Partitions of groups into sparse subsets Igor Protasov

ABSTRACT. A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset $F \subset X$, such that $\bigcap_{x \in F} xA$ is finite. We denote by $\eta(G)$ the minimal cardinal such that G can be partitioned in $\eta(G)$ sparse subsets. If $|G| > (\kappa^+)^{\aleph_0}$ then $\eta(G) > \kappa$, if $|G| \leqslant \kappa^+$ then $\eta(G) \leqslant \kappa$. We show also that $cov(A) \geqslant cf|G|$ for each sparse subset A of an infinite group G, where $cov(A) = \min\{|X| : G = XA\}$.

A subset A of a group G with the identity e is called

- large if there exists a finite subset F such that G = FA;
- small if $L \setminus A$ is large for each large subset L of G;
- thin if $gA \cap A$ is finite for every $g \in G \setminus \{e\}$;
- sparse if, for every infinite subset X of G, there exists a finite subset $F \subset X$ such that $\bigcap_{x \in F} xA$ is finite.

We note that large, small, and thin subsets can be considered as asymptotic counterparts of dense, nowhere dense and discrete subsets of a topological space [7, Chapter 9]. The sparse subsets were introduced in [2] to characterize the strongly prime ultrafilters in the Stone-Čech compactification βG of G. If G is infinite then each thin subset is sparse, and each sparse subset is small [3].

By [4], every infinite group G can be partitioned in \aleph_0 large subsets, and if G is amenable then G can not be partitioned in $> \aleph_0$ large subsets. By [5], every infinite group G can be partitioned in \aleph_0 small subsets.

For a group G, we denote by $\mu(G)$ and $\eta(G)$ respectively the minimal cardinals such that G can be partitioned in $\mu(G)$ thin subsets and in $\eta(G)$ sparse subsets. By [6], $\mu(G) = |G|$ if |G| is a limit cardinal, and $\mu(G) = \kappa$ if G is infinite and $|G| = \kappa^+$, where κ^+ is the cardinal-successor of κ . In Theorem 1, we evaluate the cardinal $\eta(G)$.

A covering number of a subset A of G is the cardinal $cov(A) = min\{|X| : G = XA\}$. In Theorem 2, we show that $cov(A) \ge cf|G|$ for every sparse subset A of an infinite group G, where cf|G| is the cofinality of |G|.

Lemma 1. A subset S of a group G is not sparse if and only if there exists an infinite subset X of G such that, for each infinite subset F of X, the set $\{x \in G : F^{-1}x \subseteq A\}$ is infinite.

Proof. It suffices to note that $x \in \bigcap_{g \in F} gS$ if and only if $F^{-1}x \subseteq A$. \square

We say that a subset S of a group G is rectangle free if $XY \nsubseteq S$ for any infinite subsets X, Y of G.

Lemma 2. Every sparse subset S of a group G is rectangle free.

Proof. Apply Lemma 1.

Lemma 3. Let X and Y be infinite sets of cardinality $|X| = \kappa^+$ and $|Y| > (\kappa^+)^{\lambda}$ for some non-zero cardinal $\lambda \leqslant \kappa^+$. For any κ -coloring $\chi: X \times Y \to \kappa$, there are subsets $A \subseteq X$ and $Z \subseteq Y$ such that $|A| = \lambda$, $|Z| > (\kappa^+)^{\lambda}$ and the set $A \times Z$ is monochrome.

Proof. [1, Lemma 1].

Theorem 1. Let G be an infinite group, κ be an infinite cardinal. If $|G| > (\kappa^+)^{\aleph_0}$ then $\eta(G) > \kappa$. If $|G| \leqslant \kappa^+$ then $\eta(G) \leqslant \kappa$.

Proof. Suppose that $|G| > (\kappa^+)^{\aleph_0}$, take an arbitrary partition of G into κ subsets and denote by χ' corresponding κ -coloring. Then we choose a subset X of G with $|X| = \kappa^+$, put Y = G and define a coloring $\chi: X \times Y \to \kappa$ by the rule $\chi((x,y)) = \chi'((x,y))$. Applying Lemma 3 with $\lambda = \aleph_0$, we get $A \subseteq X$ and $Z \subseteq Y$ such that $|A| = \aleph_0$, $|Z| > (\kappa^+)^{\aleph_0}$ and $A \times Z$ is monochrome. By Lemma 2, $A \times Z$ is not sparse, so at least one cell of the partition is not sparse and $\eta(G) > \kappa$.

If $|G| \leq \kappa^+$, by [6, Lemma 2], G can be partitioned in $\leq \kappa$ thin subsets. Since every thin subset is sparse, $\eta(G) \leq \kappa$.

Corollary 1. If $|G| > 2^{\kappa}$ then $\eta(G) > \kappa$.

Proof. It suffices to note that, for any infinite cardinal κ , $(\kappa^+)^{\aleph_0} \leqslant (2^{\kappa})^{\aleph_0} = 2^{\kappa}$.

Corollary 2. If $\eta(G) = \aleph_0$ then $\aleph_0 \leqslant |G| \leqslant 2^{\aleph_0}$.

Question 1. Does $|G| = 2^{\aleph_0} imply \eta(G) = \aleph_0$?

Under CH, Theorem 1 gives an affirmative answer to this question. To answer this question negatively under \neg CH, it suffices to show that, for any \aleph_0 -coloring of $\aleph_2 \times \aleph_2$, there is a monochrome subset $A \times B$, $A \subset \aleph_2, B \subset \aleph_2, |A| = |B| = \aleph_0$.

Theorem 2. For every sparse subset A of an infinite group G, $cov(A) \ge cf|G|$.

Proof. We suppose the contrary and choose $X \subset G$ such that G = XA and |X| < cf|G|. Clearly, |A| = |G|. Since |X| < cf|A| and $A = \bigcup_{x \in X} (A \cap xA)$, there is $x_0 \in X$ such that $|A \cap x_0A| = |G|$. We put $A_0 = A \cap x_0A$ so $x_0A_0 \subseteq A$. Suppose that we have chosen distinct elements x_0, x_1, \ldots, x_n of X and the subsets $A_0 \supseteq A_1 \supseteq \ldots \supseteq A_n$ of A such that $|A_0| = |A_1| = \ldots = |A_n| = |G|$ and $x_0A_0 \subseteq A_1, x_1A_1 \subseteq A_2, \ldots, x_nA_n \subseteq A_{n+1}$. We take an arbitrary element $g \in G$ such that $g^{-1}X \cap \{x_0, \ldots, x_n\} = \emptyset$. Since $|gA_n| = |G|$, $gA_n \subseteq \bigcup_{x \in X} xA$ and |X| < cf|G|, there is $x \in X$ such that $|gA_n \cap xA| = |G|$. We put $x_{n+1} = g^{-1}X$, $A_{n+1} = A_n \cap g^{-1}XA$. Then $x_{n+1} \notin \{x_0, x_1, \ldots, x_n\}, x_{n+1}A_{n+1} \subseteq A_n$.

After ω steps we get a countable set $X' = \{x_n : n \in \omega\}$ and an increasing chain $\{A_n : n \in \omega\}$ of subsets of cardinality |G| such that $A_{n+1} \subseteq \{g \in G : \{x_0, x_1, \dots, x_n\}g \subseteq A\}$. By Lemma 1, A is not sparse.

Question 2. Is cov(A) = |G| for every sparse subset A of an arbitrary infinite group G? By Theorem 2, this is so if |G| is regular.

References

- [1] T. Banakh, I. Protasov, Partition of groups and matroids into independent subsets, Algebra and Discrete Math, 10(2010), 1–7.
- M. Filali, Ie. Lutsenko, I.V. Protasov, Boolean group ideals and the ideal structure of βG, Math. Stud., 31(2009), 19–28.

- [3] Ie. Lutsenko, I.V. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Computation, 19(2009), 491–510.
- [4] I.V. Protasov, Partition of groups into large subsets, Math. Notes, 73 (2003), 271–281.
- [5] I.V. Protasov, Small systems of generators of groups, Math. Notes, 76 (2004), 420–426.
- [6] I. Protasov, Partition of groups into thin subsets, Algebra and Discrete Math, 11(2011), 88–92.
- [7] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser. 12, VNTL, Lviv, 2007.

CONTACT INFORMATION

I. Protasov

Department of Cybernetics, Kyiv National University, Volodimirska 64, 01033, Kyiv, Ukraine *E-Mail:* i.v.protasov@gmail.com