\left(x y x y x^{2} y^{2}\right)\left(x^{2} y x y^{2} x y^{2} x^{2} y^{2} x^{2}\right)\left(y x y^{2} x y x^{2} y x^{2} y^{2} x^{2} y x y^{2}\right)$	YES
17	$\left(x y x y x^{2} y^{2} x^{2}\right)\left(y x y^{2} x y x^{2} y x^{2} y^{2} x^{2} y x y^{2} x\right)\left(y^{2} x^{2} y^{2} x^{2} y x y^{2}\right)$	YES
18	$\left(x y x y x^{2} y^{2} x^{2} y x^{2}\right)\left(y x y^{2} x y x^{2}\right)\left(y^{2} x y x y^{2} x^{2} y^{2} x^{2} y x^{2} y^{2} x y^{2}\right)$	YES
19	$\left(x y x^{2} y^{2} x^{2} y x^{2}\right)\left(y^{2} x y^{2} x y x y^{2} x^{2}\right)\left(y^{2} x^{2} y x y^{2} x^{2} y x^{2} y x y^{2} x y\right)$	YES

Table 1. Words in $\mathbb{Z}_{3} * \mathbb{Z}_{3}$ with trace polynomial as in Theorem 2.4.
The final column indicates whether or not W satisfies the small-cancellation hypotheses of Corollary 3.2. In those cases where it does, the bracketing indicates a subdivision of W into three non-pieces of length $\geq 4: W \equiv U_{1} \cdot U_{2} \cdot U_{3}$.

For those W in Table 1 for which $k \geq 7$ (namely, numbers 9-19) the small cancellation hypotheses of Corollary 3.2 are satisfied, and so G contains a nonabelian free subgroup.

For $k \leq 6$ (words 1-8) in the table, the result is known. Specifically, groups 1-3 are well-known to be finite of orders 12, 180 and 288 respectively; groups 4-6 were proved to have nonabelian free subgroups in [19]; and finally groups 7 and 8 were shown in [21] (see also [15]) to be large. (That is, each contains a subgroup of finite index which admits an epimorphism onto a non-abelian free group.)

This completes the proof.

4. The case $q=5$

To prove the result in the case $q=5$, we first prove a number of preliminary results.

Lemma 4.1. Let $p: \bar{K} \rightarrow K$ be a regular covering of connected 2complexes with K finite, with covering transformation group abelian of torsion-free rank at least 2. Let Fe a field. If

$$
H_{2}(\bar{K}, F)=0 \neq H_{1}(\bar{K}, F)
$$

then

$$
\operatorname{dim}_{F} H_{1}(\bar{K}, F)=\infty
$$

Proof. Let $\{a, b\}$ be a basis for a free abelian subgroup A of the group of covering transformations of $p: \bar{K} \rightarrow K$, and let α be a cellular 1cycle of \bar{K} over F that represents a non-zero element of $H_{1}(\bar{K}, F)$. If the $F[a]$-submodule of $H_{1}(\bar{K}, F)$ generated by α is free, then $H_{1}(\bar{K}, F)$ is infinite-dimensional over F, as claimed. So we may assume that there is a cellular 2-chain β of \bar{K} with $d(\beta)=f(a) \alpha$ for some non-zero polynomial $f(a) \in F[a]$.

For similar reasons, we may also assume that $d(\gamma)=g(b) \alpha$ for some cellular 2-chain γ of \bar{K} and some non-zero polynomial $g(b) \in F[b]$.

Now $f(a) \gamma-g(b) \beta \in H_{2}(\bar{K}, F)=0$. In other words $f(a) \gamma=g(b) \beta$ in the group $C_{2}(\bar{K}, F)$ of cellular 2-chains of \bar{K}, which is a free module over the unique factorisation domain $F A \cong F\left[a^{ \pm 1}, b^{ \pm 1}\right]$. Since $f(a), g(b)$ are coprime in $F\left[a^{ \pm 1}, b^{ \pm 1}\right]$, it follows that there is a 2 -chain δ with $f(a) \delta=\beta$ and $g(b) \delta=\gamma$. Hence $f(a)(d(\delta)-\alpha)=d(\beta)-f(a) \alpha=0$, in the group $C_{1}(\bar{K}, F)$ of cellular 1-chains of \bar{K}. But $C_{1}(\bar{K}, F)$ is also a free module over the domain $F\left[a^{ \pm 1}, b^{ \pm 1}\right]$, and $f(a) \neq 0$, so $d(\delta)=\alpha$, contradicting the hypothesis that α represents a non-zero element of $H_{1}(\bar{K}, F)$.

This contradiction completes the proof.
Lemma 4.2. Let E be the set of midpoints of edges of a regular icosahedron $\mathcal{I} \subset \mathbb{R}^{3}$ centred at the origin, and let $M=\mathbb{Z} E$ its \mathbb{Z}-span in \mathbb{R}^{3}. Let $V=\{1, a, b, c\} \subset \operatorname{Isom}^{+}(\mathcal{I}) \subset S O(3)$ be the Klein 4-group, and let $C=\{1, c\} \subset V$. Then, regarding M as a $\mathbb{Z} V$-module via the action of V by isometries of \mathcal{I}, we have the following.

1) $M \cong \mathbb{Z}^{6}$ as an abelian group.
2) $H_{0}(C, M)=\mathbb{Z} \otimes_{\mathbb{Z} C} M \cong \mathbb{Z}_{2}^{4} \oplus \mathbb{Z}^{2}$.
3) The induced action of V / C on $H_{0}(C, M) /($ torsion $)$ is mutliplication by -1 .

Proof. If e is the midpoint of the edge joining two vertices u, v of \mathcal{I}, then $e=(u+v) / 2$. Thus E is contained in the \mathbb{Q}-span W of the set of vertices of \mathcal{I}. Since the vertices occur in 6 antipodal pairs, the \mathbb{Q}-span $\mathbb{Q} M$ of E has dimension at most 6 over \mathbb{Q}.

On the other hand, for any vertex $v, \sqrt{5} \cdot v$ is the sum of the 5 vertices adjacent to v in \mathcal{I}. Thus $\sqrt{5} \cdot v \in W$. It also follows that $\sqrt{5} \cdot e \in M$ for any $e \in E$: specifically, $(\sqrt{5}+3) \cdot e$ is the sum of the midpoints of the eight edges of \mathcal{I} that share a vertex with the edge containing e. If $e_{1}, e_{2}, e_{3} \in E$ are chosen to be linearly independent over \mathbb{R} - and hence over $\mathbb{Q}[\sqrt{5}]$ then $e_{1}, e_{2}, e_{3}, \sqrt{5} \cdot e_{1}, \sqrt{5} \cdot e_{2}, \sqrt{5} \cdot e_{3} \in M$ are linearly independent over \mathbb{Q}. Thus $\mathbb{Q} M=\mathbb{Q} \otimes_{\mathbb{Z}} M$ has dimension exactly 6 over \mathbb{Q}. Since $M \subset \mathbb{Q} M$ is torsion-free and finitely generated, it follows that $M \cong \mathbb{Z}^{6}$, as claimed.

If, in the above, we choose e_{1}, e_{2}, e_{3} to lie on the axes of the rotations $a, b, c \in V$ respectively, then we obtain a decomposition

$$
\mathbb{Q} M=\mathbb{Q}[\sqrt{5}] e_{1} \oplus \mathbb{Q}[\sqrt{5}] e_{2} \oplus \mathbb{Q}[\sqrt{5}] e_{3}
$$

of $\mathbb{Q} M$ as a $\mathbb{Q}[\sqrt{5}]$-vector space, with respect to which a, b, c act as the diagonal matrices $\operatorname{diag}(1,-1,-1), \operatorname{diag}(-1,1,-1)$ and $\operatorname{diag}(-1,-1,1)$ respectively. Let

$$
M_{+}:=M \cap \mathbb{Q}[\sqrt{5}] e_{3} \quad \text { and } \quad M_{-}:=M \cap\left(\mathbb{Q}[\sqrt{5}] e_{1} \oplus \mathbb{Q}[\sqrt{5}] e_{2}\right)
$$

Then $M_{-} \cap M_{+}=\{0\}$, while $e_{1}, e_{2}, \sqrt{5} e_{1}, \sqrt{5} e_{2} \in M_{-}$and $e_{3}, \sqrt{5} e_{3} \in M_{+}$, so M_{-}, M_{+}are free abelian of ranks 4 and 2 respectively.

Moreover, M / M_{-}is naturally embedded in the vector space $\mathbb{Q} M / \mathbb{Q} M_{-}$, so is also free abelian - necessarily of rank 2 . Note that M_{-}is closed under the action of V on M. Under the induced action on M / M_{-}, each of a, b acts as the antipodal map, multiplication by -1 , and c acts as the identity. Clearly also c acts on M_{-}as the antipodal map.

Hence $(1-c) M=2 M_{-}$, so

$$
H_{0}(C, M)=M /(1-c) M=M / 2 M_{-} \cong \mathbb{Z}_{2}^{4} \oplus \mathbb{Z}^{2}
$$

as claimed.
Finally, the quotient of $H_{0}(C, M)$ by its torsion subgroup is naturally isomorphic to M / M_{-}, and the induced action of V / C on this quotient is via the antipodal map.

Lemma 4.3. Let $G=\left\langle x, y \mid x^{3}=y^{5}=W(x, y)^{2}=1\right\rangle$ and suppose that $(\lambda-\alpha)^{2}$ divides the trace polynomial $\tau_{W}(\lambda)$ of W, for some $\alpha \in$ $\{0,1,(1+\sqrt{5}) / 2,(-1+\sqrt{5}) / 2\}$. Let $\rho: G \rightarrow A_{5}$ be the natural epimorphism corresponding to the root α of $\tau_{W}(\lambda)$. Let $C \subset A_{5}$ be a subgroup of order 2 and $V \subset A_{5}$ its centraliser of order 4 . Then G has subgroups $N_{1} \triangleleft N_{2} \triangleleft \rho^{-1}(V)$ such that

1) $\rho\left(N_{2}\right)=\{1\}$;
2) $\rho^{-1}(C) / N_{2} \cong \mathbb{Z}^{2}$;
3) $\rho^{-1}(V) / N_{2} \cong \mathbb{Z}^{2} \rtimes{ }_{(-1)} \mathbb{Z}_{2}$;
4) N_{2} / N_{1} is a non-zero vector space over \mathbb{Z}_{2}.

Proof. Let $\Lambda=\mathbb{C}[\lambda] /\left\langle(\lambda-\alpha)^{2}\right\rangle$, and choose matrices
$X=\left(\begin{array}{cc}e^{i \pi / 3} & 0 \\ 1 & e^{-i \pi / 3}\end{array}\right), Y=\left(\begin{array}{cc}e^{i \pi / 5} & \lambda-\alpha-2 \cos (8 \pi / 15) \\ 0 & e^{-i \pi / 5}\end{array}\right) \in S L_{2}(\Lambda)$
so that

$$
\operatorname{tr}(X)=1, \quad \operatorname{tr}(Y)=\frac{1+\sqrt{5}}{2} \text { and } \operatorname{tr}(X Y)=\lambda-\alpha
$$

Then X, Y determine a representation $\widehat{\rho}: G \rightarrow P S L_{2}(\Lambda)$, since $\operatorname{tr}(W(X, Y))=\tau_{W}(\lambda)=0$ in Λ. If $\phi: P S L_{2}(\Lambda) \rightarrow P S L_{2}(\mathbb{C})$ is the natural epimorphism obtained by setting $\lambda=\alpha$, then the image of $\rho=\phi \circ \hat{\rho}$ is isomorphic to A_{5}. Let K denote the kernel of ρ and let L denote the kernel of $\widehat{\rho}$.

Clearly $G / K \cong A_{5}$. Now $K / L \cong \widehat{\rho}(K)$ is the normal closure of $(x y)^{2} . L$, so it is isomorphic to the subgroup of $\operatorname{PSL}(2, \Lambda)$ generated by

$$
(X Y)^{2}=-I+(\lambda-\alpha)(X Y)
$$

together with its conjugates by elements of $\widehat{\rho}(G)$. Let $Z=\phi(X Y) \in A_{5} \subset$ $S U(2)$ denote the matrix obtained from $X Y$ by subsituting $\lambda=\alpha$. Note that $\operatorname{tr}(Z)=0$, in other words, $Z \in s l_{2}(\mathbb{C})$. Since $(\lambda-\alpha)^{2}=0$ in Λ, we also have

$$
(X Y)^{2}=-I+(\lambda-\alpha) Z
$$

For similar reasons, for any $M \in \widehat{\rho}(G)$ we have

$$
M(X Y)^{2} M^{-1}=-I+\phi(M) Z \phi(M)^{-1}
$$

Moreover, since $(\lambda-\alpha)^{2}=0$ in Λ we have, for any $A, B \in s l_{2}(\mathbb{C})$,

$$
(I-(\lambda-\alpha) A)(I-(\lambda-\alpha) B)=I-(\lambda-\alpha)(A+B)
$$

Thus $K / L \cong \rho(K)$ is isomorphic to the additive subgroup of $s l_{2}(\mathbb{C})$ generated by $M Z M^{-1}$ for all $M \in \widehat{A_{5}} \subset S U(2)$. There are precisely 30 such conjugates of Z; geometrically they correspond to the midpoints of the edges of a regular icosahedron centred at the origin in \mathbb{R}^{3}, where we identify $S U(2)$ with the 3 -sphere of unit-norm quaternions, and \mathbb{R}^{3} with the space of purely imaginary quaternions. As an abelian group, therefore, $K / L \cong \rho(K) \cong \mathbb{Z}^{6}$ by Lemma 4.2.

Now K / L is also an A_{5}-module. Its structure as an A_{5}-module does not need to concern us, but Lemma 4.2 gives us some information about its structure as a C-module and as a V-module. This in turn gives information on the structure of $\Delta:=(\rho)^{-1}(C)$.

Specifically, $H_{0}(C, K / L)=H_{0}(\Delta / K, K / L) \cong \mathbb{Z}_{2}^{4} \oplus \mathbb{Z}^{2}$. It follows from the 5 -term exact sequence
$H_{2}(\Delta / L) \rightarrow H_{2}(\Delta / K) \rightarrow H_{0}(\Delta / K, K / L) \rightarrow H_{1}(\Delta / L) \rightarrow H_{1}(\Delta / K) \rightarrow 0$
and the fact that $\Delta / K \cong \mathbb{Z}_{2}$ that $H_{1}(\Delta / L)$ has torsion-free rank 2 , and that the torsion subgroup of $H_{1}(\Delta / L)$ is a non-zero finite abelian 2-group.

Now let $N_{0}=[\Delta, \Delta] . L$ and define $N_{2} \supset N_{1} \supset N_{0}$ such that N_{2} / N_{0} is the torsion-subgroup of $\Delta / N_{0}=H_{1}(\Delta / L)$ and $N_{1} / N_{0}=2\left(N_{2} / N_{0}\right)$. Then $N_{0} \triangleleft \rho^{-1}(V)$ since $[\Delta, \Delta]$ and L are both normal in $\rho^{-1}(V)$. Hence also $N_{1}, N_{2} \triangleleft \rho^{-1}(V)$ since N_{1} and N_{2} are characteristic in Δ which in turn is normal in $\rho^{-1}(V)$.

By construction, $\Delta / N_{2} \cong \mathbb{Z}^{2}$, while N_{2} / N_{1} is a non-zero \mathbb{Z}_{2}-vector space.

Finally, since V / C acts on $\mathbb{Z}^{2} \cong \Delta / N_{2}$ by the antipodal map, it follows that $\rho^{-1}(V) / N_{2} \cong \mathbb{Z}^{2} \rtimes_{(-1)} \mathbb{Z}_{2}$, as required.

5. Conclusion

Theorem 5.1. Let $G=\left\langle x, y \mid x^{3}=y^{5}=W(x, y)^{2}=1\right\rangle$. If the trace polynomial $\tau_{W}(\lambda)$ of W has a multiple root, then G contains a nonabelian free subgroup.

Proof. We may assume that the root α is one of $0,1,(\pm 1+\sqrt{5}) / 2$, for otherwise the result is immediate from Lemma 2.2. Let $\rho: G \rightarrow A_{5}$ be the essential representation corresponding to α, let $c=\rho(W) \in A_{5}$,
$C=\{1, c\} \subset A_{5}$ the subgroup generated by c, and $V=\{1, a, b, c\} \subset A_{5}$ its centraliser in A_{5}.

Let $N_{1} \triangleleft N_{2} \triangleleft \rho^{-1}(V)<G$ be the subgroups promised by Lemma 4.3. Let $\Gamma=\rho^{-1}(C)<\rho^{-1}(V)$ be the unique index 2 subgroup such that $N_{2} \subset \Gamma$ and $\Gamma / N_{2} \cong \mathbb{Z}^{2}$. Then Γ has index 30 in G and contains no conjugate of x or of y.

Applying the Reidemeister-Scheier process to the presentation of G in the statement of the Theorem, we obtain a presentation of Γ of the form

$$
\Gamma=\left\langle k_{1}, \cdots, k_{31} \mid r_{1}, \ldots, r_{30}, s_{1}^{2}, s_{2}^{2}\right\rangle
$$

where r_{1}, \ldots, r_{10} are rewrites of conjugates of $x^{3} ; r_{11}, \ldots, r_{16}$ are rewrites of conjugates of y^{5}; and r_{17}, \ldots, r_{30} and $s_{1}^{2}=W^{2}, s_{2}^{2}=\hat{a} W^{2} \hat{a}^{-1}$ are rewrites of conjugates of W^{2}, with $\rho(\hat{a})=a$ and so $s_{1}=W, s_{2}=\hat{a} W \hat{a}^{-1} \in$ Γ.

Let K be the 2-complex model of this presentation, $F=\mathbb{Z}_{2}$, and $p: \bar{K} \rightarrow K$ the regular cover correspdonding to the normal subgroup $N_{2} \triangleleft \Gamma$. Let $L \subset K$ be the subcomplex obtained by omitting the 2-cells corresponding to the relators s_{1}^{2}, s_{2}^{2}, and let $\bar{L}:=p^{-1}(L) \subset \bar{K}$.

Now, since Γ / N_{2} is torsion-free, and since $s_{1}^{2}=1=s_{2}^{2}$ in $\Gamma, s_{1}, s_{2} \in N_{2}$. Hence each lift of each 2 -cell $s_{i}^{2}(i=1,2)$ to \bar{K} is bounded by the square of some path in $\bar{K}^{(1)}$. As a consequence, the 2-cells in $\bar{K} \backslash \bar{L}$ represent elements of $H_{2}(\bar{K}, F)$, and it follows that the inclusion-induced map $H_{1}(\bar{L}, F) \rightarrow H_{1}(\bar{K}, F)$ is an isomorphism.

Since N_{2} / N_{1} is a nonzero F-vector space, we have

$$
H_{1}(\bar{L}, F) \cong H_{1}(\bar{K}, F)=H_{1}\left(N_{2}, F\right) \neq 0
$$

If $H_{2}(\bar{L}, F)=0$, then by Lemma 4.1 it follows that $\operatorname{dim}_{F} H_{1}\left(N_{2}, F\right)=\infty$. On the other hand, if $H_{2}(\bar{L}, F) \neq 0$ then $H_{2}(\bar{L}, F)$ contains a free $F\left(\Gamma / N_{2}\right)$ module of rank $>0=\chi(L)$, since $F\left(\Gamma / N_{2}\right)$ is an integral domain. In this case $H_{1}(\bar{L}, F)$ contains a non-zero free $F\left(\Gamma / N_{2}\right)$-submodule, by [14, Proposition 2.1 and Theorem 2.2]. Again we deduce that $\operatorname{dim}_{F} H_{1}\left(N_{2}, F\right)=\infty$.

Thus the Bieri-Strebel invariant Σ of the $F\left(\Gamma / N_{2}\right)$-module N_{2} / N_{1} is a proper subset of S^{1} [8, Theorem 2.4]. But by Lemma 4.2 (3) it follows that Σ is invariant under the antipodal map: $\Sigma=-\Sigma$. Hence $\Sigma \cup-\Sigma \neq S^{1}$, and it follows [8, Theorem 4.1] that Γ contains a nonabelian free subgroup, as claimed.

Corollary 5.2 (Main Theorem). Let G be a generalised triangle group of type $(3,5,2)$. Then either G is virtually soluble or G contains a nonabelian free subgroup.

Proof. By Theorem 5.1 and Lemma 2.2 the result follows unless $\tau_{W}(\lambda)$ has only simple roots in the set $\{0,1,(1+\sqrt{5}) / 2,(-1+\sqrt{5}) / 2\}$, in which case the degree k of $\tau_{W}(\lambda)$ is at most equal to 4 .

But the Rosenberger Conjecture is known for $k \leq 4$ [19].

References

[1] O. A. Barkovich and V. V. Benyash-Krivets, On Tits alternative for generalized triangular groups of (2,6,2) type (Russian) Dokl. Nat. Akad. Nauk. Belarusi 48 (2004), No. 3, 28-33.
[2] O. A. Barkovich and V. V. Benyash-Krivets, On the Tits alternative for some generalized triangular groups of type $(3,4,2)$ (Russian), Dokl. Nats. Akad. Nauk Belarusi 47 (2003), no. 6, 24-27.
[3] G. Baumslag, J. W. Morgan and P. B. Shalen, Generalized triangle groups, Math. Proc. Cambridge Philos. Soc. 102 (1987), 25-31.
[4] V. V. Benyash-Krivets, On free subgroups of certain generalised triangle groups (Russian), Dokl. Nat. Akad. Nauk. Belarusi 47 (2003), No. 3, 14-17.
[5] V. V. Benyash-Krivets, On Rosenberger's conjecture for generalized triangle groups of types $(2,10,2)$ and $(2,20,2)$ in: Proceedings of the international conference on mathematics and its applications (S. L. Kalla and M. M. Chawla, eds.), Kuwait Foundation for the Advancement of Sciences (2005), pp. 59-74.
[6] V. V. Benyash-Krivets, On free subgroups of generalized triangular groups of type $(2,4,2)$ (Russian) Dokl. Nats. Akad. Nauk Belarusi 51 (2007), no. 4, 29-32, 125.
[7] V. V. Benyash-Krivets and O. A. Barkovich, On the Tits alternative for some generalized triangle groups, Algebra Discrete Math. (2004), No. 3, 23-43.
[8] R. Bieri and R. Strebel, Valuations and finitely presented metabelian groups, Proc. London Math. Soc. (3) 41 (1980), 439-464.
[9] B. Fine, F. Levin and G. Rosenberger, Free subgroups and decompositions of one-relator products of cyclics. I. The Tits alternative, Arch. Math. (Basel) 50 (1988), 97-109.
[10] B. Fine, F. Roehl and G. Rosenberger, The Tits alternative for generalized triangle groups., in: Groups - Korea '98. Proceedings of the 4th international conference, Pusan, Korea, August 10-16, 1998 (Y.-G. Baik et al, eds.), Walter de Gruyter, Berlin (2000), pp. 95-131.
[11] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12; 2008. (http://www.gap-system.org)
[12] R. D. Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972), 635-649.
[13] J. Howie, The quotient of a free product of groups by a single high-powered relator. I. Pictures. Fifth and higher powers. Proc. London Math. Soc. (3) 59 (1989), 507-540.
[14] J. Howie, Free subgroups in groups of small deficiency, J. Group Theory 1 (1998), 95-112.
[15] J. Howie, Generalised triangle groups of type (3, 3, 2), arXiv:1012.2763 (2010).
[16] J. Howie, Generalised triangle groups of type (3,5,2), arXiv:1102.2073 (2011).
[17] J. Howie and G. Williams, Free subgroups in certain generalized triangle groups of type ($2, m, 2$), Geom. Dedicata 119 (2006), 181-197.
[18] J. Howie and G. Williams, The Tits alternative for generalized triangle groups of type (3,4,2), Algebra and Discrete Mathematics (2008) No. 4, 40-48.
[19] F. Levin and G. Rosenberger, On free subgroups of generalized triangle groups II, in: Group theory (Granville, OH, 1992), World Sci. Publ., River Edge, NJ, (1993), pp. 206-228.
[20] G. Rosenberger, On free subgroups of generalized triangle groups, Algebra i Logika 28 (1989), 227-240, 245.
[21] A. G. T. Williams, Studies on generalised triangle groups, Ph. D. Thesis, HeriotWatt University (2000).
[22] A. G. T. Williams, Generalised triangle groups of type ($2, m, 2$) in: Computational and Geometric Aspects of Modern Algebra, LMS Lecture Note Series 275, (M. Atkinson et al, eds.), Cambridge University Press (2000), pp. 265-279.

Contact information

J. Howie Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University
 Edinburgh EH14 4AS
 UK
 E-Mail: J.Howie@hw.ac.uk
 URL: www.ma.hw.ac.uk/~jim

Received by the editors: 03.05.2012
and in final form 20.06.2012.

