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Abstract. Let I be a finite set (without 0) and J a subset of
I × I without diagonal elements. Let S(I, J) denotes the semigroup
generated by e0 = 0 and ei, i ∈ I, with the following relations:
e2

i = ei for any i ∈ I, eiej = 0 for any (i, j) ∈ J . In this paper
we prove that, for any finite semigroup S = S(I, J) and any its
matrix representation M over a field k, each matrix of the form
∑

i∈I αiM(ei) with αi ∈ k is similar to the direct sum of some
invertible and zero matrices. We also formulate this fact in terms of
elements of the semigroup algebra.

Introduction

We study matrix representations over a field k of semigroups generated
by idempotents.

Let I be a finite set without 0 and J a subset of I × I without the
diagonal elements (i, i), i ∈ I. Let S(I, J) denotes the semigroup with
zero generated by ei, i ∈ I ∪ 0, with the following defining relations:

1) e2
0 = e0, e0ei = eie0 = e0 for any i ∈ I ∪ 0, i. e. e0 = 0 is the zero

element;
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2) e2
i = ei for any i ∈ I;

3) eiej = 0 for any pair (i, j) ∈ J .

Every semigroup S(I, J) ∈ I is called a semigroup generated by idem-

potents with partial null multiplication (see, e.g., [2]). The set of all semi-
groups S(I, J) with |I|=n will be denoted by In. Put I = ∪∞

n=1In.

With each semigroup S = S(I, J) ∈ I we associate the directed
graph Λ(S) with set of vertices Λ0(S) = {ei | i ∈ I} and set of arrows
Λ1(S) = {ei → ej | (i, j) ∈ J}. Denote by Λ(S) the directed graph which
is the complement of the graph Λ(S) to the full directed graph without
loops, i.e. Λ0(S) = Λ0(S) and ei → ej belongs to Λ1(S) if and only if
i 6= j and ei → ej does not belong to Λ1(S). Obviously, the semigroup
S ∈ I is uniquely determined by each of these directed graphs.

In [1] the authors proved that a semigroup S = S(I, J) is finite if and
only if the graph Λ(S) is acyclic.

We call a quadratic matrix A over a field k α-semisimple, where α ∈ k,
if one of the following equivalent conditions holds:

a) rank(A − αE)2 = rank(A − αE) (E denotes the identity matrix);

b) A − αE is similar to the direct sum of some invertible and zero
matrices;

c) the minimal polynomial mA(x) of A is not devided by (x − α)2;

d) there is a polynomial f(x) = (x − α)g(x) such that g(α) 6= 0 and
f(A) = 0.

If A is α-semisimple for all α ∈ k, then it is obviously semisimple in
the classical sense.

In this paper we study 0-semisimple matrices associated with matrix
representations of a finite semigroup S from I (formulating also the
received results in terms of elements of the semigroup algebra).

1. Formulation of the main results

Let S be a semigroup and k be a field. Let Mm(k) denotes the algebra
of all m × m matrices with entries in k.

A matrix representation of S (of degree m) over k is a homomorphism
R from S to the multiplicative semigroup of Mm(k). If there is a zero
(resp. an identity) element a ∈ S, one can assume that the matrix R(a) is
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zero (resp. identity)1. Two representation R : S → Mm(k) and R′ : S →
Mm(k) are called equivalent if there is an invertible matrix C such that
C−1R(x)C = R′(x) for all x ∈ S.

In this paper we prove the following theorem2.

Theorem 1. Let S = S(I, J) be a finite semigroup from I and R a

matrix representation of S. Then, for any αi ∈ k, where i runs over I,

the matrix
∑

i∈I αiR(ei) is 0-semisimple.

Reformulate the theorem in terms of elements of the semigroup algebra
kS1, where S1 = S ∪ {1}. As usual, we identify the zero element of the
semigroup with the zero element of the semigroup algebra; then

kS1 = {
∑

s∈S\0

βss + β11 | βs, β1 ∈ k}.

We call an element g ∈ kS1 0-semisimple if the minimal polynomial mg(x)
of g is not devided by x2.

Set EI = {ei | i ∈ I} and let kEI denotes the k-linear hull of the
generators ei ∈ EI , i. e. kEI = {

∑

i∈I αiei | αi ∈ k}.
Theorem 1 is equivalent to the following one.

Theorem 2. Let S = S(I, J) be a finite semigroup from I. Then any

element g ∈ kEI is 0-semisimple.

Note that Theorem 1 follows from the results of [2, 3] on a normal
form of matrix representations of finite semigroups S(I, J), but here we
prove this fact directly.

2. Proof of Theorem 1

We apply induction on n = |I|. The case n = 1 is obvious since
any matrix representation of the semigroup S({1},∅) is given by an
idempotent matrix.

Suppose that Theorem 1 is proved for all matrix representations of
all finite semigroups S(I, J) ∈ In, and prove that the theorem holds for
S(I, J) ∈ In+1.

1It is easy to show that in this case we "lose" the only indecomposable representation
P of degree 1 with P (x) = 0 for all x ∈ S \ a and P (a) = 1 (resp. P (x) = 0 for all
x ∈ S).

2Notice that the theorem is also valid without the restrictions which has been
discussed in note 1.
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Let S = S(I, J) be an arbitrary finite semigroup from In+1. One
may assume without loss of generality that I = {1, 2, . . . , n + 1}. We
show that for a fixed matrix representation R of S(I, J) and a vec-
tor α = (α1, . . . , αn+1) ∈ kn+1, the matrix P (α) = P (α1, . . . , αn+1) =
∑n+1

i=1
αiR(ei) is 0-semisimple.

Put A1 = R(e1), . . . , An+1 = R(en+1). Then A2
i = Ai for all i ∈ I,

AiAj = 0 for all (i, j) ∈ J and P (α) = α1A1 + . . . αn+1An+1.
Since the directed graph Λ(S) is acyclic (see Introduction), one can

fix a vertex el such that there are no arrows l → s, where s ∈ I. Consider
the subsemigroup S′ of S generated by e′

0 = e0, e′
1 = e1, . . . , e′

l−1
=

el−1, e′
l = el+1, . . . , e′

n = en+1. Obviously, the directed graph Λ(S′) coin-
cides with Λ(S) \ el. By the induction hypothesis for the restriction T of
the representation R on S′, the matrix

α1A1 + . . . + αl−1Al−1 + αl+1Al+1 + . . . + αn+1An+1

is 0-semisimple. Denote this matrix by P ′(α1, . . . , αl−1, αl+1, . . . , αn+1) =
P ′(α′), where α′ = (α1, . . . , αl−1, αl+1, . . . , αn+1). Then

P (α) = P ′(α′) + αlAl.

From the fact that there are no arrows l → s it follows that, for j 6= l,
elej = 0 and consequently AlAj = 0. Then AlP

′(α′) = 0 and it remains
only to apply the following statement: if A is an idempotent matrix, B is
a 0-semisimple matrix and AB = 0 then γA + δB is 0-semisimple for any
γ, δ ∈ k.

Instead we prove a more general statement.

Proposition 1. Let A and B be 0-semisimple matrices of size m×m such

that AB = 0. Then, for any γ, δ ∈ k, the matrix γA + δB is 0-semisimple.

Because λM with λ ∈ k is 0-semisimple provided that so is M , it is
sufficient to consider the case γ = δ = 1.

By condition b) of the definition of a 0-semisimple matrix there is an
invertible matrix X such that

X−1AX =

(

A0 0

0 0

)

(1)

where A0 is invertible. From AB = 0 it follows that

X−1BX =

(

0 0

P Q

)

(2)



Jo
ur

na
l
A
lg

eb
ra

D
is
cr

et
e

M
at

h.

172 On 0-semisimplicity of linear hulls of generators

for some matrices P and Q (the matrices in the right parts of (1) and (2)
are partitioned conformally).

From condition a) for the matrix B (see the definition of a 0-semisimple
matrix) we have that

rank Q
(

P Q
)

= rank
(

P Q
)

(3)

But since rank Q
(

P Q
)

≤ rank Q (by the formula rank MN ≤

rank M) and rank
(

P Q
)

≥ rank Q, it follows from (3) that

rank
(

P Q
)

= rank Q (4)

and consequently there exists an invertible matrix Y such that P = QY .

Then

(

E1 0

−Y E2

)−1(

0 0

P Q

)(

E1 0

−Y E2

)

=

(

0 0

0 Q

)

(5)

where E1, E2 are the identical matrices.

From (2) and (5) it follows that the 0-semisimple matrix B is similar
to the matrix

(

0 0

0 Q

)

and hence the matrix Q is 0-semisimple. Then (by condition b) of the
definition of a 0-semisimple matrix) there is an invertible matrix Z such
that

Z−1QZ =

(

Q0 0

0 0

)

where Q0 is invertible, and consequently

(

E3 0

0 Z

)−1(

0 0

P Q

)(

E3 0

0 Z

)

=







0 0 0

P0 Q0 0

P1 0 0






(6)

where E3 is the identical matrix and

(

P0

P1

)

= Z−1P ; moreover by the

equality (4) we have that

P1 = 0. (7)
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So, if one denotes the product of the matrices X and

(

E3 0

0 Z

)

by

T , then (see (1), (2), (6), (7))

T −1AT =







A0 0 0

0 0 0

0 0 0






, T −1BT =







0 0 0

P0 Q0 0

0 0 0






,

from which it follows that the matrix A + B is similar to the direct sum
of the invertible matrix

(

A0 0

P0 Q0

)

and some zero matrix.
Proposition 1, and therefore Theorem 1, are proved.
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