The upper edge-to-vertex detour number of a graph

A. P. Santhakumaran and S. Athisayanathan

Communicated by D. Simson

Abstract. For two vertices u and v in a graph $G=(V, E)$, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour. For subsets A and B of V, the detour distance $D(A, B)$ is defined as $D(A, B)=\min \{D(x, y): x \in A, y \in B\}$. A $u-v$ path of length $D(A, B)$ is called an $A-B$ detour joining the sets $A, B \subseteq V$ where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ detour if x is a vertex of an $A-B$ detour. A set $S \subseteq E$ is called an edge-to-vertex detour set if every vertex of G is incident with an edge of S or lies on a detour joining a pair of edges of S. The edge-to-vertex detour number $d n_{2}(G)$ of G is the minimum order of its edge-to-vertex detour sets and any edge-to-vertex detour set of order $d n_{2}(G)$ is an edge-to-vertex detour basis of G. An edge-to-vertex detour set S in a connected graph G is called a minimal edge-to-vertex detour set of G if no proper subset of S is an edge-to-vertex detour set of G. The upper edge-to-vertex detour number $\quad d n_{2}^{+}(G)$ of G is the maximum cardinality of a minimal edge-to-vertex detour set of G. The upper edge-to-vertex detour numbers of certain standard graphs are obtained. It is shown that for every pair a, b of integers with $2 \leq a \leq b$, there exists a connected graph G with $d n_{2}(G)=a$ and $d n_{2}^{+}(G)=b$.

1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least two vertices. For basic definitions and terminologies we refer to $[1,5]$. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, rad G and the maximum eccentricity is its diameter, diam G of G. For vertices u and v in a connected graph G, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour. The detour eccentricity $e_{D}(v)$ of a vertex v in G is the maximum detour distance from v to a vertex of G. The detour radius, $\operatorname{rad}_{D} G$ of G is the minimum detour eccentricity among the vertices of G, while the detour diameter, $\operatorname{diam}_{D} G$ of G is the maximum detour eccentricity among the vertices of G. It is known that the distance and the detour distance are metrics on the vertex set V. The detour distance was studied by Chartrand et al. in [2,4]. A vertex x is said to lie on a $u-v$ detour P if x is a vertex of P including the vertices u and v. A set $S \subseteq V$ is called a detour set if every vertex v in G lies on a detour joining a pair of vertices of S. The detour number $d n(G)$ of G is the minimum order of a detour set and any detour set of order $d n(G)$ is called a detour basis of G. A vertex v that belongs to every detour basis of G is a detour vertex in G. If G has a unique detour basis S, then every vertex in S is a detour vertex in G. These concepts were studied by Chartrand et al. [3]. The detour concepts and colorings are widely used in the Channel Assignment problem in radio technologies [4]. The connected detour number of a graph was introduced and studied in [8].

In general, there are graphs G for which there exist edges which do not lie on a detour joining any pair of vertices of V. For the graph G given in Figure 1.1, the edge $v_{1} v_{2}$ does not lie on a detour joining any pair of vertices of V. This motivated us to introduce the concepts of weak edge detour set of a graph and also edge detour graphs and were studied in $[6,7]$.

Definition $1.1([6])$. Let $G=(V, E)$ be a connected graph with at least two vertices. A set $S \subseteq V$ is called a weak edge detour set of G if every edge in G has both its ends in S or it lies on a detour joining a pair of

Figure 1.1: G
vertices of S. The weak edge detour number $d n_{w}(G)$ of G is the minimum order of its weak edge detour sets and any weak edge detour set of order $d n_{w}(G)$ is called a weak edge detour basis of G.

Example 1.2. For the graph G given in Figure 1.1, it is clear that the set $S=\left\{v_{1}, v_{2}\right\}$ is a weak edge detour basis of G so that $d n_{w}(G)=2$. For the graph G given in Figure 1.2, it is clear that no two element subset of V is a weak edge detour set of G. The set $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a weak edge detour basis of G so that $d n_{w}(G)=3$. The set $S_{1}=\left\{v_{1}, v_{4}, v_{5}\right\}$ is another weak edge detour basis of G.

Figure 1.2: G

Definition 1.3 ([7]). Let $G=(V, E)$ be a connected graph with atleast two vertices. A set $S \subseteq V$ is called an edge detour set of G if every edge in G lies on a detour joining a pair of vertices of S. The edge detour number $d n_{1}(G)$ of G is the minimum order of its edge detour sets and any edge detour set of order $d n_{1}(G)$ is called an edge detour basis of G. A graph G is called an edge detour graph if it has an edge detour set.

Example 1.4. For the graph G given in Figure 1.2, it is clear that no two element subset of V is an edge detour set of G. The set $S=\left\{v_{1}, v_{4}, v_{5}\right\}$ is a an edge detour basis of G so that $d n_{1}(G)=3$ and hence it is an edge
detour graph. But the graph G given in Figure 1.1 is not an edge detour graph.

The edge-to-vertex detour number of a graph was introduced and studied in [9].

Definition 1.5. [9] Let $G=(V, E)$ be a connected graph with at least three vertices. For subsets A and B of V, the detour distance $D(A, B)$ is defined as $D(A, B)=\min \{D(x, y): x \in A, y \in B\}$. A $u-v$ path of length $D(A, B)$ is called an $A-B$ detour joining the sets A and B, where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ detour if x is a vertex of an $A-B$ detour. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ detour as $u v-z w$ detour and $D(A, B)$ as $D(u v, z w)$.

Example 1.6. For the graph G given in Figure 1.3, with $A=\left\{v_{1}, v_{2}\right\}$ and $B=\left\{v_{4}, v_{5}, v_{6}\right\}, v_{1}, v_{2}, v_{3}, v_{4}$ and $v_{1}, v_{6}, v_{5}, v_{4}$ are the $v_{1}-v_{4}$ detours, $v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{5}$ is the $v_{1}-v_{5}$ detour, $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ is the $v_{1}-v_{6}$ detour, $v_{2}, v_{1}, v_{6}, v_{5}, v_{4}$ is the $v_{2}-v_{4}$ detour, $v_{2}, v_{1}, v_{6}, v_{4}, v_{5}$ and v_{2}, v_{3}, v_{4}, v_{6}, v_{5} are the $v_{2}-v_{5}$ detours and $v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ is the $v_{2}-v_{6}$ detour. Hence $D(A, B)=3$ and an $A-B$ detour is a $v_{1}-v_{4}$ detour so that v_{1}, v_{2}, v_{3}, v_{4} and $v_{1}, v_{6}, v_{5}, v_{4}$ are the only two $A-B$ detours.

Figure 1.3: G

Definition 1.7. [9] Let $G=(V, E)$ be a connected graph with at least three vertices. A set $S \subseteq E$ is called an edge-to-vertex detour set of G if every vertex of G is incident with an edge of S or lies on a detour joining a pair of edges of S. The edge-to-vertex detour number $d n_{2}(G)$ of G is the minimum cardinality of its edge-to-vertex detour sets and any edge-to-vertex detour set of cardinality $d n_{2}(G)$ is an edge-to-vertex detour basis of G.

Example 1.8. For the graph G given in Figure 1.4, the two $v_{1} v_{2}-v_{4} v_{5}$ detours are $P: v_{2}, v_{1}, v_{6}, v_{5}$ and $Q: v_{2}, v_{3}, v_{4}, v_{5}$, each of length 3 so that $D\left(v_{1} v_{2}, v_{4} v_{5}\right)=3$. Since the vertices v_{6} and v_{3} lie on the $v_{1} v_{2}-v_{4} v_{5}$ detours P and Q respectively, $S_{1}=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is an edge-to-vertex detour basis of G so that $d n_{2}(G)=2$. Also $S_{2}=\left\{v_{1} v_{6}, v_{3} v_{4}\right\}$ is another edge-to-vertex detour basis of G. Thus there can be more than one edge-to-vertex detour basis for a graph.

Figure 1.4: G

Throughout this paper G denotes a connected graph with at least three vertices. We need the following theorems in the sequel.

Theorem 1.9. [9] Every end-edge of a connected graph G belongs to every edge-to-vertex detour set of G. Also if the set S of all end-edges of G is an edge-to-vertex detour set, then S is the unique edge-to-vertex detour basis for G.

Theorem 1.10. [9] If T is a tree with k end-edges, then $d n_{2}(T)=k$.

2. The upper edge-to-vertex detour number of a graph

Definition 2.1. An edge-to-vertex detour set S in a connected graph G is called a minimal edge-to-vertex detour set of G if no proper subset of S is an edge-to-vertex detour set of G. The upper edge-to-vertex detour number $d n_{2}^{+}(G)$ of G is the maximum cardinality of a minimal edge-to-vertex detour set of G.

Example 2.2. For the graph G given in Figure 2.1, $S_{1}=\{u v, x y\}$ and $S_{2}=\{u v, v x, v y\}$, are the minimal edge-to-vertex detour sets of G so that $d n_{2}(G)=2$ and $d n_{2}^{+}(G)=3$.

It is clear that every minimum edge-to-vertex detour set is a minimal edge-to-vertex detour set. However, the converse is not true. For the graph G given in Figure 2.1, $S_{2}=\{u v, v x, v y\}$ is a minimal edge-to-vertex detour

Figure 2.1: G
set of G but not a minimum edge-to-vertex detour set of G. Since any edge-to-vertex detour basis of a graph G is also a minimal edge-to-vertex detour set of G, we have the following theorem.

Theorem 2.3. For any connected graph $G, 2 \leq d n_{2}(G) \leq d n_{2}^{+}(G)$.
We observe that the bound in Theorem 2.3 is sharp. For any path $P_{n}(n \geq$ 3), $d n_{2}\left(P_{n}\right)=d n_{2}^{+}\left(P_{n}\right)=2$. Also for the graph G given in Figure 2.1, $d n_{2}(G)<d n_{2}^{+}(G)$.

Now, we proceed to determine $d n_{2}(G)$ and $d n_{2}^{+}(G)$ for some classes of graphs.

Theorem 2.4. (i) For the complete graph $K_{p}(p \geq 4)$, a set S of edges is an edge-to-vertex detour basis if and only if S consists of two independent edges of K_{p}.
(ii) For the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$, a set S of edges is an edge-to-vertex detour basis if and only if S consists of two independent edges of $K_{m, n}$.

Proof. (i) Let $S=\{e, f\}$ be any set of two independent edges of K_{p}. Then it is clear that $D(e, f)=p-1$ and hence it follows that S is an edge-to-vertex detour set of K_{p}. Now, let S be an edge-to-vertex detour basis of K_{p}. Let S^{\prime} be any set consisting of two independent edges. Then as in the first part of this theorem S^{\prime} is an edge-to-vertex detour basis of K_{p}. Hence $|S|=\left|S^{\prime}\right|=2$. Let $S=\{e, f\}$. If e and f are not independent, then $D(e, f)=0$ and since $p \geq 4, S$ can not be an edge-to-vertex detour set of G, which is a contradiction. Thus S consists of two independent edges.
(ii) Let X and Y be the bipartite sets of $K_{m, n}(2 \leq m \leq n)$ with $|X|=m$ and $|Y|=n$ and let $S=\{u v, z w\}$ be a set of any two independent edges of $K_{m, n}$ such that $u, z \in X$ and $v, w \in Y$. We show that S is an edge-to-vertex detour basis of $K_{m, n}$.
Case 1: Let $m=n=2$. Then $K_{m, n}=C_{4}$ and it is clear that every vertex
of $K_{m, n}$ is incident with an edge of S so that S is an edge-to-vertex detour basis of $K_{m, n}$.
Case 2: Let $2 \leq m \leq n$ and $n \neq 2$. We consider two subcases:
Subcase 1: Let $m<n$. It is clear that $D(u, z)=2(m-1), D(u, w)=$ $D(v, z)=2 m-1, D(v, w)=2 m$ and so $D(u v, z w)=2(m-1)$. Let $y \in Y$ be any vertex different from v and w. If $m>2$, consider any set of $m-2$ vertices $y_{1}, y_{2}, \ldots, y_{m-2}$ from $Y-\{v, y, w\}$. Then the vertex y lies on the $u v-w z$ detour $P: u=x_{1}, y, x_{2}, y_{1}, x_{3}, y_{2}, \ldots, x_{m-1}, y_{m-2}, x_{m}=z$, where $x_{1}, x_{2}, \ldots, x_{m} \in X$. If $m=2$, then y lies on the $u v-w z$ detour $Q: u, y, z$. Since every vertex of X also lies on the same detour P and Q in respective cases, it follows that S is an edge-to-vertex detour basis of $K_{m, n}$ and hence $d n_{2}\left(K_{m, n}\right)=2$.
Subcase 2: Let $m=n$. It is clear that $D(u, z)=D(v, w)=2(m-1)$, $D(u, w)=D(v, z)=2 m-1$ and so $D(u v, z w)=2(m-1)$. Also $P: u, v$, $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{m-2}, y_{m-2}, z$, where $u, x_{1}, x_{2}, \ldots, x_{m-2}, z \in X$ and $v, y_{1}, y_{2}, \ldots, y_{m-2} \in Y$ with $w \neq v_{i}(1 \leq i \leq m-2)$ is a $u v-z w$ detour containing all vertices of $K_{m, n}$ other than the vertex w. Since w is incident with the edge $z w$, it follows that S is an edge-to-vertex detour basis of $K_{m, n}$. The proof of the converse is similar to that of Theorem 2.4(i).

Theorem 2.5. For the complete graph $K_{p}(p \geq 3)$, a set S of edges is a minimal edge-to-vertex detour set of K_{p} if and only if S consists of any two independent edges or S consists of all edges incident at any vertex of K_{p}.

Proof. For $p=3$, it is clear that a set S of edges is a minimal edge-tovertex detour set of K_{3} if and only if S consists of all edges that are incident at a vertex of K_{3}.

Let $p \geq 4$. If S consists of any two independent edges of K_{p}, then by Theorem 2.4(i), S is an edge-to-vertex detour basis of K_{p} so that S is minimal. If S consists of all edges incident at any vertex, say v of K_{p}, then since every vertex of K_{p} is incident with an edge of S, it follows that S is an edge-to-vertex detour set of K_{p}. We show that S is a minimal edge-to-vertex detour set of K_{p}. If T is a proper subset of S, then there exists at least one edge, say $e=v v_{1}$ of S such that $e \notin T$. Then it is clear that the vertex v_{1} neither lies on any detour joining a pair of edges of T nor is incident with any edge of T and so T is not an edge-to-vertex detour set of K_{p}. Thus S is a minimal edge-to-vertex detour set of K_{p}.

Conversely, assume that S is a minimal edge-to-vertex detour set of $K_{p}(p \geq 4)$. If $|S|=2$, then S is an edge-to-vertex detour basis of G and
so by Theorem 2.4(i), it is clear that S contains exactly two independent edges of K_{p}. Let $|S|=3$. Since S is minimal, it follows from Theorem 2.4(i) that no two edges of S are independent. Hence it follows that the subgraph induced by S is either K_{3} or the star $K_{1,3}$. If it is K_{3}, then since $p \geq 4$, it follows that S is not an edge-to-vertex detour set of K_{p}, which is a contradiction. Hence the subgraph induced by S is $K_{1,3}$. Since $p \geq 4$ and S is an edge-to-vertex detour set, it follows that the graph is K_{4} and S contains all edges incident at any vertex of K_{4}.

Let $|S| \geq 4$. We show that the subgraph induced by S can not contain K_{3}. Suppose that the subgraph induced by S contains K_{3}. Let v_{1}, v_{2}, v_{3} be the vertices of K_{3}. Since $|S| \geq 4$, there is an edge e in S different from the edges of K_{3}. Since S is minimal, it follows that the edge e is incident with a vertex, say v_{1} of K_{3}. Now the edges e and $v_{2} v_{3}$ are independent and it follows that S is not minimal, which is a contradiction. Thus the subgraph induced by S does not contain K_{3}. Since S is an edge-to-vertex detour set of K_{p}, it follows that S contains all edges incident at any vertex of K_{p}.

Theorem 2.6. For the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$, a set S of edges is a minimal edge-to-vertex detour set of $K_{m, n}$ if and only if S consists of any two independent edges.

Proof. Let S consist of any two independent edges of $K_{m, n}$. Then by Theorem 2.4(ii), S is an edge-to-vertex detour basis of $K_{m, n}$ so that S is minimal.

Conversely assume that S is a minimal edge-to-vertex detour set of $K_{m, n}$. If $|S|=2$, then S is an edge-to-vertex detour basis of G and so by Theorem 2.4(ii), it is clear that S contains exactly two independent edges of $K_{m, n}$. Let $|S| \geq 3$. Since S is minimal, it follows from Theorem 2.4(ii) that no two edges of S are independent. Since the graph is a bipartite graph, the subgraph induced by S can not contain K_{3}. Hence it follows that the subgraph induced by S is a star at a vertex, say v. Let v belong to a bipartite set X of $K_{m, n}$. Since $m, n \geq 2$, there exists a vertex $u \in X$ such that $u \neq v$ and it is clear that the vertex u is neither incident with any edge of S nor lies on a detour joining a pair of edges of S. Hence S is not an edge-to-vertex detour set of $K_{m, n}$, which is a contradiction. Thus S consists of two independent edges.

Theorem 2.7. (i) If G is the complete graph $K_{p}(p \geq 3)$, then $d n_{2}(G)=2$, $d n_{2}^{+}(G)=p-1$.
(ii) If G is the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$, then $d n_{2}(G)=$
$d n_{2}^{+}(G)=2$.
(iii) If G is a tree with k end-vertices, then $d n_{2}(G)=d n_{2}^{+}(G)=k$.

Proof. (i) This follows from Theorem 2.4(i) and Theorem 2.5.
(ii) This follows from Theorem 2.4(ii) and Theorem 2.6.
(iii) This follows from Theorems 1.9 and 1.10.

Problem 2.8. Characterize connected graphs G with $d n_{2}(G)=d n_{2}^{+}(G)$.
Theorem 2.9. For any cycle $G=C_{p}$ of length $p \geq 3$, we have $d n_{2}(G)=2$.
Proof. For $p=3$, the result follows from the Theorem 2.7(i). For $p \geq 4$, let $C_{p}: v_{1}, v_{2}, \ldots, v_{p-1}, v_{p}, v_{1}$ be the cycle of length $p \geq 4$. Let $S=\left\{v_{1} v_{2}\right.$, $\left.v_{p-1} v_{p}\right\}$. Then S is an edge-to-vertex-detour basis of C_{p} and so $d n_{2}(G)=$ 2.

Problem 2.10. Determine $d n_{2}^{+}(G)$ for a cycle G.
In view of Theorem 2.3, the following theorem gives a realization result.

Theorem 2.11. For every pair a, b of integers with $2 \leq a \leq b$, there exists a connected graph G with $d n_{2}(G)=a$ and $d n_{2}^{+}(G)=b$.

Proof. Let $a=b$. Then by Theorem 2.7 (iii), $d n_{2}(T)=d n_{2}^{+}(T)=a$ for any tree T with a end-vertices. Let $2 \leq a<b$. Let G be the graph obtained from the complete graph K_{b-a+2} by adding $a-1$ new vertices $y_{1}, y_{2}, \ldots, y_{a-1}$ and joining them to a vertex, say v of K_{b-a+2}. The graph G is connected and is shown in Figure 2.2. Let $v, v_{1}, v_{2}, \ldots, v_{b-a+1}$ be the vertices of $K_{b-a+2}, X=\left\{v v_{1}, v v_{2}, \ldots, v v_{b-a+1}\right\}, Y=\left\{v y_{1}, v y_{2}, \ldots, v y_{a-1}\right\}$ and Z be the set of edges of K_{b-a+2} which are not incident at v.

Figure 2.2: G
First, we show that $d n_{2}(G)=a$. By Theorem 1.9, every edge-to-vertex detour set of G contains Y. Clearly Y is not an edge-to-vertex detour set of G and so $d n_{2}(G) \geq|Y|+1=a$. On the other hand, let $S=Y \cup\{f\}$,
where $f \in Z$. Then $D(e, f)=b-a+1$ for any $e \in Y$ and $f \in Z$ and every vertex of K_{b-a+2} lies on a $e-f$ detour. Hence S is an edge-to-vertex detour set of G and so $d n_{2}(G) \leq|S|=a$. Therefore $d n_{2}(G)=a$.

Now, we show that $d n_{2}^{+}(G)=b$. Let $S=X \cup Y$. Then every vertex of G is incident with an edge of S and so S is an edge-to-vertex detour set of G. We show that S is a minimal edge-to-vertex detour set of G. Assume, to the contrary, that S is not a minimal edge-to-vertex detour set of G. Then there is a proper subset T of S such that T is an edge-to-vertex detour set of G. Since T is a proper subset of S, there exists an edge $e \in S$ and $e \notin T$. By Theorem 1.9, every edge-to-vertex detour set contains all end-edges of G and so we must have $e=v v_{i}$ for some $i(1 \leq i \leq b-a+1)$. Then it is clear that the vertex v_{i} neither lies on any detour joining a pair of edges of T nor is incident with any edge of T and so T is not an edge-to-vertex detour set of G, which is a contradiction. Thus S is a minimal edge-to-vertex detour set of G and so $d n_{2}^{+}(G) \geq|S|=b-a+1+a-1=b$. Now, if $d n_{2}^{+}(G)>b$, then let M be a minimal edge-to-vertex detour set of G with $|M|>b$. Then there exists at least one edge, say $e \in M$ such that $e \notin S=X \cup Y$. By Theorem 1.9, M contains Y and hence e is an edge of K_{b-a+2} such that $e \neq v v_{i}(1 \leq i \leq b-a+1)$. Thus $e \in Z$ and $S^{\prime}=Y \cup\{e\}$ is a proper subset of M. It is clear that S^{\prime} is an edge-to-vertex detour set of G so that M is not a minimal edge-to-vertex detour set of G, which is a contradiction. Therefore, $d n_{2}^{+}(G)=b$.

Remark 2.12. The graph G in Figure 2.2 contains exactly $(b-a+1) C_{2}+1$ minimal edge-to-vertex detour sets namely $X \cup Y$ and $Y \cup\{e\}$, where $e \in Z$. Hence this example shows that there is no "Intermediate Value Theorem" for minimal edge-to-vertex detour sets, that is, if k is an integer such that $d n_{2}(G)<k<d n_{2}^{+}(G)$, then there need not exist a minimal edge-to-vertex detour set of cardinality k in G.

Using the structure of the graph G constructed in the proof of Theorem 2.11, we can obtain a graph H_{n} of order n with $d n_{2}(G)=2$ and $d n_{2}^{+}(G)=n-1$ for all $n \geq 4$. Thus we have the following.

Theorem 2.13. There is an infinite sequence $\left\{H_{n}\right\}$ of connected graphs H_{n} of order $n \geq 4$ such that $d n_{2}\left(H_{n}\right)=2$, dn $n_{2}^{+}\left(H_{n}\right)=n-1$, $\lim _{n \rightarrow \infty} \frac{d n_{2}\left(H_{n}\right)}{n}=0$ and $\lim _{n \rightarrow \infty} \frac{d n_{2}^{+}\left(H_{n}\right)}{n}=1$.

Proof. Let H_{n} be the graph obtained from the complete graph K_{n-1} by adding a new vertex y and joining it to a vertex, say v of K_{n-1}. Clearly the graph H_{n} is connected and is shown in Figure 2.3.

Figure 2.3: H_{n}
Let $v, v_{1}, v_{2}, \ldots, v_{n-2}$ be the vertices of $K_{n-1}, X=\left\{v v_{1}, v v_{2}, \ldots, v v_{n-2}\right\}$, $Y=\{v y\}$ and Z be the set of edges of K_{n-1} which are not incident at v. It is clear from the proof of Theorem 2.11 that the graph H_{n} contains exactly $(n-2) C_{2}+1$ minimal edge-to-vertex detour sets namely $X \cup Y$ and $Y \cup\{e\}$, where $e \in Z$ so that $d n_{2}\left(H_{n}\right)=2$ and $d n_{2}^{+}\left(H_{n}\right)=n-1$. Hence the theorem follows.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading MA, (1990).
[2] G. Chartrand, H. Escuadro, and P. Zhang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput. 53 (2005), 75-94.
[3] G. Chartrand, G.L. Johns, and P. Zhang, Detour Number of a Graph, Util. Math. 64 (2003), 97-113.
[4] G. Chartrand and P. Zang, Distance in Graphs-Taking the Long View, AKCE J. Graphs. Combin., 1, No. 1 (2004), 1-13.
[5] G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi (2006).
[6] A. P. Santhakumaran and S. Athisayanathan, Weak Edge Detour Number of a Graph, Ars Combin.,98 (2011), 33-61.
[7] A. P. Santhakumaran and S. Athisayanathan, Edge Detour Graphs, J. Combin. Math. Combin. Comput., 69 (2009), 191-204.
[8] A. P. Santhakumaran and S. Athisayanathan, Connected detour number of a graph, J. Combin. Math. Combin. Comput., 69 (2009), 205-218.
[9] A. P. Santhakumaran and S. Athisayanathan, Edge-to-vertex detour number of a graph, Adv. Studies Contem. Math., 21 (2011), No. 4, 395-412.

Contact information

A. P.

Santhakumaran,
S. Athisayanathan

Department of Mathematics, St. Xavier's College
(Autonomous), Palayamkottai - 627 002, India
E-Mail: apskumar1953@yahoo.co.in,
athisayanathan@yahoo.co.in

Received by the editors: 23.11.2011
and in final form 30.11.2011.

