# Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers 

Yulia Zhykharyeva and Mykola Pratsiovytyi

Communicated by A. P. Petravchuk

Abstract. We describe the geometry of representation of numbers belonging to $(0,1]$ by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of "digits"; show that for determination of Hausdorff-Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of $L$-representation to probabilistic theory of numbers are also considered.

## Introduction

There exist many models of real number based on positive integers. One of them is a model of number in the form of (finite and infinite) regular continued fraction. Today they study and use different models of number in the form of convergent series (number is a series, number is a sum of series, number is expanded in series). Mostly of these series are positive or alternating. Engel [12], Sylvester [16], Lüroth [8, 3, 4, 5, 7, 13], Ostrogradsky [9, 1, 2], Sierpiński [15], Pierce series et al. are among them.

[^0]Some of them have relatively simple self-similar geometry [13, 17, 18, 14], but other have rather complicated and non-self-similar geometry [1, 2, $9,12,10]$. Such expansions of numbers can be represented in different forms using positive integers. It is an encoding of number with symbols of infinite alphabet.

Lüroth [8] introduced in 1883 expansion of $x \in(0,1]$ in special positive series such that its terms are reciprocal to positive integers. Geometry of this expansion of numbers is self-similar and convenient for modelling of mathematical objects with non-trivial topological, metric and fractal local properties based on relatively simple metric relations generated by cylindrical sets. In papers $[17,18]$ we particularly studied properties of cylindrical sets and used them for study of one class of infinite Bernoulli convolutions.

In this paper we continue to study geometry of this expansion. In particular, we study properties of semicylinders, supercylinders and tail sets, solve some problems of metric and fractal theories of numbers, provide some applications of results.

## 1. $L$-representation of real numbers

Theorem 1. Any number $x \in(0,1]$ can be uniquely expanded in Lüroth series, i.e., for $x$ exists a unique sequence of positive integers $d_{n}=d_{n}(x)$ such that

$$
\begin{equation*}
x=\frac{1}{d_{1}+1}+\sum_{n=2}^{\infty} \frac{1}{D_{n-1}\left(d_{n}+1\right)} \equiv \Delta_{d_{1} d_{2} \ldots d_{n} \ldots}^{L} \tag{1}
\end{equation*}
$$

where $D_{n} \equiv d_{1}\left(d_{1}+1\right) d_{2}\left(d_{2}+1\right) \ldots d_{n}\left(d_{n}+1\right)$.
Proof. Existence. Since $(0 ; 1]=\bigcup_{n=1}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n}\right]$, it is evident that there exists $d_{1}$ such that $\frac{1}{d_{1}+1}<x \leqslant \frac{1}{d_{1}}$. Then

$$
0<x-\frac{1}{d_{1}+1} \equiv x_{1} \leq \frac{1}{d_{1}}-\frac{1}{d_{1}+1}=\frac{1}{d_{1}\left(d_{1}+1\right)}=\frac{1}{D_{1}}
$$

Since $\left(0 ; \frac{1}{D_{1}}\right]=\bigcup_{n=1}^{\infty}\left(\frac{1}{D_{1}(n+1)}, \frac{1}{D_{1} n}\right]$, it is evident that for $x_{1} \in\left(0 ; \frac{1}{d_{1}\left(d_{1}+1\right)}\right]$ there exists $d_{2} \in N$ such that $\frac{1}{d_{1}\left(d_{1}+1\right)\left(d_{2}+1\right)}<x_{1} \leq \frac{1}{d_{1}\left(d_{1}+1\right) d_{2}}$. Whence it follows that

$$
0<x_{1}-\frac{1}{d_{1}\left(d_{1}+1\right)\left(d_{2}+1\right)} \equiv x_{2} \leq \frac{1}{d_{1}\left(d_{1}+1\right) d_{2}\left(d_{2}+1\right)}=\frac{1}{D_{2}}
$$

and

$$
x=\frac{1}{d_{1}+1}+x_{1}=\frac{1}{d_{1}+1}+\frac{1}{d_{1}\left(d_{1}+1\right)\left(d_{2}+1\right)}+x_{2}
$$

Let us perform analogous arguments for $x_{2}$ and so on to infinity and obtain (1). Series (1) is convergent because of

$$
x_{m}=\frac{1}{d_{1}\left(d_{1}+1\right) d_{2}\left(d_{2}+1\right) \ldots d_{m}\left(d_{m}+1\right)}=\frac{1}{D_{m}}<\frac{1}{2^{m}} \rightarrow 0(m \rightarrow \infty)
$$

Uniqueness. Suppose that $x$ has at least two different expansions in the form (1): $x=\Delta_{d_{1} \ldots d_{m-1} d_{m} d_{m+1} \ldots}^{L}=\Delta_{d_{1} \ldots d_{m-1} d_{m}^{\prime} d_{m+1}^{\prime}}^{L}, d_{m} \neq d_{m}^{\prime}$.

Without loss of generality we assume that $d_{m}^{\prime}<d_{m}$. Then

$$
\begin{gathered}
\delta \equiv \Delta_{d_{1} \ldots d_{m-1} d_{m}^{\prime} d_{m+1}^{\prime} \ldots}^{L}-\Delta_{d_{1} \ldots d_{m-1} d_{m} d_{m+1} \ldots}^{L}=\frac{1}{D_{m}} \cdot \delta_{1} \\
\delta_{1} \equiv \frac{1}{d_{m}+1}-\frac{1}{d_{m}^{\prime}+1}+\sum_{n=1}^{\infty} \frac{1}{D_{m+n-1}^{\prime}\left(d_{m+n}^{\prime}+1\right)}-\sum_{n=1}^{\infty} \frac{1}{D_{m+n-1}\left(d_{m+n}+1\right)} .
\end{gathered}
$$

However,

$$
\begin{aligned}
\delta_{1} & >\left(\frac{d_{m}-d_{m}^{\prime}}{\left(d_{m}^{\prime}+1\right)\left(d_{m}+1\right)}-\sum_{n=1}^{\infty} \frac{1}{D_{m+n-1}\left(d_{m+n}+1\right)}\right) \geq \\
& \geq \frac{1}{\left(d_{m}^{\prime}+1\right)\left(d_{m}+1\right)}-\frac{1}{d_{m}\left(d_{m}+1\right)}\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots\right)=0 .
\end{aligned}
$$

Thus, $\delta_{1}>0$. This contradicts the assumption that there are two different expansions of the same number.

Definition 1. Brief notation $x=\Delta_{d_{1} d_{2} \ldots d_{n} \ldots}^{L}$ of the expansion (1) is called $L$-representation of $x$, and $d_{n}=d_{n}(x)$ is its $n$th $L$-symbol.

Theorem 2 ([17]). A number $x \in(0,1]$ is rational if its L-representation is periodic.

## 2. Geometry of $L$-representation: cylinders and semicylinders

Definition 2. Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be a fixed $m$-tuple of positive integers. Cylinder of rank $m$ with the base $c_{1} c_{2} \ldots c_{m}$ is a set

$$
\Delta_{c_{1} c_{2} \ldots c_{m}}^{L}:=\left\{x: x=\Delta_{c_{1} c_{2} \ldots c_{m} d_{m+1} d_{m+2} \ldots}^{L}, d_{n+i} \in N\right\} .
$$

Cylinders have the following properties.

1. $\Delta_{c_{1} c_{2} \ldots c_{m}}^{L}=\bigcup_{i_{1}=1}^{\infty} \ldots \bigcup_{i_{k}=1}^{\infty} \Delta_{c_{1} \ldots c_{m} i_{1} i_{2} \ldots i_{k}}^{L} \forall k \in N$.
2. Cylinder $\Delta_{c_{1} c_{2} \ldots c_{m}}^{L}$ is a half-interval with endpoints

$$
\begin{aligned}
\inf \Delta_{c_{1} \ldots c_{m}}^{L} & =\frac{1}{c_{1}+1}+\frac{1}{b_{1}\left(c_{2}+1\right)}+\ldots+\frac{1}{b_{m-1}\left(c_{m}+1\right)}=a_{m} \\
\max \Delta_{c_{1} \ldots c_{m}}^{L} & =a_{m}+\frac{1}{b_{m}}, \quad \text { where } b_{m}=c_{1}\left(c_{1}+1\right) \ldots c_{m}\left(c_{m}+1\right)
\end{aligned}
$$

3. The length of cylinder is equal to

$$
\left|\Delta_{c_{1} \ldots c_{m}}^{L}\right|=\frac{1}{c_{1}\left(c_{1}+1\right) \ldots c_{m}\left(c_{m}+1\right)}=\prod_{i=1}^{m} \frac{1}{c_{i}\left(c_{i}+1\right)} .
$$

4. For any sequence of positive integers $\left(c_{n}\right)$, the intersection

$$
\bigcap_{m=1}^{\infty} \Delta_{c_{1} c_{2} \ldots c_{m} \ldots}^{L}=x \equiv \Delta_{c_{1} c_{2} \ldots c_{m} \ldots}^{L} \in(0,1]
$$

5. If $d_{j}(a)=d_{j}(b)$ for $j<m$ and $d_{m}(a)>d_{m}(b)$, then $a<b$.
6. Rearrangement of $L$-symbols in the base does not change the length of cylinder.
7. Basic metric relation: $\left|\Delta_{c_{1} \ldots c_{m}}^{L}\right|=i(i+1)\left|\Delta_{c_{1} \ldots c_{m} i}^{L}\right|$.
8. $\sum_{j=a}^{\infty}\left|\Delta_{c_{1} \ldots c_{m} j}^{L}\right|=a\left|\Delta_{c_{1} \ldots c_{m}}^{L}\right| \cdot \quad 9 .\left|\Delta_{c_{1} \ldots c_{m} a}^{L}\right|=\sum_{j=a(a+1)}^{\infty}\left|\Delta_{c_{1} \ldots c_{m} j}^{L}\right|$.
9. $\left|\Delta_{c_{1} \ldots c_{m}(i+1)}^{L}\right|=\frac{2 i}{i+2}\left|\Delta_{c_{1} \ldots c_{m} i 1}^{L}\right|$.
10. If $a<b$ and $d_{j}(a)=d_{j}(b)$ for $j<m$, but $d_{m}(a) \neq d_{m}(b)$, then
1) $\left.(a, b] \subset \Delta_{d_{1}(a) \ldots d_{m-1}(a)}^{L}, 2\right) \Delta_{d_{1}(a) \ldots d_{m-1}(a) d_{m}(b)\left(d_{m+1}(b)+1\right)}^{L} \subset(a, b]$.
12. If $d_{m}(a)>d_{m}(b)$, but $d_{j}(a)=d_{j}(b)$ for $j<m$, then

$$
\Delta_{d_{1}(a) \ldots d_{m-1}(a) d_{m}(b)\left(d_{m+1}(b)+1\right)}^{L} \subset(a, b)
$$

Definition 3. Let $\left(c_{n}\right)$ be a fixed sequence of positive integers and $\left(k_{n}\right)$ be a fixed increasing sequence of positive integers. Semicylinder with the base $\left(\begin{array}{llll}k_{1} & k_{2} & \ldots & k_{n} \\ c_{1} & c_{2} & \ldots & c_{n}\end{array}\right)$ is a set

$$
\Delta_{c_{1} c_{2} \ldots c_{n}}^{k_{1} k_{2} \ldots k_{n}} \equiv\left\{x: x=\Delta_{d_{1} d_{2} \ldots d_{k} \ldots}^{L}, d_{k_{i}}(x)=c_{i}, i=\overline{1, n}\right\} .
$$

Lemma 1. Semicylinders have the following properties.

1. $\Delta_{c_{1} c_{2} \ldots c_{n}}^{12 \ldots n}=\Delta_{c_{1} c_{2} \ldots c_{n}}^{L}$.
2. $\Delta_{c_{1} \ldots c_{n}}^{k_{1} \ldots k_{n}}=\Delta_{c_{1}}^{k_{1}} \cap \Delta_{c_{2}}^{k_{2}} \cap \ldots \cap \Delta_{c_{n}}^{k_{n}}=\Delta_{c_{1} \ldots c_{m}}^{k_{1} \ldots k_{m}} \cap \Delta_{c_{m+1} \ldots c_{n}}^{k_{m+1} \ldots k_{n}}$.
3. Semicylinder is a union of cylinders of rank $k_{n}$.
4. Semicylinders $\Delta_{c}^{k}$ and $\Delta_{d}^{m}$ are metrically independent iff $k \neq m$.
5. The Lebesgue measure of $\Delta_{c_{1} c_{2} \ldots c_{n}}^{k_{1} k_{2} \ldots k_{n}}$ is calculated by formula

$$
\lambda\left(\Delta_{c_{1} c_{2} \ldots c_{n}}^{k_{1} k_{2} \ldots k_{n}}\right)=\prod_{i=1}^{n} \frac{1}{c_{i}\left(c_{i}+1\right)}
$$

Proof. Properties 1-3 follows immediately from the definition of semicylinder.

It is evident that for $k=1$ the set $\Delta_{c}^{k}$ is an $L$-cylinder of 1 st rank $\Delta_{c}^{L}$, and according to Property 3

$$
\lambda\left(\Delta_{c}^{1}\right)=\left|\Delta_{c}^{L}\right|=\frac{1}{c(c+1)}
$$

If $k=2$, then by definition of the set $\Delta_{c}^{k}$ and properties of cylinders $\Delta_{c}^{2}=\bigcup_{i \in N} \Delta_{i c}^{L}$. So, the Lebesgue measure is equal to

$$
\lambda\left(\Delta_{c}^{2}\right)=\sum_{i=1}^{\infty}\left|\Delta_{i c}^{L}\right|=\frac{1}{c(c+1)} \sum_{i=1}^{\infty} \frac{1}{i(i+1)}=\frac{1}{c(c+1)}
$$

For $k=3$, we have

$$
\Delta_{c}^{3}=\bigcup_{i_{1}=1}^{\infty} \bigcup_{i_{2}=1}^{\infty} \Delta_{i_{1} i_{2} c}^{L}
$$

$$
\lambda\left(\Delta_{c}^{3}\right)=\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{\infty}\left|\Delta_{i_{1} i_{2} c}^{L}\right|=\frac{1}{c(c+1)} \sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{\infty} \frac{1}{i_{1}\left(i_{1}+1\right) i_{2}\left(i_{2}+1\right)}=\frac{1}{c(c+1)}
$$

For any $k$ the Lebesgue measure of the set $\Delta_{c}^{k+1}$ is defined by equality

$$
\lambda\left(\Delta_{c}^{k+1}\right)=\sum_{i_{1}=1}^{\infty} \ldots \sum_{i_{k-1}=1}^{\infty}\left|\Delta_{i_{1} \ldots i_{k} c}^{L}\right|
$$

Using Property 7 (basic metric relation) we have

$$
\lambda\left(\Delta_{c}^{k+1}\right)=\sum_{i_{1}=1}^{\infty} \ldots \sum_{i_{k}=1}^{\infty}\left|\Delta_{i_{1} \ldots i_{k} c}^{L}\right|=\frac{1}{c(c+1)} \sum_{i_{1}=1}^{\infty} \ldots \sum_{i_{k}=1}^{\infty}\left|\Delta_{i_{1} \ldots i_{k}}^{L}\right|=\frac{1}{c(c+1)}
$$

The last equality follows from that fact: $\sum_{i_{1}=1}^{\infty} \ldots \sum_{i_{k}=1}^{\infty}\left|\Delta_{i_{1} \ldots i_{k}}^{L}\right|=1$.

$$
\text { For } n=2
$$

$\Delta_{c_{1} c_{2}}^{k_{1} k_{2}}=\Delta_{c_{1}}^{k_{1}} \bigcap \Delta_{c_{2}}^{k_{2}}=\bigcup_{i_{j} \in N} \Delta_{i_{1} \ldots i_{k_{1}-1} c_{1} i_{k_{1}+1 \ldots i_{k_{2}-1} c_{2}}}^{L}$,
$j \in\left\{1,2, \ldots, k_{2}-1\right\} \backslash\left\{k_{1}\right\}$
$\begin{aligned} \lambda\left(\Delta_{c_{1} c_{2}}^{k_{1} k_{2}}\right) & \left.=\frac{1}{c_{1}\left(c_{1}+1\right)} \frac{1}{c_{2}\left(c_{2}+1\right)} \sum_{j \in\left\{1,2, \ldots, k_{2}-1\right\} \backslash\left\{k_{1}\right\}} \right\rvert\, \Delta_{i_{1} \ldots i_{k_{1}-1} i_{k_{1}+1 \ldots i_{k_{2}-1}}^{L} \mid=} \\ & =\frac{1}{c_{1}\left(c_{1}+1\right)} \frac{1}{c_{2}\left(c_{2}+1\right)}=\lambda\left(\Delta_{c_{1}}^{k_{1}}\right) \lambda\left(\Delta_{c_{2}}^{k_{2}}\right) .\end{aligned}$
The last equality provide metric independence of semicylinders $\Delta_{c_{1}}^{k_{1}}$ and $\Delta_{c_{2}}^{k_{2}}$, i.e., semicylinders $\Delta_{c}^{k}$ and $\Delta_{d}^{m}$ for $k \neq m$. If $k=m$, then $\Delta_{c}^{k} \cap \Delta_{d}^{m}$ is an empty set for $c \neq d$ and $\Delta_{c}^{k}=\Delta_{d}^{m}$ for $c=d$. Thus $\lambda\left(\Delta_{c}^{k} \cap \Delta_{d}^{m}\right) \neq$ $\lambda\left(\Delta_{c}^{k}\right) \lambda\left(\Delta_{d}^{m}\right)$. So, semicylinders are not metrically independent.

One can prove Property 5 by induction.
Lemma 2. The family of supercylindrical sets (finite or countable unions of cylinders in $W_{L}$ ) is an algebra, i.e., closed with respect to finite union and complement class of sets.
Proof. It is evident that union of two supercylindrical sets $A$ and $A^{\prime}$ is a such set. Let us show that intersection of two supercylindrical sets $A$ and $A^{\prime}$ is a supercylindrical set. Let $A=\bigcup_{i} A_{i}, A^{\prime}=\bigcup_{j} A_{j}^{\prime}$, where $A_{i}$ and $A_{j}^{\prime}$ are cylindrical sets. Then $A \cap A^{\prime}=\bigcup_{i} \bigcup_{j}\left[A_{i} \bigcap A_{j}^{\prime}\right]$. However, $A_{i} \cap A_{j}^{\prime}$ is a cylindrical set. Thus $A \cap A^{\prime}$ is a supercylindrical set by definition.

Now we prove that complement $\bar{B}$ of supercylindrical set $B$ is a such set. Complement of $\Delta_{c_{1} \ldots c_{m}}^{L}$ is a union of sets in the form $\Delta_{s_{1} \ldots s_{m}}^{L}$, where $m$-tuple ( $s_{1} \ldots s_{m}$ ) takes all possible combinations of $L$-symbols except for $\left(c_{1} \ldots c_{m}\right)$, i.e., complement of cylinder is a countable union of cylinders of the same rank. It is evident that $\overline{B_{1} \cup B_{2}}=\overline{B_{1}} \cap \overline{B_{2}}$. So, if we take into account that intersection of two supercylindrical sets is a such set, then we have that complement of supercylindrical set is a such set.

## 3. Set of numbers with given sequence of fixed digits

Let $\left(c_{n}\right)$ be a fixed sequence of positive integers, $\left(k_{n}\right)$ be a fixed increasing sequence of positive integers. We consider the set

$$
\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n}} \equiv\left\{x: x=\Delta_{d_{1} d_{2} \ldots d_{k} \ldots}^{L}, d_{k_{i}}(x)=c_{i}, i \in N\right\}
$$

Theorem 3. Let $g_{n}:=k_{n+1}-k_{n}$. 1. If $g_{n}=1$ for all $n$ and $k_{1}=1$, then set $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}$ consists from one point $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots \text {. If inequality } g_{n}>1 \text { is }}^{L}$. fulfilled for finitely many $n$, then this set is countable. If inequality $g_{n}>1$ is fulfilled for infinitely many $n$, then it is a continuum set.
2. Lebesgue measure of the set $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}$ is equal to 0 .

Proof. 1. If $g_{n}=1$ starting from some $n_{0}$, then the set $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}$ is countable because only for finite set of the first $n_{0}-1$ positions there exists an alternative for $L$-symbols from at most countable set. If $g_{n}>1$ for infinitely many $n$, then $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}$ is a continuum set, because one can establish one-to-one correspondence $f$ between this set and half-interval $(0,1]$ by formula $f\left(\Delta_{d_{1} d_{2} \ldots d_{n} \ldots}^{L}\right)=\alpha_{1} 2^{-1}+\alpha_{2} 2^{-2}+\ldots+\alpha_{n} 2^{-n}+\ldots$, where $\alpha_{n}=0$ if $g_{n}=1$, and $\alpha_{n}=1$ if $g_{n}>1$.
2. If set $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}$ is countable, then its Lebesgue measure is equal to 0 by the properties of the Lebesgue measure. So, it is enough to prove statement 2 if it is a continuum set.

Let $F_{k}$ be a closure of a union of all cylinders of rank $k$ whose interior contains point from the set $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}$. Since $F_{k_{n}} \supset F_{k_{n}+1}$ and

$$
\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}=\bigcap_{n=1}^{\infty} F_{k_{n}}
$$

we have $\lambda\left(\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}\right)=\lim _{n \rightarrow \infty} \lambda\left(F_{k_{n}}\right)$ by the continuity from above of the Lebesgue measure.

From the basic metric relation it follows that

$$
\left|\Delta_{c_{1} c_{2} \ldots c_{k+1}}^{L}\right|=\frac{1}{c_{k+1}\left(c_{k+1}+1\right)}\left|\Delta_{c_{1} c_{2} \ldots c_{k}}^{L}\right|
$$

Thus

$$
\begin{aligned}
\lambda\left(F_{k_{n+1}}\right) & =\sum_{i_{1} \in N, \ldots, i_{k_{n+1}-1} \in N}\left|\Delta_{i_{1} i_{2} \ldots c_{1} \ldots c_{2} \ldots c_{n} \ldots i_{k_{n+1}-1} c_{k_{n+1}}}^{L}\right|= \\
& =\frac{1}{c_{k_{n}+1}\left(c_{k_{n+1}}+1\right)} \sum_{i_{1} \in N, \ldots, i_{k_{n+1}-1} \in N}\left|\Delta_{i_{1} i_{2} \ldots c_{1} \ldots c_{2} \ldots c_{n} \ldots i_{k_{n+1}-1}}^{L}\right|= \\
& =\frac{1}{c_{k_{n+1}}\left(c_{k_{n+1}}+1\right)} \lambda\left(F_{k_{n+1}-1}\right) .
\end{aligned}
$$

From the definition of $\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{k_{1} k_{2} \ldots k_{n} \ldots}$ it follows $F_{k_{n}}=F_{k_{n}+1}=\ldots=$ $F_{k_{n+1}-1}$. Thus,

$$
\lambda\left(\hat{F}_{k_{n+1}}\right)=\frac{\lambda\left(F_{k_{n}}\right)}{c_{k_{n+1}}\left(c_{k_{n+1}}+1\right)}=\lambda\left(F_{k_{1}}\right) \prod_{i=2}^{n+1} \frac{1}{c_{k_{i}}\left(c_{k_{i}}+1\right)} \xrightarrow{n \rightarrow \infty} 0
$$

## 4. Shift operator for $L$-representation

In the set $\mathcal{Z}_{(0,1]}^{L}$ of all $L$-representations of numbers belonging to $(0,1]$ we introduce a binary relation of equivalence "to have the same tail" (we denote it by $\sim$ ).

Definition 4. Two $L$-representations $\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{L}$ and $\Delta_{\beta_{1} \beta_{2} \ldots \beta_{n} \ldots}^{L}$ have the same tail or they are in relation $\sim$ if there exist positive integers $m$ and $k$ such that $\alpha_{m+j}=\beta_{k+j}$ for any $j \in N$. It is evident that $\sim$ is an equivalence relation (i.e., it is reflexive, symmetric, and transitive) and partitions set where it is defined on the equivalence classes. Any equivalence class is a tail set. Any tail set is determinated uniquely by arbitrary its element (representative). Two numbers $x$ and $y$ have the same tail (or they are in relation $\sim$ ), if their $L$-representations are in relation $\sim$. We denote it by $x \sim y$.

Lemma 3. Any tail set is a countable dense in $(0,1]$ set.
Proof. Let $H$ be any equivalence class, and $x_{0}=\Delta_{c_{1} \ldots c_{k} \ldots}^{L}$ be its representative. Then for any positive integer $m$ there exists set $H_{m}$ of numbers $x$ such that $\alpha_{m+j}(x)=\alpha_{k+j}\left(x_{0}\right)$ for any $j \in N, k=1,2, \ldots$. Set $H=\bigcup_{m \in N} H_{m}$ is a countable union of countable set. So, it is countable.

Since number $x$ belongs to set $H$ independently of any finite number of the first $L$-symbols, we have that there exits point from $H$ in any cylinder of any rank $m$. Thus, $H$ is an everywhere dense in $(0,1]$ set.

Corollary. Factor set $G \equiv(0,1] / \sim$ is a continuum set.
In the set $\mathcal{Z}_{(0,1]}^{L}$ we consider shift operator $\varphi$ for $L$-symbols defined by equality $\varphi\left(\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{L}\right)=\Delta_{\alpha_{2} \alpha_{3} \ldots \alpha_{n} \ldots}^{L}$. This operator is a function $\varphi:(0,1] \rightarrow(0,1]$.

It is clear that function $\varphi$ has a countable set of invariant points $\left\{\Delta_{(c)}^{L}\right.$, where $\left.c \in N\right\}$. It is surjective but not injective, because preimages of $\Delta_{c_{1} c_{2} \ldots c_{k} \ldots}^{L}$ are points $\Delta_{c c_{1} c_{2} \ldots c_{k} \ldots}^{L}$, where $c \in N$ (countable set).

Lemma 4. Function $\varphi$ is: 1) decreasing on any cylinder of 1st rank; 2) continuous at any point of cylinder of 1 st rank and left-continuous at right endpoint of this interval.

Proof. 1. Let us consider two points $x_{1}=\Delta_{\alpha_{1} \alpha_{2}\left(x_{1}\right) \ldots \alpha_{n}\left(x_{1}\right) \ldots}^{L}$ and $x_{2}=$ $\Delta_{\alpha_{1} \alpha_{2}\left(x_{2}\right) \ldots \alpha_{n}\left(x_{2}\right) \ldots}^{L}$ belonging to interval $\Delta_{\alpha_{1}}^{L}$ such that $x_{1}<x_{2}$. Since
$\alpha_{n}(\varphi(x))=\alpha_{n+1}(x)$ and their $L$-symbols satisfy conditions (1), we have $\varphi\left(x_{1}\right)>\varphi\left(x_{2}\right)$, and this proves first statement.
2. Since function $\varphi$ is monotonic and bounded on any cylinder of 1st rank, it has finite right and left limits at any point of this interval. Moreover, it has finite left limit at the right endpoint and finite right limit at the left endpoint.

Let $x=\Delta_{\alpha_{1} \alpha_{2}(x) \ldots \alpha_{n}(x) \ldots}^{L}$ be any irrational point of int $\Delta_{\alpha_{1}}^{L}$, and $\left(x_{k}\right)$ be any sequence of points $x_{k}$ such that $\lim _{k \rightarrow \infty} x_{k}=x$.

It is easy to prove that $\lim _{k \rightarrow \infty} x_{k}=x$ is equivalent to $\lim _{k \rightarrow \infty} m_{k}=\infty$, where $m_{k}$ is minimal positive integer such that $\alpha_{m_{k}}\left(x_{k}\right) \neq \alpha_{m_{k}}(x)$. In fact, $\lim _{k \rightarrow \infty} x_{k}=x$ is equivalent to the following fact: for any $M>0$ there exists $m_{k}>M$ and cylinder $\Delta_{\alpha_{1} \alpha_{2}(x) \ldots \alpha_{m_{k}}(x)}^{L}$ of rank $m_{k}$ containing all $x_{k}$ starting from some $k_{0}$.

So, from equalities $\lim _{k \rightarrow \infty} x_{k}=x$ and $\alpha_{n}(\varphi(x))=\alpha_{n+1}(x)$ it follows that $\lim _{k \rightarrow \infty} \varphi\left(x_{k}\right)=\varphi(x)$, and this proves continuity of the function $\varphi$ at the point $x$.

Now let $x=\Delta_{\alpha_{1} \alpha_{2}(x) \ldots \alpha_{n}(x)}^{L}$ be any rational point of int $\Delta_{\alpha_{1}}^{L}$. Let us consider sequence $x_{k}^{\prime}=\Delta_{\alpha_{1} \alpha_{2}(x) \ldots \alpha_{n}(x) k}^{L}$ converging to $x$ and $x_{k}^{\prime}<x$. It is evident that $\lim _{k \rightarrow \infty} \varphi\left(x_{k}^{\prime}\right)=\varphi(x)$, i.e., function $\varphi$ is left continuous at point $x$.

Now let us consider sequence $x_{k}^{\prime \prime}=\Delta_{\alpha_{1} \alpha_{2}(x) \ldots\left(\alpha_{n}(x)-1\right) 1 k}^{L}$ converging to $x$ and $x_{k}^{\prime \prime}>x$. It is evident that $\lim _{k \rightarrow \infty} \varphi\left(x_{k}^{\prime \prime}\right)=\varphi(x)$, i.e., function $\varphi$ is right continuous at point $x$.

Remark. All points $x, \varphi^{n}(x), n \in N$, belong to the same tail set, and $x \sim y$ iff there exists positive integers $k$ and $m$ such that $\varphi^{k}(x)=\varphi^{m}(y)$.

## 5. Sets with restrictions on use of $L$-symbols

Definition 5. A number $x$ is called $L$-rational if its $L$-representation has a period (1), i.e., $x=\Delta_{c_{1} c_{2} \ldots c_{m}(1)}^{L}$. A number is called $L$-irrational if it is not $L$-rational.

Any $L$-rational number is a right endpoint of cylinder, moreover number $\Delta_{c_{1} c_{2} \ldots c_{m}(1)}^{L}$ is a right endpoint of $\Delta_{c_{1} c_{2} \ldots c_{m}}^{L}$. Vice versa, right endpoint of any cylinder is $L$-rational number. It is easy to prove that any $L$ rational number is rational, but not all rational numbers are $L$-rational. For example, number $\Delta_{(12)}$ is rational, but is not $L$-rational.

Theorem 4. The set $C \equiv C[L, V]=\left\{x: x=\Delta_{d_{1} d_{2} \ldots d_{n} \ldots}^{L}\right.$, $d_{n}(x) \in V \subset$ $N\}$ is

1. a half-interval $(0,1]$ if $V=N$;
2. a nowhere dense non-closed set of zero Lebesgue measure coinciding with its closure with respect to countable set if $V \neq N$;
3. self-similar if $V$ is a finite set and $N$-self-similar if $V$ is an infinite set; moreover, its self-similar ( $N$-self-similar) dimension $\alpha_{s}$ is a solution of equation

$$
\begin{equation*}
\sum_{v \in V}\left(\frac{1}{v(v+1)}\right)^{x}=1 \quad \text { if } \quad|V|<\infty \tag{2}
\end{equation*}
$$

and is a number

$$
\begin{equation*}
\alpha_{s}=\sup _{n}\left\{x: \sum_{v: V \ni v \leq n}\left(\frac{1}{v(v+1)}\right)^{x}=1\right\} \quad \text { if } \quad|V|=\infty . \tag{3}
\end{equation*}
$$

Proof. Statement 1 is evident. 2. Let $V \neq N$. It is easy to see that

$$
C \subset \bigcup_{k \in V} \Delta_{k}^{L}, C \subset \bigcup_{\substack{k_{i} \in V \\ i \in N}} \Delta_{k_{1} k_{2} \ldots k_{n}}^{L} \equiv F_{n} \subset F_{n-1}, C=\bigcap_{k=1}^{\infty} F_{k}=\lim _{k \rightarrow \infty} F_{k}
$$

Let $(a, b)$ be any subinterval of $(0,1]$. It is evident that cylinder $\Delta_{d_{1}(b) \ldots d_{m}(b) d_{m+1}(b)+1}^{L} \subset(a, b)$, where $d_{m}(b) \neq d_{m}(a)$. Let $\alpha$ and $\beta$ be the endpoints of the cylinder $\Delta_{d_{1}(b) \ldots d_{m}(b)\left(d_{m+1}(b)+1\right) v}^{L}$, where $v \in N \backslash V$. Then the interval $(\alpha, \beta)$ does not contain points of the set $C$. So, the set $C$ is a nowhere dense set by definition.

For Lebesgue measure $\lambda$ of the set $C$ the following relation holds:

$$
\lambda(C) \leq \sum_{k_{1} \in V} \ldots \sum_{k_{n} \in V}\left|\Delta_{k_{1} \ldots k_{n}}^{L}\right|=\sum_{k_{1} \in V} \ldots \sum_{k_{n} \in V} \prod_{i=1}^{n} \frac{1}{k_{i}\left(k_{i}+1\right)}=b^{n} \xrightarrow{n \rightarrow \infty} 0
$$

where $0<b^{n}=\sum_{k \in V \neq N} \frac{1}{k(k+1)}<1$. So, $\lambda(C)=0$.
3. Since $C=\bigcup_{v \in V}\left[\Delta_{v}^{L} \cap C\right]$ and

1) $C \stackrel{k_{v}}{\sim} \Delta_{v}^{L} \cap C$, where $k=\frac{1}{v(v+1)}, \quad$ 2) $\left(\Delta_{v_{i}}^{L} \cap C\right) \cap\left(\Delta_{v_{j}}^{L} \cap C\right)=\varnothing$,
the set $C$ is self-similar if $V$ is finite, and $N$-self-similar if $V$ is infinite.
According to the definition, a self-similar ( $N$-self-similar) dimension is a solution of (2) (or determined by (3) respectively).

## 6. Random variable with independent $L$-symbols

Theorem 5. Random variable $\xi=\Delta_{\tau_{1} \tau_{2} \ldots \tau_{k} \ldots}^{L}$ with the following distributions of L-symbols $\tau_{k}: \mathrm{P}\left\{\tau_{k}=i\right\}=p_{i k}, i \in N$, has a pure Lebesgue type, moreover, 1. discrete iff

$$
M=\prod_{k=1}^{\infty} \max _{i}\left\{p_{i k}\right\}>0
$$

2. absolutely continuous iff

$$
\begin{equation*}
S=\prod_{k=1}^{\infty}\left(\sum_{i=1}^{\infty} \sqrt{\frac{p_{i k}}{i(i+1)}}\right)>0 \tag{4}
\end{equation*}
$$

3. singular in other cases, i.e., if $M=0=S$.

Proof. Let $\left\{\left(\Omega_{k}, B_{k}, \mu_{k}\right)\right\}$ and $\left\{\left(\Omega_{k}, B_{k}, \nu_{k}\right)\right\}$ be two sequences of probability spaces such that $\Omega_{k}=N, B_{k}$ is a $\sigma$-algebra of all subsets of $\Omega_{k}$,

$$
\mu_{k}(i)=p_{i k}, \nu_{k}(i)=\frac{1}{i(i+1)}, k \in N
$$

where $p_{i k}$ is an element of the matrix $\left\|p_{i k}\right\|$ determining the distribution of the random variable $\xi$. It is evident that measure $\mu_{k}$ is absolutely continuous with respect to measure $\nu_{k}\left(\mu_{k} \ll \nu_{k}\right)$ for all $k \in N$. Let us consider the infinite products of probability spaces

$$
(\Omega, B, \mu)=\prod_{k=1}^{\infty}\left(\Omega_{k}, B_{k}, \mu_{k}\right), \quad(\Omega, B, \nu)=\prod_{k=1}^{\infty}\left(\Omega_{k}, B_{k}, \nu_{k}\right)
$$

From Kakutani's theorem [6] it follows that $\mu \ll \nu$ iff

$$
\prod_{k=1}^{\infty} \int_{\Omega_{k}} \sqrt{\frac{d \mu_{k}}{d \nu_{k}}} d \nu_{k}>0, \quad \text { where integral is the Hellinger integral. }
$$

In this case the last inequality is equivalent to condition (4). Therefore, from the condition (4) it follows that the measure $\mu$ is absolutely continuous with respect to the measure $\nu$. Let us consider the mapping $\Omega \xrightarrow{f}[0 ; 1]$ defined by equality

$$
\forall \omega=\left(\omega_{1}, \ldots, \omega_{k}, \ldots\right) \in \Omega: f(\omega)=\Delta_{\omega_{1} \ldots \omega_{k} \ldots}^{L}
$$

For any Borel set $E$, we define the measures $\mu^{*}$ and $\nu^{*}$ as the image measures of $\mu$ and $\nu$ under mapping $f: \mu^{*}(E)=\mu\left(f^{-1}(E)\right), \nu^{*}(E)=$ $\nu\left(f^{-1}(E)\right)$. The measure $\mu^{*}$ coincides with the probabilistic measure $P_{\xi}$ and the measure $\nu^{*}$ coincides with the probabilistic measure $P_{\psi}$, which equivalent to Lebesgue measure $\lambda$. From the absolutely continuity of the measure $\mu$ with respect to the measure $\nu$ it follows that the measure $\mu^{*}$ is absolutely continuous with respect to the measure $\nu^{*}$. Since $\nu^{*} \sim \lambda$, from condition (4) it follows that the random variable $\xi$ is of absolutely continuous distribution.

## 7. $\quad L$-representation and fractal analysis of subsets of $[0,1]$

Definition 6. Hausdorff-Besicovitch dimension of bounded set $E \subset R^{1}$ is a number $\alpha_{0}(E)=\sup \left\{\alpha: H^{\alpha}(E) \neq 0\right\}=\inf \left\{\alpha: H^{\alpha}(E)=0\right\}$, where $H^{\alpha}(E)$ is a $\alpha$-dimensional Hausdorff measure of $E$ defined by equality

$$
H^{\alpha}(E)=\lim _{\varepsilon \rightarrow 0} \inf _{d\left(E_{i}\right)<\varepsilon}\left\{\sum_{i} d^{\alpha}\left(E_{i}\right): E \subset \bigcup_{i} E_{i}\right\}
$$

$d\left(E_{i}\right)$ is a diameter of the set $E_{i}$.
Let $W$ be a class of sets such that they are unions of $L$-cylinders of the following form:
(1) $\bigcup_{i=k}^{n} \Delta_{c_{1} \ldots c_{m} i}^{L}$,
(2) $\bigcup_{i=k}^{\infty} \Delta_{c_{1} \ldots c_{m} i}^{L}$,
where $k, n$ are arbitrary positive integers. It is clear that any cylinder belongs to class $W$, because for $k=1$ set (2) is a cylinder as well as set (1) is a cylinder for $k=n$.

Lemma 5. For any $u \equiv(a, b) \subset(0,1]$ there exists at most 4 sets belonging to class $W$ covering $u$ and having length not exceeding $|u|$.

Proof. The following cases are possible: 1. Numbers $a$ and $b$ belong to different $L$-cylinders of rank $1 ; 2 . a$ and $b$ belong to the same $L$-cylinder of rank 1 .
Consider every case separately.
1.1. Let $a$ and $b$ belong to neighbouring $L$-cylinders of 1 st rank $\Delta_{d_{1}(b)+1}^{L}$ and $\Delta_{d_{1}(b)}^{L}$ respectively, and $c=\sup \Delta_{d_{1}(b)+1}^{L}$.
a) If $a=c$ (it is equivalent to $d_{j}(a)=1$ for $j>1$ ), then for covering $u$ it is enough two sets from $W$ :

$$
\begin{equation*}
\bigcup_{j=d_{2}(b)+1}^{\infty} \Delta_{d_{1}(b) j}^{L}, \quad \Delta_{d_{1}(b) d_{2}(b)}^{L} \tag{5}
\end{equation*}
$$

having the length not exceeding $b-a$ (first one belongs to $(a, b]$, second satisfies Property 6 of cylinders).
b) If $a \neq c$, then there exists $d_{k}(a) \neq 1$. Let us consider the least such $k$. Then $\Delta_{d_{1}(a) \ldots d_{k-1}(a) 1}^{L} \subset(a, c]$ and sets

$$
\begin{equation*}
\bigcup_{j=1}^{d_{k}(a)-1} \Delta_{d_{1}(a) \ldots d_{k}(a) j}^{L} \quad \text { and } \quad \Delta_{d_{1}(a) \ldots d_{k}(a)}^{L} \tag{6}
\end{equation*}
$$

cover ( $a, c$ ] and have length not exceeding $c-a$, and therefore, not exceeding $b-a$. Half-interval ( $c, b]$ is covered by two sets (6).

So, for covering $(a, b]$ it is enough 4 sets belonging to $W$.
1.2. If there exists cylinder $\Delta_{m}^{L} \subset(a, b]$, then $(a, b]$ is covered by the sets

$$
\bigcup_{j=m}^{\infty} \Delta_{j}^{L}, \quad \bigcup_{j=d_{2}(b)+1}^{\infty} \Delta_{d_{1}(b) j}^{L}, \quad \Delta_{d_{1}(b) d_{2}(b)}^{L}
$$

belonging to $W$ and having length lesser than $b-a$.
2. Let $a$ and $b$ belong to the same cylinder of 1st rank $\Delta_{d_{1}(b)}^{L}$. Then there exists positive integer $m$ such that $a$ and $b$ belong to the same cylinder of rank $m$, but to different cylinders of rank $m+1$ :

$$
\Delta_{d_{1}(b) \ldots d_{m}(b) d_{m+1}(a)}^{L} \quad \text { and } \quad \Delta_{d_{1}(b) \ldots d_{m}(b) d_{m+1}(b)}^{L}
$$

Repeating the same arguments as in the case 1, we obtain the same result: for covering $(a, b]$ it is enough at most four sets belonging to $W$ and having length not exceeding $b-a$.

Theorem 6. For determination of Hausdorff-Besicovitch dimension of any Borel subset of $(0,1]$ it is enough to use covering by sets belonging to class $W$.

Proof. In fact, if $u$ is an arbitrary half-interval belonging to covering $E$, then there exists at most 4 sets $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ belonging to $W$ such that $\left|\omega_{i}\right|^{\alpha} \leq\left|u^{\alpha}\right|$ for any $\alpha>0$. If

$$
l_{\varepsilon}^{\alpha}(E)=\inf _{\left|v_{k}\right| \leq \varepsilon} \sum_{k}\left|v_{k}\right|^{\alpha},
$$

where $E \subset \bigcup_{k} v_{k}$ and $v_{k} \in W$, then $m_{\varepsilon}^{\alpha}(E) \leq l_{\varepsilon}^{\alpha}(E) \leq 4 m_{\varepsilon}^{\alpha}(E)$ for any $\varepsilon>0$. Therefore $H^{\alpha}(E) \leq H_{L}^{\alpha}(E) \equiv \lim _{\varepsilon \rightarrow \infty} l_{\varepsilon}^{\alpha}(E) \leq 4 H^{\alpha}(E)$, that is $H_{L}^{\alpha}(E)$ and $H^{\alpha}(E)$ simultaneously (with respect to $\alpha$ ) take the values 0 and $\infty$. Consequently, $\alpha_{0}(E)=\inf \left\{\alpha: H_{L}^{\alpha}(E)\right\}$.

Theorem 7. Continuous strictly increasing probability distribution function $F$ of the random variable with independent identically distributed L-symbols preserve the Hausdorff-Besicovitch dimension iff

$$
\begin{equation*}
p_{i}=\frac{1}{i(i+1)}, \forall i \in N \tag{7}
\end{equation*}
$$

Proof. If Equality (7) holds, then distribution is uniform on $[0,1]$, and it is evident that probability distribution function preserve the HausdorffBesicovitch dimension.

Suppose that there exists $p_{m} \neq \frac{1}{m(m+1)}$. Let $p_{m}<\frac{1}{m(m+1)}$. Then there exists $p_{c}>\frac{1}{c(c+1)}$, i.e., there exist $p_{m}$ and $p_{c}$ such that

$$
\left(p_{m}-\frac{1}{m(m+1)}\right)\left(p_{c}-\frac{1}{c(c+1)}\right)<0
$$

Then for any $a \in N, m \neq a \neq c$, there exists $g \in\{m, c\}$ such that

$$
\begin{equation*}
\left(p_{a}-\frac{1}{a(a+1)}\right)\left(p_{g}-\frac{1}{g(g+1)}\right) \geq 0 \tag{8}
\end{equation*}
$$

Let us consider set $C \equiv C[L,\{a, g\}]$ and its image $C^{\prime}=F(C)$ under transformation $F$. These sets are self-similar and their self-similar dimensions coincides with Hausdorff-Besicovitch dimensions and are solutions of the following equations

$$
a^{-x}(a+1)^{-x}+g^{-x}(g+1)^{-x}=1 \text { and } p_{a}^{x}+p_{g}^{x}=1
$$

respectively. However, from (8) and $p_{g} \neq g^{-1}(g+1)^{-1}$ it follows that their solutions does not coincide. Thus, $\alpha_{0}(C) \neq \alpha_{0}\left(C^{\prime}\right)$. This contradiction proves the theorem.

## References

[1] S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, and G. Torbin, The Ostrogradsky series and related Cantor-like sets, Acta Arith. 130 (2007), no. 3, 215-230.
[2] O. M. Baranovskyi, M. V. Pratsiovytyi, and G. M. Torbin, Topological and metric properties of sets of real numbers with conditions for their expansions in Ostrogradsky series, Ukraïn. Mat. Zh. 59 (2007), no. 9, 1155-1168; translation in Ukrainian Math. J. 59 (2007), no. 9, 1281-1299.
[3] J. Barrionuevo, R. M. Burton, K. Dajani, and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith. 74 (1996), no. 4, 311-327.
[4] K. Dajani, and C. Kraaikamp, On approximation by Lüroth series, J. Théor. Nombres Bordeaux 8 (1996), no. 2, 331-346.
[5] C. Ganatsiou, On some properties of the Lüroth-type alternating series representations for real numbers, Int. J. Math. Math. Sci. 28 (2001), no. 6, 367-373.
[6] S. Kakutani, On equivalence of infinite product measures, Ann, of Math. 49 (1948), 214-224.
[7] S. Kalpazidou, A. Knopfmacher, and J. Knopfmacher, Metric properties of alternating Lüroth series, Portugal. Math. 48 (1991), no. 3, 319-325.
[8] J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann. 21 (1883), no. 3, 411-423.
[9] I. M. Pratsiovyta, Second Ostrogradsky series and distributions of their random incomplete sums, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics \& Mathematics (2006), no. 7, 174-189 (in Ukrainian).
[10] I. M. Pratsiovyta and M. V. Zadniprianyi, Expansions of numbers in Sylvester series and their applications, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics \& Mathematics (2009), no. 10, 73-87 (in Ukrainian).
[11] M. V. Pratsiovytyi, Fractal approach to investigations of singular probability distributions, Dragomanov Nat. Pedagogical Univ. Publ., Kyiv, 1998 (in Ukrainian).
[12] M. V. Pratsiovytyi and B. I. Hetman, Engel series and their applications, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics \& Mathematics (2006), no. 7, 105-116 (in Ukrainian).
[13] M. V. Pratsiovytyi and Yu. V. Khvorostina, Set of incomplete sums of alternating Lüroth series and probability distributions on it, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics \& Mathematics (2009), no. 10, 14-27 (in Ukrainian).
[14] M. V. Pratsiovytyi and O. L. Leshchynskyi, Properties of random variables defined by the distributions of the elements of their $\tilde{Q}_{\infty}$-representation, Teor. IImovir. Mat. Stat. (1997), no. 57, 134-139; translation in Theory Probab. Math. Statist. (1998), no. 57, 143-148.
[15] W. Sierpiński, O kilku algorytmach dla rozwijania liczb rzeczywistych na szeregi, Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego, Wydział III 4 (1911), 56-77.
[16] J. J. Sylvester, On a point in the theory of vulgar fractions, Amer. J. Math. 3 (1880), no. 4, 332-335; Postscript, ibid, 388-389.
[17] Yu. I. Zhykharyeva and M. V. Pratsiovytyi, Representation of numbers by positive Lüroth series: elements of metric theory, Trans. Dragomanov Nat. Pedagogical Univ. Ser. 1, Physics \& Mathematics (2008), no. 9, 200-211 (in Ukrainian).
[18] Yu. I. Zhykharyeva and M. V. Pratsiovytyi, Properties of distribution of the random variable with independent symbols of positive Lüroth series representation, Trans. IAMM NAS Ukraine 23 (2011), 71-83 (in Ukrainian).

Contact information

Yu. Zhykharyeva Physics and Mathematics Institute, Dragomanov National Pedagogical University, Pyrogova St. 9, 01601 Kyiv, Ukraine E-Mail: july2105@mail.ru<br>M. Pratsiovytyi Physics and Mathematics Institute, Dragomanov National Pedagogical University, Pyrogova St. 9, 01601 Kyiv, Ukraine E-Mail: prats4@yandex.ru

Received by the editors: 02.07.2012
and in final form 02.07.2012.


[^0]:    2010 MSC: 11K55.
    Key words and phrases: Lüroth series, $L$-representation, cylinder, semicylinder, shift operator, random variable defined by $L$-representation, fractal, HausdorffBesicovitch dimension.

