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NEURAL DISTRIBUTED REPRESENTATIONS
OF VECTOR DATA IN INTELLIGENT
INFORMATION TECHNOLOGIES

Introduction. Distributed representation (DR) of data is a form of a vector representation,
where each object is represented by a set of vector components, and each vector component
can belong to representations of many objects. In ordinary vector representations, the mean-
ing of each component is defined, which cannot be said about DR. However, the similarity of
RP vectors reflects the similarity of the objects they represent.

DR is a neural network approach based on modeling the representation of information
in the brain, resulted from ideas about a “distributed” or “holographic” representations.
DRs have a large information capacity, allow the use of a rich arsenal of methods developed
for vector data, scale well for processing large amounts of data, and have a number of other
advantages. Methods for data transformation to DRs have been developed for data of various
types — from scalar and vector to graphs.

The purpose of the article is to provide an overview of a part of the work of the Department
of Neural Information Processing Technologies (International Center) in the field of neural net-
work distributed representations. The approach is a development of the ideas of Nikolai Mik-
hailovich Amosov and his scientific school of modeling the structure and functions of the brain.

Scope. The formation of distributed representations from the original vector representa-
tions of objects using random projection is considered. With the help of the DR, it is possible
to efficiently estimate the similarity of the original objects represented by numerical vectors.
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The use of DR allows developing regularization methods for obtaining a stable solution of
discrete ill-posed inverse problems, increasing the computational efficiency and accuracy of
their solution, analyzing analytically the accuracy of the solution. Thus DRs allow for in-
creasing the efficiency of information technologies applying them.

Conclusions. DRs of various data types can be used to improve the efficiency and intelli-
gence level of information technologies. DRs have been developed for both weakly structured
data, such as vectors, and for complex structured representations of objects, such as sequences,
graphs of knowledge-base situations (episodes), etc. Transformation of different types of data into
the DR vector format allows unifying the basic information technologies of their processing and
achieving good scalability with an increase in the amount of data processed.

In future, distributed representations will naturally combine information on structure
and semantics to create computationally efficient and qualitatively new information tech-
nologies in which the processing of relational structures from knowledge bases is performed
by the similarity of their DRs. The neurobiological relevance of distributed representations
opens up the possibility of creating intelligent information technologies based on them that
function similarly to the human brain.

Keywords: distributed data representation, random projection, vector similarity estimation,
discrete ill-posed problem, regularization.

INTRODUCTION

The Department of Neural Information Processing Technologies of the Interna-
tional Research and Training Center for Information Technologies and Systems
of the National Academy of Sciences and the Ministry of Education and Science
of Ukraine (International Center) is the heir to the Department of Biological and
Medical Cybernetics, which was organized by Academician Amosov in 1962.

The main direction of research was considered by N.M. Amosov to be in the
development of efficient neural network information processing technologies
based on computer modeling of the principles of human thinking and features of
the neural organization of the brain [1], [2]. The information technologies are
intended for solving problems related to the field of Artificial Intelligence.

In this paper, we consider some of the research directions that have been
developed over the past 20-ty years. Other areas are discussed in [3], [4]. Since
the 1980s, the paradigm of associative-projective neural networks (APNNs) has
been developed in the department [5], [2]. The idea of APNNs is to combine the
hierarchical organization of the world model of Amosov with the advantages of
structurally sensitive distributed representations as well as assemblies of Hebb.

APNNSs are based on "distributed representations" of data of various types,
nature, and complexity. Distributed representation [7], [8], [9], [10], [11] is a
neural network approach based on modeling the representation of information in
the brain that stemmed from the ideas of “distributed” or “holographic” repre-
sentation of information.

Distributed representation (DR) of data is a form of a vector representation, where
each object is represented by a set of vector components, and each vector component
can belong to representations of many objects. In ordinary vector representations, the
meaning of each component is defined, which cannot be said about DR. However, the
similarity of the DR vectors reflects the similarity of the objects they represent.

Since DRs of various objects (from individual features to complex structured
episodes of knowledge bases that are represented by hierarchically organized
graphs) are vectors, a rich arsenal of methods developed for vector data can be
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applied to their processing. The computational complexity of these methods is
usually not too high. For example, the complexity of calculating many measures of
similarity of vectors is linear with respect to their dimension, while the complexity
of calculating the editing distance between graphs is NP-complex in the general
case. In addition, some types of DRs can reduce the complexity of computations
compared to the vector representations from which they are obtained by reducing
the dimension or using special formats for the DR vectors, such as binary and
sparse ones. Distributed representations based on random projections are effec-
tively used to regularize inverse machine learning problems, where the properties
of the input-output transformation matrix lead to solution instability. Note that
similar methods are being developed in areas known as "randomized algorithms",
"random projections", "hyperdimensional computing" etc.

The DRs of APNNs use binary vectors with {0,1} components, which we
call codevectors. Codevectors are sparse vectors, that is the proportion of non-
zero components of the codevector is small. This data representation format is
used in search engines, it allows one to achieve high efficiency of distributed
auto-associative memory [12], [13], [14] and it is also required for the operation
of APNNs. However, DRs can also be useful in the form of real-valued vectors
(of small dimension), if they increase the processing efficiency relative to the
initial representations of objects, such as vectors of high dimensionality, etc.

This article provides an overview of the distributed vector representations of
source vector data on the basis of random projection, developed at the Interna-
tional Center both for efficient estimation of similarity of the initial vectors and
for solving discrete inverse problems. The methods are protected by three pat-
ents and are used in information technologies for efficient processing of large
data sets (Big Data) based on similarity as well as for efficient and accurate
processing of signal information.

SIMILARITY ESTIMATION WITH DISTRIBUTED REPRESENTATIONS
OF VECTOR DATA BASED ON RANDOM PROJECTIONS

Real-valued distributed representation of vector data is based on random projec-
tions. Most electronic digital data can be represented in the form of matrices or
tables. For example, text corpuses for the purposes of search or classification are
considered as word-text matrices, where the columns are texts, and the rows are
words. The same information can be interpreted as a set of points in multidimen-
sional space. The dimension of space can be, for example, hundreds of thou-
sands (by the number of words in a language), and the number of points can be
millions and billions (by the number of Internet web pages).

Many methods and algorithms of information retrieval, classification, clus-
tering, approximation, learning, example-based reasoning, associative memory,
etc. use measures of differences and similarities of vectors, such as Euclidean
distance, scalar product, angle. Therefore, it would be useful to operate with
transformed vector representations that have similarities consistent with the
similarities in the original multidimensional vector space, but are more efficient
in terms of saving memory, processing speed, the possibility of using special
methods of data storage and processing.
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Such a transformation can be performed by using a perceptron-like neural
network. To solve the problems of classification, approximation, heteroassociative
memory and others, the weights of the connections of such networks are usually
tuned to the training set, starting with random weights. However, neural networks
with a random structural organization have a number of useful properties.

We transform the input data, represented as the input matrix A(D x N),
where N is the number of vectors, into the matrix U(d x N) by its feed, vector-
by-vector, to a single-layer perceptron (Fig. 1) with random connections repre-
sented as a matrix R(d x D), and thus performing U = RA. Note that for each
vector-result of multiplication, component-based binarization operation can also
be applied (see the next Subsection).

With a certain choice of R, by the resulting wvectors (that is, by the
d-dimensional column vectors of the matrix U), the distances between the original
D-dimensional vectors in A can be calculated with high accuracy and computa-
tionally efficiently, even with d << D. For example, this is true for a random ma-
trix R whose elements are formed as realizations of a Gaussian random variable.

Note that the components of the input vectors in our example with the presenta-
tion of texts had explicit semantics, i.e., the component corresponded to the word, and
its value was a function of the occurrence frequency of the word in the text. The com-
ponents of the output vectors corresponding to the texts no longer have such semantics
of the components. However, similar output vectors correspond to similar input vec-
tors. Such vectors are an example of distributed representations.
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Fig. 1. Single-layer perceptron for transforming
vector data by random projection
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Random numbers in the floating point format required to represent Gaussian
random variables are computationally difficult to generate, and they occupy a lot
of space. Obviously, the simplest embodiment of the elements of random matri-
ces are binary random variables with values of 0 and 1. They can be easily gen-
erated and stored. Then multiplication by a binary matrix is reduced to addition,
that is, computationally simple. Note that binary random matrices in a neural
network implementation are simply the set of present or missing links (of equal
weight) between two pools of neurons. Therefore, of interest are methods of
generating DRs using random binary matrices.

To transform the input vectors given in the floating-point format to the out-
put vectors in the same format, we proposed to use projection by a random ma-
trix with binary elements from the set {0, 1}. The element of the matrix takes
value 1 with probability ¢, and the value 0 with probability 1 — ¢. To center the
result of the multiplication, we subtract ¢ 2. ;- p a; from it. Centering can also be
provided by a binary matrix with the elements p; = r; — g. The analysis was car-
ried out for such a matrix, and its results are close to the experimental results for
the initial binary (sparse) matrix.

The output vectors allow estimating the scalar product and the Euclidean
distance, as well as the Euclidean norm of the original vectors. The computa-
tional efficiency of the estimate increases as the dimension of the output vectors
decreases. The error of estimating these similarity-difference measures was ana-
lyzed analytically and experimentally.

To compare the error of estimating the scalar product and the Euclidean dis-
tance by vectors after a random projection, it is informative to use the normal-
ized standard deviation (coefficient of variation), i.e. the ratio of the root of the
variance of the estimate to its expectation.

In [15], [16] it was shown that for the scalar product, the coefficient of
variation Var“z{(a,b)*} / E{(a,b)*} is equal to

(ab)y ™)' [(E{p"} / E{p’} —3) Tpro (@h)’ + (ab)” + [|alf|b]* 1"
and the square of the Euclidean distance Var'”{|ja— b||**} / E{[a— b|[**} is equal to
(la—bl*d"*) " [ (E{p"} / E*{p*} =3) Xip (@ =)' +2 [la—b|* 1"

Here p is a random variable, an element of the random matrix R (taking
centering into account). Thus, for different distributions of p, we obtain various
expressions for the coefficient of variation.

For a Gaussian random matrix i.i.d. elements, the value E{p*} / E*{p*} =3 [15].

For the binary random projection matrix under consideration (taking center-
ing into account), it can be shown [16] that E{p*} / E*{p’} = 1/(¢ — ¢°) — 3. For a
ternary matrix with elements from {-1/¢"% 0, +1/¢"?} with probabilities
{q/2, 1 —q, q/2} we get E{p*} / E*{p’} = 1/q.

Let's compare the estimation errors obtained by projecting binary and ter-
nary random matrices. The ratio E{p*} / E*{p’} for a binary random matrix is
less than for a ternary one (1/(g —¢*)—3 < 1/q) when ¢ < 2/3. Therefore, for
q <2/3 the error of estimates obtained after the binary random projections that
we propose is smaller than after ternary random projections at the same prob-
ability ¢ of a nonzero matrix element (Fig. 2).
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Fig. 2. The value E{p*} /E*{p’} — 3 vs the probability ¢ of a nonzero
element of the matrix. Binary matrix (Bin), ternary matrix (Tern),
Gaussian matrix (Norm)

Let us compare the error estimates for the binary and Gaussian random matri-
ces. Since 1g—qg>)—6<0 for 12— 1/2V3)< g< 12+ 1/(2\3) (ie., for
q ~[0.2112, 0.7887]), then binary random projections provide in this range the accu-
racy is higher than Gaussian (the greatest gain is achieved when ¢ =0.5). On the
other hand, projection acceleration requires g << 0.5, where the binary matrix loses
due to the presence in the error of the terms with positive coefficients at
2i=1D (ab;y’ and 2i=1p (a;—b;)". However, when D >> 1, their contribution is
small (for data with a finite fourth moment), therefore, we obtain an accuracy com-
parable to the accuracy of Gaussian random projections, and for the case g << 0.5.

As for other types of random projection matrices, the error decreases with in-
creasing dimension d of the output vectors ~1/d"*. Computational efficiency increases
with decreasing g (with increasing "sparseness” of the binary projection matrix). In
order to preserve the accuracy of estimates, the input vectors must have a sufficiently
large dimension, as is assumed by the very formulation of the problem of efficiently
evaluating the similarity of multidimensional vectors.

Binary distributed representation of vector data based on random projec-
tions. Let us apply in the output neurons of the perceptron network (Fig. 1) the bi-
narizing threshold transformation u — z: z;=1 when u;>¢ and z;=0 when u; <t,
where #>0 is the threshold value for the i-th component of the output vector,
i=1,..d

The degree of sparseness of binary output vectors is governed by the thresh-
old value. Moreover, the number of bits to represent binary vectors may be less
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than the number of bits per floating point representation of the vectors, even if
the dimension of the binary vectors is larger.

After binarization u — z; with a threshold #, and v — z, with a threshold #,,
we determine the probability of coincidence of the unity components z;; = 1 and
z,; =1 of the codevectors z; u z,. For standardized random variables (u,,v;), this
probability is the probability of a simultaneous excess of the threshold values by
the quantities #; and v;. The probability value is determined by the integral of the
two-dimensional Gaussian distribution:

pjoin(e) El)(Zl,i = 1, ZZ,i = 1 | 99 tl: tZ) :p(ul 2 tl: Vi 2 tZ | ea tla t2) =

2 2
Ny —2nmacos H+n;
.[ .[ 2(1-cos0)

dnydn;.
2n(1 cos26)

nit

Thus pjoin is a function of angle 0. From the pj.in value, we can obtain the
angle 6 as 0 = g(pjoin), Where g is the function inverse to the function pjein(0).

Therefore, 6 can be estimated as follows:

— tabulate the pjoin(0) function;

— transform the input vectors into output codevectors z, and z,, as indicated
above;

— estimate pjoin as (Z1, z2)/ d;

— find in the tabulated table the value pj.in closest to (z;, z,)/d and use the
corresponding angle 0* as the estimate of 0.

To standardize random variables (u;,;) for matrices R from a symmetric distri-
bution (e.g., Gaussian or ternary distribution with elements from {-1, 0,+1}, it is
sufficient to apply scaling. For binary R it is also necessary to center, which is per-
formed by subtracting ¢ -1 a;, and scaling is done by dividing by (g — ¢*)" ||a].

The binarization threshold was chosen above under the assumption of a
Gaussian distribution, and the relationship between pj,i, and cos O was made
under the assumption of a two-dimensional Gaussian distribution. When pro-
jected by binary R, the distributions are not Gaussian, but they converge to
them. Analytically and experimentally we investigated the convergence of the
distribution of the components of the real-valued vector, i.e., the result of the
random projection, to the Gaussian distribution, and the rate of convergence. For
this, the Lyapunov fraction of the third order (denoted by Lp) was used. For the
sum of D random variables obtained by multiplying the input vector a by a row
of the random matrix, the Lyapunov fraction can be represented as a product of
two fractions, L, and L,:

__ E{r-E{nl} Xiila |:LL I = E{|r—E{r} '}
COEr-EEHD? llalh T (B{ =B P
_Xla 0
T Jals
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The fraction L, depends on the input vector a and on D and does not depend
on the type of random matrix R, and the fraction L, depends on the distribution
of random variables used in R.

According to the strong law of large numbers, the sample average of D re-
alizations of independent and identically distributed random variables converges
almost surely to the expected value (if it exists and finite) at D — oo. Apply this

I Z20a, P /D
D2 (Z?:l la, 2/ D)y :

We assume that the components g; of the input vector a are realizations of
random variables with a finite third absolute moment E{|q,-|3} < oo, Then the
moments of smaller orders are also finite, in particular, E{|q,-|2} < o0, We use the
strong law of large numbers for r.v. |a_,-|3 and for r.v. |a_,-|2 . We obtain that when
D — oo, then X1 p la)f* /D — B{laf} <coand X ;-1 p laf’/ D — E{la)’} <.

Therefore, L, converges as follows:

1 z_?:l ‘aj |3 /D c E{| a; |3}

c=

= —> . T e———
a D1/2 (ij:l |aj |2 /D)3/2 DI/Z (E{|al |2})3/2

to L,. Represent L, as L, =

Now consider L,. It is easy to see [17] that for binary R the absolute
central moments are equal to E{r— ¢f}= (¢g—¢) (1- 2(¢— ¢°) and
E{jr— g} = g—¢*. We obtain the expression for the fraction L,= (1 — 2¢g+
+2¢%) /(g —¢»)". Since 0< g < 1,then 1/2<1-2g+2¢*<land L, < 1 /(g — ¢")".

Therefore, for a binary random matrix, the behavior of the entire Lyapunov
fraction Lp is determined by the expression (1/(¢— ¢°)/D)"* when D — oo.
Convergence to a Gaussian distribution occurs if the expression tends to zero,
that is, if 1 /(g — ¢*) = o(D).

The rate of convergence of the cumulative distribution function of the sum
of independent random variables to the Gaussian cumulative distribution func-
tion can be estimated by the Berry-Esseen inequality. Its use in this problem is
considered in [17]. The rate of convergence of the distribution of the compo-
nents of a real-valued vector (the result of random projection) to the Gaussian
distribution was studied analytically and experimentally for random matrices
with discrete elements from {1, 0, 1} (ternary matrices) and from {0, 1} (binary
matrices) Using sparse random binary or ternary matrices instead of Gaussian
random matrices allows obtaining output codevectors whose properties are simi-
lar to the properties of codevectors obtained using Gaussian matrices, when the
dimension of input vectors is sufficiently high.

For binary and ternary random matrices, the experimental estimates of the
difference between the distribution of u# and the Gaussian distribution for the
entire range of parameters studied are significantly less than the analytical limit
values calculated by the right-hand side of the Berry-Esseen inequality. Experi-
mental results for binary and ternary matrices are close to each other, the same is
observed for analytical results.

Experimental results show that with the input vector dimension D = 1000,
the difference between empirical and Gaussian distributions becomes close to
the error level obtained due to the estimation of empirical distributions by the
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finite sample. This was observed for the studied probabilities g = {0.5, 0.1, 0.01}
of nonzero elements in random matrices.

The obtained results show that for parameters for which the empirical dis-
tributions are not very different from the Gaussian ones, the experimental and
analytical errors in the angle determination by the output binary codevectors are
also small. With the dimension of the input vector D = 1000, the experimental
and analytical errors are close for all parameters studied. It follows that in appli-
cations it is necessary to comply with the condition Dg > 10.

Obviously, the smaller g, the greater the possibility of accelerating the im-
plementation of vector projection. In this case, the projection by the binary ma-
trix is potentially more efficient than by the ternary one, and even more so than
by the Gaussian matrix.

We investigated [18] the estimates of similarity measures for real-valued
vectors by binary codevectors obtained by projecting with a random binary ma-
trix and then using the output threshold transform that allows us to adjust the
degree of sparsity (the fraction of non-zero components) of binary codevectors.
The similarity of binary codevectors was estimated by measures based on dot
product (normalized to the codevector dimension).

The values of these codevector similarity measures decrease monotonically
with increasing angle between the original real-valued vectors, and allow us to
estimate the angle 0. The estimate together with the knowledge of the values of
the Euclidean norms of the original real-valued vectors |a|,, |[b||, also made it
possible to estimate their dot product (a,b)* = ||a|| ||b|| cos 6* and Euclidean
distance ||a —b|*= (||a||> + ||b|* — 2 ||a|| ||b]| cos 6%)"%. The dependences of the
error in estimating the angle, the scalar product, the Euclidean distance between
the input real-valued vectors, on the angle value between them were analyzed
analytically and experimentally.

To determine the expectation and variance of the angle estimate from the es-
timate pjoin™ = (21, Z,)/ d the linearization of the function of the random argument
(delta-method) was used. The number of matching unit components |A A B]
codevectors A = A(a) and B = B(b) of dimension d has a binomial distribution
with probability of “success” pjoin and d degrees of freedom, i.e. with the expec-
tation value dpjin and the variance dpjoin(l —pjoin). The estimate of
Pioin = sim(a,b) by the empirical probability (or sample mean) pj,in* = |A A B|/d
is unbiased: E {pjoin*} = E{|A A B|/d} = E{|A A B|}/d = dpjoin/ d = Pjoin.

Returning to the estimate sim* by pjoin*, we get E{sim*} = g(E{pji*}) and
Var{sim*} = (g'(E {pjom*}))2 Var{pjoin*}, with E{pjoin®} and Var{pj,n*} calculated
as above. An approximate value of the derivative of g'(E {pjoin*}) can be determined
for g specified using tabulation.

Errors of estimates by |A A B|/|[A| and by 1 — |A @ B|/d (where @ is the
component-wise XOR operation) are obtained similarly. The error values for
binary and ternary random matrices are close for the studied parameter values.
However, the proposed computational implementation of the transformation
using a binary random matrix makes it easier.

A promising topic of further work is to study the effect of modifications of
the proposed methods on the accuracy of similarity estimates, for example: using
the real fraction of non-zero elements in the matrix as well as in its rows and
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columns instead of the probability of non-zero elements; the use of random ma-
trices with a fixed number of randomly located non-zero elements in the entire
matrix, as well as in its columns; taking into account the real fraction of non-
zero components in the output binary codevectors when estimating the angle
based on their dot product.

DISTRIBUTED REPRESENTATIONS BASED ON RANDOM PROJECTIONS
FOR REGULARIZATION OF INVERSE PROBLEMS SOLVING IN MACHINE LEARNING

In problems of statistics and machine learning, a situation often arises when the
solution by existing methods is unstable, i.e. small changes in the input data
(conditions of the problem) lead to a large change in the solution. Such unstable
solutions are inaccurate and cannot be used in practice. To remove the instability
of the solution, the regularization approach is used.

Regularization imposes stability constraints on the sought solution. For exam-
ple, a compromise of accuracy and stability is provided by choosing a regularization
parameter that weights the ratio of the magnitude of the norm of the difference be-
tween the vectors of the reconstructed and the observed output, as well as the magni-
tudes of the norm of the solution vector (that is, the reconstructed input).

Our studies of the regularizing properties of random projection has begun
since 2009 [19]. Later other researchers began to explore the regularizing prop-
erties of random projection, for example, for classification problems and ma-
chine learning [20], and, more recently, for solving inverse problems [21]. Since
the approach of random projection, along with improving the accuracy of the
solution by regularization, reduces the computational complexity of the solution,
we have managed to develop algorithms that provide an accurate and fast solu-
tion for discrete inverse problems [22], [23], [24], [25], [26], [27], [28].

Let us consider in more detail the regularization of the inverse problem
based on random projection. In many practical applications, signal transforma-
tion is described by a linear model of the form y = Ax + g, where the matrix
A € RV and the measurement vector y € R" (y =y, + &, yo = AX) are known.
The components of the noise vector € € R" are realizations of independent
Gaussian random variables with zero mean and variance o*. The signal vector
x € R" has to be estimated.

In the case when y contains noise and the series of singular numbers of the
matrix A smoothly drops to zero (with A having a high conditionality number),
the problem of estimating x is called the discrete ill-posed problem (DIP) [29].
For DIP, the solution (estimate of signal x) obtained on the basis of a pseudo-
inversion as x* = Ay, where A" is a pseudoinverse [30], [31] is unstable and
inaccurate. To overcome the instability and improve the accuracy of the solution,
a regularization approach is used.

One of the approaches to ensuring the stability of solving ill-posed problems
is the use of an integer regularization parameter, which is the number of sum-
mands in the model (linear with respect to parameters) approximating the origi-
nal data. To obtain a stable solution (estimation x*), such methods as truncated
singular value decomposition [32], truncated QR decomposition, and the method
based on random projection [25], [26], [33] can be used.
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To obtain solution based on random projection, both sides of the original
equation are multiplied by the matrix R, € R** resulting in the equation

RkAX = Rky,

where (RiA) € R*Y, (Ryy) € R*. The vector of the recovered signal is obtained as
x; = (RA)Ryy.

As a random matrix R we use:

e the matrix G;eRY whose elements are realizations of a random vari-
able with a Gaussian distribution, zero mean and unit variance;

e the matrix QueR“" obtained by QR decomposition of GA matrix
(GA=QR);

o the matrix Q,eR*" obtained by SVD decomposition of G matrix
(G =Qz¥").

3
Similar to estimating x based on truncated SVD X, g, = ZV sTuly
i=1
(where u; € R", v; € R" are left and right singular vectors, s; are singular val-
ues), an estimate based on random projection can be represented by a linear
model of the form [26]:

k
_ T
X R _Zhiri Yy,
i1

where r; € R” is the column of the matrix R, = [r,,...,r,], which is the result of a
SVD of the matrix R, whose elements are random variables with a normal dis-

tribution; h; € R" is the column of the matrix (Q{A)+ =[h,,...,h, ]. Experi-
mental studies have shown that there is an optimal number £ (k < N) of the R

2
. . . . * . .
rows, which minimizes the error e = HX - X, H of the true signal recovering.

Fig. 3 shows an example of the x recovery error ¢ xQ (and its components
e xQ 1 and e xQ_2) dependencies on k for the Phillips problem for three noise
levels {1072, 107, 107},

In reality, it is impossible to calculate the error e, (k) due to the lack of in-
formation about x; therefore, it is impossible to directly determine the optimal £.
To select & close to optimal, use the model selection criterion (MSC), i.e., a
function that has an extremum when £ is close or equal to optimal ([35], [36]).

When creating a MSC for solving DIP, it is required:

— to present an error in the form of the sum of two error components;

— to show increasing and decreasing of error components;

— to show that the dependence on k of the recovery error of x and of the re-
covery error of y, has the global minima that coincide or are close;

— to obtain an expression for estimating the recovery error of y, using the
known measurement vector y.

Search for the optimal number of rows of a random matrix. In [23], expres-
sions for the recovery error of x were obtained for the random projection method:

e = H(F,:Fk - I)XH2 +c’trace(F;"'F,)
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Fig. 3. Recovery error and its components vs the number k&
of the random matrix rows

as well as for the recovery error of y:
e, :“(AF,:QE —I)yOH2 +o’trace(F;"ATAF;).

The number of columns N of the matrix Qy is determined by the size of the origi-
nal matrix A. The number of rows £ is not fixed a priori and can vary from 1 to N. The
dependence of the error components (e,, e,) on the number of rows & of the matrix Q
was analytically studied in [25]. Such a study is based on the representation of the

matrix F, = QzA as the sum of the original matrix and the perturbation matrix.

In order to study the behavior of the components of the error e, depending
on k, we write the expression to get F,” in a recursive form. To do this, we use
the representation of the perturbation of a pseudo-inverse matrix through the
perturbation of the original matrix, proposed by Stewart:

B"'-A"=-B'P,ER A" +B'P,P, -R;R A",

where B=A +E, E is the perturbation matrix, P, = AA™ is the projector on the
subspace of column vectors of the matrix A, R , = A" A is the projector on the sub-

space of row vectors of the matrix A, P; =I-P, and R, =I—R , are the pro-

jectors on the orthogonal complement of these subspaces, respectively.

Based on this representation, recursive expressions are obtained for the stochastic
and deterministic components of the true signal recovery error. These expressions are
a tool for studying the tendencies of (increasing, decreasing) behavior of the error

components depending on k. The matrix F, = QZA is formed as:

F 0 F
Fk{ kl}{ kl}z[ kl]
0, f, f,
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where F,_; eiRHXN, the row vector f; = q;A has dimension £, qy is the row of the
matrix Q = [ql,...,qk]T, O, is the zero submatrix size of (k— 1) x N. As a per-
turbation of the matrix F;_;, we consider a matrix E;e RN containing one non-
zero k-th row f,, which is added at the k-th step.

In [25], recursive expressions for the stochastic and deterministic error
components were obtained. For the stochastic component of the true signal re-
covery error, the recursive expression has the form:

e (k)=c’trace(F'F)=e, (k-1)+0c’tracc(M;, M, )+c’d,,

where M,_, =f/f.F,, d =1 "f  If f_ isnonzero then d, =f,'f} > 0.
For a non-zero M,_, we have trace(M, M, _,) > 0. Therefore, the value

of the stochastic component of the error increases with increasing k.
For the deterministic component of the true signal recovery error, the recur-
sive expression has the form:

e,(k)=x"x—x"F/Fx=e_(k—-1)-x'f/f (I-F _F,_)x.

As shown in [25], the matrix f, f, (I—F, |F, ) can be obtained by the

product of the column-vector (f, (I—F,,F,_,))" and the same (not transposed)
row vector divided by the square of its norm. Therefore, for non-orthogonal x
and f, (I-F F, ), the value of the deterministic component of the true signal

recovery error decreases with increasing k.

An experimental study demonstrating a decrease in the deterministic com-
ponent and an increase in the stochastic component of e, the proximity of the
global minima of the e.(k) u e, (k) dependences, was carried out in [25]. The cri-
terion for selecting the model x;z* when solving DIP based on random projec-
tion, which is an approximation of the output vector recovery error e,, was ob-
tained in [26]:

2
CR, = E|(AF;Q; ~Dy| - o trace((AF; Q] —-I)" (AF; Q] ~)) +
+ o’trace(F;" A" AF,)

Fig. 4 shows graphs of the values of the CR, criterion, the average output
recovery error (e,"~"), and the average true signal recovery error (e," ") vs k for
the Carasso problem. The graph lines corresponding to the CR, criterion and the
average recovery error of y, are close, so the MSC CRq well approximates the
recovery error of the output yo. The positions of the minima are also close.
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Fig. 4. Dependences of CRq(k), e,(k) and e,(k), for the
noise level of 5x107*

Reducing the input vector recovery error. The accuracy of the DIP solu-
tion by the method of random projection depends on two independent random
variables. The first one is the additive noise in the output vector (whose distribu-
tion is assumed to be Gaussian, and the variance is generally unknown) and the
second one is the random variable that forms the random matrix (Gaussian dis-
tribution with the unit variance, in the studied case). Changing the number of
rows k of the random matrix leads to a change in the accuracy of the DIP solu-
tion. In the absence of noise in the output vector, an increase in the number of
rows of a random matrix leads to a decrease in the solution error. Noise in the
output vector leads to the appearance of an error component, the value of which
increases with increasing number of rows of a random matrix. Therefore, the
dependence of the error of the DIP solution on the number of rows of the ran-
dom matrix has a minimum at k£ <N (at certain noise levels). In order to make
the dependence of the error on the number of the random matrix rows more
smooth and thereby facilitate the search for the minimum, in [22], [23], [24],
[25], [26] we performed averaging over noise in the output vector. Experimental
studies [23], [26] showed that averaging over random matrices leads to a
smoothing of the ex(k) dependence and a decrease in the number of local min-
ima. Analytic averaging over random matrices can lead to simpler expressions
for eg(k), facilitate further analytical research and improve the accuracy of the
method of DIP solving based on random projection.

In [34] important results were obtained related to averaging (finding the ex-
pectation) over random matrices R, of expressions of the form:

E.{R;(R,BR;)'R,}, E,{R/(R,ZR]) 'R},

where BeR"" is any symmetric positive semidefinite matrix, Z € R is the
diagonal matrix of the eigenvalues of the matrix B. In particular,

E.{R;(R,BR;)'R,} =UE,{R;(R,ZR]) 'R }U".
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Fig. 5. Theoretical values of the elements of the diagonal of the
matrix D; for the Carasso problem

For the structure of the form R, (R,ZR;)'R,, in [34] it is shown that
E.{R(R,ZR))'R,} =diag(Ai,....Ams.. s M., 1) = DY(Z,y,),

that is, Di(Z,,) (NxN) is diagonal, where A; = p/(1 + ps;>), p = const.

Averaging over random matrices leads to the diagonalization of the matrix
included in both error components (deterministic and stochastic).

An experimental study of DyZ,) showed that the sequence A,...,A, is
bounded by the sequence $172,...,5m > from above and that several initial values
of the diagonal of the matrix D approach s, > with great accuracy. For example,
for the Carasso problem the values of the diagonal elements of the matrix Dy for
k= {2, 3, 6,9, 13} are shown in Fig. 5, where 572 and M are also shown. The
values of the diagonal elements vary monotonically with k. This leads to a
smoothing of the e.(k) and e (k) dependences and to a decrease in the number of
local minima. The results of an experimental study showed the connection of the
element values of the diagonalized matrix with the singular values of the original
one, which creates the basis for the study of the relationship of the truncated
SVD and random projection.

To average the e, error over random matrices, the error components were
transformed so that they include the matrix structure of the form

R, (R,AA'R}) 'R, and then averaging was performed:

Epfe,} =Epfe, ) +Eple, J =X x X A'E,{R; (R, AA'R;) 'R, JAX +
+o’trace E,{R; (R, AA"R)'R,},

E {e} =x'x—x"VS’D,V'x + c’trace(UD,U").
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The resulting expression for E, {e} does not allow us to identify the entire struc-

ture of the error. The bias and variance of error that appear due to averaging over the
realizations of the random matrix are not explicitly presented and therefore cannot be
analyzed. In [33] expressions for the error were obtained in a form that allows us to
propose a method for solving the DIP with a reduced error with respect to the random
projection method [23], [25]. By analogy with the works that studied bias and variance
of the error arising due to the presence of additive noise in the output vector, we call

the component e,, = ||X - i”z as the squared bias, and e, = Hi - (RkA)+Rka2

as the variance of the vector x (input) recovery when averaged over random matrices
R;. In [33], the bias and variance components were obtained by averaging the error e,
over the realizations of the random matrix R;. Bias and variance of the input vector
Tecovery error are
2

b

ey =b"UD, U~ [ATUD,UD[", ey, =[x~ %] =[x~ A"UD, U

where X = E, {(R,A)'R,b} =A"UD,U'b.
The input vector x recovery error, averaged over random matrices is
Eleq) = egs + ¢y =[x ~ATUD,U"D| +b'UD,U"b - [A"UD,U"D| .

From the expression for E,{e,} it can be seen that the recovery error of the

input vector without averaging over noise can be reduced by the variance value
eyr (resulting from multiplication by a random matrix and subsequent averag-
ing). To do this, the recovery of the input vector should be performed as

X=A"UD,U"b , where U was obtained from SVD-decomposition A=ASV",
and D, was obtained as E ,{R; (R,S°R}) 'R, } = D, . Indeed, this gives us an

error that coincides with the squared bias in E,{e,}:
~112 T T 2
epp =[x~ =[x - ATUD,U"D| .

Let us call the method of solving DIP according to X = A" UD kUTb as the

deterministic method based on analytical averaging of random projection (DRP).
From expression epy it can be seen that the error of the input vector recovery,
when noise-averaged

E {Epxfex}} =E {eg}+E g} =E.{

+E,{b"UD,U"b~|A"UD,U D[’}

x~ATUD,U"b| "} +

is greater than the error epg, when noise-averaged averaged, i.e.

E {epr} =E.{

x-%[} =E, {x - A"UD,Ub|"}.
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A function approximating the output vector recovery error of the DRP
method was obtained in [33]:
T T 2 2 T T T T T
CRpy =E, {|(AA"UD,U" Db } - o trace((AA"UD, U" 1) (AA"UD,U" - 1)) +

+ o trace((AA"UD, U" )" AATUD U").

Averaging over random matrices leads to further smoothing the dependence
of the error on the size & of the random matrix [23], [26].

Analytical averaging over random matrices allowed us to analyze the bias
and variance of errors that appear due to averaging over the realizations of the
random matrix, and to obtain an estimate of the input vector that provides
greater accuracy of the DIP solution relative to the estimate obtained by averag-
ing both over noise and over the matrices.

An experimental study [33] showed that the proposed estimate of the input
vector provides a solution accuracy that is very close to the accuracy of the trun-
cated singular value decomposition method. However the dependence of the
error on k is smoother than for the truncated singular value decomposition. It is
assumed that the resulting smoothness can be used to improve the accuracy of
the DIP solution in real problems due to a more accurate choice of the optimal
dimension of the model by the model selection criteria.

CONCLUSIONS

This article provides an overview of some of the research of the International
Center in the field of neural network distributed representations. The formation
of distributed representations from the original vector representations of objects
using random projection is considered. Distributed representations allow one to
efficiently estimate the similarity of the original objects. They can also be used
in linear classifiers to perform an effective classification of objects whose repre-
sentations are not linearly separable in the input space [37], [38], [39], [40]. The
use of distributed representations formed by random projection allows increasing
the computational efficiency and accuracy of information technologies based on
solving discrete ill-posed problems [41], [42]. The solution accuracy of discrete
ill-posed problems was investigated analytically, [25], [26], [33]. These devel-
opments are protected by three patents.

We note, however, that distribution representations include not only random
projection based methods [15], [16], [17], [18], [43], [44], [45] but also a num-
ber of other representation schemes for vectors, such as those based on receptive
fields of other types [46] or compositional methods [47], [48], [49], [50]. DRs
can be used to represent certain types of images using a special type of LiRA
receptive fields [51], [52], [53]. One of the promising research directions could
consist in using DRs in the texture segmentation problem [54], [55], [56] and in
classification of satellite optical and SAR images [57], [58], [59].

For a long time it was believed that the main drawback of distributed repre-
sentations is the inability to represent structure. Recently, however, DRs have
been developed for complexly structured representations of objects, such as se-
quences [60], [61], [62], [63], [64] or graphs of situations (episodes) of knowl-
edge bases, etc., e.g. [65], [66], [7], [8], [3]-
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Thus, distributed representations built on the basis of ideas about the repre-
sentation of information in the brain, when used in information technologies,
increase their computational efficiency by converting data of different types —
both unstructured information in the form of vector arrays and relational struc-
tures of knowledge bases — into a special format of vectors. In addition, distrib-
uted representations allow naturally combining information about structure and
semantics, giving a basis for creating computationally efficient and qualitatively
new information technologies for processing relational structures from data and
knowledge bases. The neurobiological relevance of distributed representations
opens the way to the creation on their basis of intelligent information technolo-
gies that function similarly to the human brain.
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HEMPOMEPEXXEBI PO3IO/IUIEHI ITOJAHHS
BEKTOPHUX JAHUX Y IHTEJIEKTY AJIbHUX
[HOOPMAHIMHUX TEXHOJIOT'TAX

Beryn. Posnoainene momanust (PIT) manux — ¢Gopma BEKTOPHOTO TOJAHHS, J€ KOXHHN
00'eKT HagaHO OE3MMiY4I0 KOMIIOHEHTIB BEKTOPA i KOXKHUII KOMIIOHEHT BEKTOpa MOXKE Halie-
JKaTH TIOJITaHHIO OaraTthox 00'ekTiB. Lle HelipomepekeBHil MiAXia, OCHOBaHHUI HAa MOJCIIOBAH-
Hi mojaHHs iH(popMalLii B MO3KY, JI0 SIKOTO TpUBeNH i1ei npo "posnozinene” abo "romnorpa-
¢iune" noganus. PIT maroTh Benuky iHpopMaliliHy €MKicThb, Jal0oTh 3MOTY 3aCTOCOBYBaTH
GaraTuii apceHan METOMIB, PO3pOOICHUX I BEKTOPHUX JaHUX, J0Ope MaclTaOyloThCs JUls
00poOICHHST BETMKUX OOCATIB JaHUX, MAlOTh HU3KY IHIIMX NepeBar. MeTou nepeTBOPeHHS
B PIT po3po0iieHo At TaHUX PI3HOTO THITY — BiJl CKAJIIPHUX 1 BEKTOPHUX J0 TpadiB.

Mera cTaTTi — HaJaTH ONKMC YaCTHHU POOIT BIAAUTY HEHPOMEPEIKEBHX TEXHOJOTIH
00pobnenns iHpopmanii MixkHapoaHoro LleHTpy B rairysi HelipoMepeKeBOro po3noIiIeHOro
nojanHs. [linxin € po3BuTkoM inelt akagemika M.M. AMocoBa i HOro HayKOBOi IIKOJIM IIPO
MOJIEIOBAHHS CTPYKTYPH 1 QYHKLIN MO3KY.

PesyabTaTu. Po3risHyTo opMyBaHHS pO3IMOIiIEHOTO MOJAaHHS 3 TOYaTKOBOTO BEKTO-
PHOTO TOAaHHS 00'€KTIB 3a TOIOMOTH BUIIAIKOBOTO TPOEKTyBaHHs. 3a goniomoru PIT MoxxHa
e()EKTHBHO OI[IHIOBATH CXOXKICTh MOYATKOBUX 00'€KTIB — YHCIIOBHX BEKTOPIB, L0 A€ 3MOTY
PO3POOIIATH METOIM PETYISIPU3AIii ISl OTPUMaHHS CTIMKOTO PIIEHHS JUCKPETHUX HEKOPEK-
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THUX OOCpPHEHUX 3a/ay, IIiJBUIIUTH OOYUCIIIOBAIbHY e€(QEKTHBHICTH 1 TOYHICTh IX
PO3B’s13aHHS, aHAIITHYHO JOCIIKYBAaTH TOYHICTh PIlICHHS.

BucnoBku. PII nanux pi3HUX THUIIB Moxe OyTU BUKOPHCTaHO IJIS IiJABUILECHHS edek-
THUBHOCTI Ta PiBHS IHTEICKTYyaJIbHOCTI iHQOpMaliiHuX TexHoiorid. Po3podneno PIT sk mis
c1abo CTPYKTYpOBaHMX HAaHMX (BEKTOPH), TaK i JUIL CKIAAHO CTPYKTYPOBAaHOIO HOJAHHSI
00'exTiB (IMOCIIIOBHOCTI, Tpadu cuTyallii (emi3oai) 6a3 3HaHb TOIIO). [lepeTBOpEeHHS pi3HO-
TUIHUX JaHUX B BeKTopHUH ¢opmar PII nae 3mory yHidikyBatu 6a30Bi iH(popMaliiHi Tex-
HOJIOTIT X 0OpOOJIEHHS Ta OMOTTHCS HAAIHHOI MaciTaboOBaHOCTI 3i 30UIBLICHHAM OOCSTIB
00poOIIOBaHKX JTaHHX.

Knrwuoesi cnosa: posnoodinerne nooanHs 0anHux, 6unadkose npoeKmysants, oyiHka nodionocmi
8eKMOPIB, OUCKPEMHA HEKOPEKMHA 3a0ayd, pecyiapusayis.
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HEMPOCETEBBIE PACIIPEJIEJIEHHBIE ITPECTABJIEHU
BEKTOPHBIX TAHHBIX B UHTEJIJIEKTY AJIbHBIX
NHO®OPMAIIMOHHBIX TEXHOJIOTMAX

B cratbe gan 0030p 4acTu paboT OTIEeNa HEHPOCEeTeBBIX TEXHOIOTUH 00paboTky MHpOpMa-
i MexaynapoaHoro L{eHTpa B 06J1acTH HEHPOCETEBBIX PACHIPEACICHHBIX MPEICTABICHUN.
[Nonxon siBnsiercs pazutuem uneit H.M. AMocoBa 1 ero Hay4HOM LIKOJIBI O MOJEINPOBAHNUN
CTPYKTYpBI ¥ QyHKIHWIT Mo3ra. PacnipeieieHHbIe PEICTaBICHHS TaHHBIX Pa3THYHbIX THIIOB
MOTYT OBITh UCIIOJIb30BaHbI JUIsSl MOBBIIEHHS Y()(EKTUBHOCTA U YPOBHS MHTEIUICKTYaJIbHO-
cTi HHPOPMAITMOHHBIX TeXHOoJorui. Paspadoransl PIT kak uist ¢1abo CTPYKTYypHUPOBAHHBIX
JTAHHBIX (BEKTOPBI), TaK U JUISl CJIOXKHO CTPYKTYPUPOBAHHBIX MPEJCTAaBICHUI 00BEKTOB (I10-
CIIeZIOBaTEeIbHOCTH, rpadbl cuTyaluil (3nu30/108) 6a3 3HaHuit, u ap.). [IpeodpazoBanue pas-
HOTUIIHBIX JaHHBIX B BeKTOpHbI (opmar PIT nmosBonser yHuduuuposars 6a3oBble HHGOP-
MAaI[MOHHBIC TEXHOJOTHMH HUX 0OpabOTKH U JOOUTHhCS MAacHITAOUPYEeMOCTH C YBEIUYCHHEM
00BbeMOB 00pabaThIBaeMbIX aHHBIX. B mepcrieKTHBe pacrpeliesieHHbIe TPeICTaBIeHHs T10-
3BOJISIT COENMHUTH MH(OPMAIHIO O CTPYKTYPE M CEMAHTHKE JUISl CO3IAHUS BBIYMCIUTEIBHO
3¢ PEeKTUBHBIX U KauecTBeHHO HOBBIX UT, B KOTOPBIX 00paboTKa PENSLUOHHBIX CTPYKTYP H3
0a3 3HaHUi1 BBINOJIHAETCA 1O CXOACTBY HX PII.

Knioueguvie cnosa: pacnpedenennoe npedcmasnenue OAHHBIX, CIYHAUHOE NPoeyuposauue,
OYeHKa cxo0Cmaa 8eKmopos, OUCKPemHas HeKOPPEKMHAs 3a0ayd, pecyispu3ayus.
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