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The paper extends the Branch and Bound (B & B) method to find all nondominated points in a partially or quasior-
dered space. The BEB method is applied to the so-called constrained partial/quasi order optimization problem,
where the feasible set is defined by a family of partial/quasi order constraints. The framework of the generalized
B& B method is standard, it includes partition, estimation, and pruning steps, but bounds are different, they are set-
valued. For bounding, the method uses a set ordering in the following sense. One set is "less or equal than the other
set if, for any element of the first set, there is a "greater or equal’’ element in the second one. In the B&'B method,
the partitioning is applied to the parts of the original space with nondominated upper bounds. Parts with small upper
bounds (less than some lower bound) are pruned. Convergence of the method to the set of all nondominated points
is established. The acceleration with respect to the enumerative search is achieved through the group evaluation of
elements of the original space.

Keywords: quasiorder, partial order, nondominated solutions, discrete optimization, branch and bound method.

Partial /quasi order optimization is a research field, which studies optimization problems in-
volving order relations. Classical examples of such problems are given by the multiobjective opti-
mization [1—4]. Various applications of the partial /quasi order optimization are considered in [5].
Related works include the optimization with dominance constraints [6, 7] and set-valued opti-
mization [8].

In the present paper, we consider a problem of finding the optimal (nondominated) elements
(with respect to some partial /quasi order) on a discrete feasible set of elements defined by means
of some other partial /quasi orders. A similar problem setting was considered in [9]. In practical
problems, the feasible set may contain a huge number of elements, so the enumerative search is
questionable. We develop a branch and bound (B&B) method for this problem and prove its con-
vergence. The method subdivides the original problem into a sequence of subproblems, selects
subproblems containing optimal elements, and proceeds until such subproblems become trivial.
Acceleration with respect to the enumerative search is achieved due to the group evaluation of

© V.I. Norkin, 2019
16 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. Ne 1



B&B method for discrete partial order and quasiorder optimizations

feasible elements, by using lower and upper bounds (with respect to the partial /quasi orders)
for groups. In the present work, we use set-valued bounds for the fathoming of subproblems within
the B&B framework and provide general convergence results. Remark that these set-valued
bounds are particularly simple for the bi-objective linear optimization problems and are just
piecewise linear concave curves [10]. The method generalizes particular B&B schemes used in
the Pareto optimization [9—11].

1. Quasiorders and partial orders |3, 8].

Definition 1 (Quasiorders and partial orders). A binary relation > on aset X is called a qua-
siorder iff

for any xe X, it holds x > x (reflectivity);

for any {x, y, ze X}, the relations x =y and y =z imply x = z (transitivity).

A quasiorder > on X is called a partial order iff, for any {x,ye X}, the relations x>y
and y = x imply x =y (antisymmetry).

By definition, the relation x >y means x>y and x # y; the relation x <y means y > x;
the relation x >y means y > x .

A set X with a quasiorder (partial order) binary relation = on X is called a quasiorder
(partial order) set/space.

Definition 2 (Optimality). A subset X < X of a quasiorder set X c X is called > -non-
dominated ((Pareto) optimal) if, for any x* € X", thereisno xe X such that x = x".

We now consider the space 2% of all subsets of X and introduce the order relations >, > in N
[1,8,12,13].

Definition 3 (Quasiorders and partial orders in the space of sets). Subsets A, Bc X satisfy
the set relation A = B iff, for any be B, there is an element ae A such that a=b.

Subsets A, Bc X satisfy the set relation A > B iff, for any be B, there is an element ae A
such that a>b.

The notation A<B, A< B means B> A, B> A, respectively.

Lemma 1. Let the relation = be a quasiorder in X . Then the corresponding set relation = is a
quasiorder in the space of subsets of X.

Let the relation > be a partial order in X. Then the corresponding set relation > is a par-
tial order in the space of subsets of X, consisting of mutually nondominated elements.

Example 1 (Violation of the “antisymmetry” property for the set relation >). Let a; < ay
and A={ay,a,}, B={ay}. Then A= B and A<B,but A#B.

Example 2 ({0,1}-string ordering). Let us consider a collection of {0,1} -strings S and the
following majority ordering “>" in it:

S5 =sy€8,if the number of ones in S, is not less than the number of ones in s ;

Sy > 89, if the number of ones in S, is greater than the number of ones in s, .

Such kind of ordering appears in maximum satisfiability problems, where the quality of a
solution is measured by the number of conditions (e.g., inequalities) satisfied. This ordering
is a quasiorder, but not a partial order (the antisymmetry requirement is not fulfilled). Howe-
ver, the reinforced transitivity property is fulfilled: if (s; > 9,59 >53), or (81 = 89,89 >$3), Or
(81 > $9,89 = 83), then s > s5.

Remark 1. 1f the underlying quasiorder = in X has the extended transitivity property,
i.e., from (x> y,y>2) or (x >y, y*z),it follows x > z, then the induced set relation > in 2%
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has a similar property. Namely, for any subsets A, B,C c X, it holds true: if (A>B,B>~C), or
(A=B,B>C),or (A=B,B=C), then A>C . A similar reinforced transitivity property holds
for the {0,1}-string ordering of Example 2.

2. Branch and Bound (B&B) method for discrete partial /quasi order optimization. In this
section, we consider a branch and bound algorithm for finding all > -nondominated elements
X of asubset X, c X defined by some other quasiorders in the space X . The B&B method
treats elements of the optimization space X in groups by the lower and upper boundings of jointly
all elements in the groups. Thus, it works with a smaller number of objects than the total number
of elements in the space. This B&B method generalizes a number of specific B&B algorithms
(see [9—11]) for solving the vector (Pareto) optimization problems, R™ > f(v) — Max to a
more general objective (quasiorder) space X 3 f(v).

Assumption A. Let = be a quasiorder in a space ¥ with the following extended transitivity
property: for x,y,ze R ,if (x =y, y>=2z) or (x>y,y=2z),then x > z.

If the relation = is a partial order, then Assumption A is fulfilled automatically.

Assumption B. Let = be the quasiorder relation on subsets of X induced (in the sense of Defi-
nition 3) by a quasiorder relation = on elements of X. Assume that there are mappings L, U : 2% — 2%
such that

B1: Forany X c X, it holds true L(X) <X XU (X);

B2: If aset X c X is a singleton, then L(X)=X=U(X).

Remark 2. Standard (and often poor) bounds in the vector optimization are the so-called
ideal and nadir points [10, 11], i.e., single-valued bounds. The bounds L(X) and U(X) in as-
sumption (B1) may be sets, i.e., for any element /e L(X), there is an element xe X such that
[ < x, and, for any element x"e X, there is an element ue U(X) such that x"<u. Due to the
reflexivity of the relation =, it is admissible that L(X) c X .

Example 3 (Lower set-valued bounds in vector optimization). For a vector (Pareto) opti-
mization problem: f(v)=[f;(v)]%4y > Max,y, as an upper bound U(X) of the image set
X ={f(v):veV}, one can take the ideal point I(X)={max,y f;(0)}ir;. As a lower bound
L(X), one can take the set of values {f (v, ), A€ A} for a number of solutions {v,,Ae A} of the
scalarized problems: z;’;kifi(v) —>max,y, 0#A=(\,...,A,)e ACR}".

Example 4 (Set-valued bounds in discrete problems). Consider a vector discrete optimiza-
tion problem: f(v)=[f;(0)]% — MaXach{o, e Standard vector bounds for the image set f(v)=
={f(v),ve V}arenadir and ideal points: N(f(v)) = {min,y f;(0)}ir(, I(f(0)) ={max,y f;(0)}is;.

Set-valued bounds can be constructed in the following way. Let us fix some components v;
and v iy of v at their possible values 0 or 1 and construct lower L(f(V)) and upper U(f(V)) bounds
satisfying assumption B as follows. The set-valued bound L(f(V)) consists of two points:
{ming,y. 0}, =0} i@y, Amingey. ) Ji(@)}iZy- (If only one set {ve V:iv; =0or{veV: v, =1}
is nonempty, then only one point is used).

Similarly, the set-valued bound U(f(V')) consists of the following points: {max . 0}, =0} LYy,
{maxey., iy =1 Ji@}.

To get better bounds, one can fix more components v;, j€ J; and v}, j€ J, of v on their all
possible values. In this case, the bounds L(f(V)) and U(f(V)) consist of 9l/il and 2172 points,
respectively. What variables to fix to get good bounds is a (research) question.
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Example 5 (Multiattribute optimization). The problem is to find nondominated multiattri-
bute entries in big data sets. It is assumed that separate attributes take on values in completely
ordered sets. This problem can be solved by both an enumerative pairwise comparison algorithm
and by the B&B algorithm. The latter algorithm firstly finds an interval for the data, e.g., nadir
and ideal points, subdivides it into smaller subintervals and finds nadir/feasible and ideal points
for these subintervals, refines the family of subintervals from empty and dominated ones, and
continues the subdivision and refinement procedures until the nondominated subintervals be-
come singletons.

Example 6. Let Fy(0)={f;(v), je M}— Max,, . (ev:g, ()< ) be a multicriteria optimiza-
tion problem with finite or infinite sets M, K of criteria and constraints. By defining Gg (v) =
={g,(v), ke K}, Cx =U;i{c,}, the latter problem can be rewritten in the form Fy,(v)—
— Max (eV: G (0) < Cx ) i.e., by means of the quasiorder set relation “ <.

Example 7 (Multilevel multicriteria and multilevel partial /quasi order optimization prob-
lems). A multicriteria (or partial order) optimization problem Max,y, F(v) usually singles out
a whole Pareto-optimal set of nondominated solutions V" <V and the corresponding effi-
cient frontier F{(V"), e.g., an efficient frontier in the financial portfolio analysis. The second step
in analyzing the problem is to define the second mapping (partial order relation) F,:V — F,(V)
to select a narrower subset of nondominated solutions, and so on.

Suppose we have found an approximation C of the Pareto-efficient set F(V"), for exam-
ple, consisting of a finite collection of elements, C ={c,...,c,}. Then the second stage prob-
lem may have the form: Max,ey, f ()= F2(0), Le., is given by means of the quasiorder set
relation “>".

Problem setting. Suppose there are several quasiorders >;, i=0,...,n, defined on the same
(objective) space X. Define the relations x> y as x>; y and x #y. Corresponding set rela-
tions >; and >; for subsets of X are defined in Definition 3.

Define the feasible set X, ={xe X cX:C; <;x=<; D;, i=1,...,n}, where C; cX, D; cX,
i=1,...,n,. Remark that the condition C; <; x means x €. {x"eX:x">=; ¢} and x=; D,
means x € Uyp {x eR:x’ =, d}. l

The problerln is to check if X, #@ and, in the latter case, to find the set X of =,-nondo-
minated elements in X,. The set X, can be (very) large, so the enumerative search may be ques-
tionable. The following B&B algorithm solves the problem by means of lower L;(-) and upper
U;(-) bounds of subsets of &. We assume that these bounds satisfy Assumptions A, B. The ac-
celeration of the search is due to a group evaluation of elements of X. The following B&B al-
gorithm solves the set problem.

Constrained Branch and Bound algorithm (CBB-algorithm).

Step 0 (Initialization). Form an initial finite partition By={X” cX:p=1,2,...} such that
Xc Upo. Calculate bounds L;(X?) and U;(X?) forall X? e By, i=0,1,...,n,.Set k=0

Step 1 (Remove infeasible partition sets). Clean the partitions P, from certainly infeasible
sets, i.e, put P, =P, \{X" e P,: X’NX =0, orC; RU;(X?), orLy(X"?)« D; for some i}.

Step 2 (Remove non-optimal partition sets). Clean the partitions P, from sets not containing
optimal points, i.e., put P, := P, \{X" € P, :Uy(X?) < Ly(X?) for some singleton X7 € P,}.

Step 3 (Look for partition sets with nondominated upper bounds). Find all Uj-nondominated
partition sets Y? € P, such that there is no other partition set X% e P, with Uy(X7?)>U,(Y?).
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Step 4 (Check for the stopping conditions). If the partition B, is empty or all Uj-non-
dominated partition sets Y” € P, are singletons, then Stop.

Step 5 (Partitioning). If there is an U,-nondominated non-singleton partition set Y” € P, then
form a partition of this set P(Y*)={¥} =@, i=1,2,..} such that Y* =U,¥} and Y} N, ij =0
for ¥}, Y} e P{(Y*), i# j. Define the new full partition P, :=(P, \Y*)UP{(Y*). Elements of
P, will also be denoted as X7

Step 6 (Estimation of bounds). For all new subsets X” e P, c P, calculate lower L(X?)
and upper U;(X?) bounds, i=0,1,...,n,; for other subsets Y? € P,, bounds remain the same. Put
k:=k+1 and go to Step 1.

Theorem (Convergence of the CBB-algorithm). Assume that the lower and upper bounds L;,U;
satisfy conditions A, B for each i=1,...,n,. Then the following statements regarding the CBB-
algorithm hold true.

(a) If the space R is finite and the feasible set X, is empty, then the CBB-algorithm stops
after a finite number k" of iterations with the empty partition P, # Q.

() If X, #D and X, is finite, then the optimal (=, -nondominated) set X #Q , and no ele-
ment of the X, is deleted in the course of iterations of the CBB-algorithm.

(¢c) If in the course of iterations the CBB-algorithm generates a singleton U, -nondiminated
partition set Y? € P,, i.e., such a singleton set that there is no other partition set X € P, such that
Ug(X?) =y Ug(Y?), then YP € X..

(d) If the space X is finite, then the CBB-algorithm stops after a finite number of iterations k’.
In this case, the set of singleton U -nondominated partition sets Y € Py generated by the CBB-
algorithm coincides with the optimal set X, .

Proof. (a) If the space X is finite, then the CBB-algorithm stops after a finite number of
iterations k’, since there may be only a finite number of partition steps. Suppose X, =&, but
P, # . The partition Py contains singleton sets Y” = y; otherwise, the algorithm did not stop
atiteration £’. Since the algorithm passed Step 1 before stopping, Y” =ye X, C; %, U;(Y?),and
L(Y?)=; D; for all i. By assumption (B2), y=L,(Y?)=U;(Y") for all i. Hence, ye X, #2J.
We get a contradiction.

(b) Suppose the opposite: at some iteration &, a point x* € X, is deleted. It can be deleted
only at Step 2 of the CBB-algorithm. This means that there are partition sets X?, X9 € P, such
that x* € X? and Uy(X?) =, L(X?) for some singleton X7 =x? e Py . Since the algorithm passed
Step 1, x7e X, C; <; U;(X?)=x9, x7 =L,(X?)< D, for all i, and, hence, x7 € X,. Since, by (B1),
XP <2U(X?), for x" € X, there is an element u” € Uy(X?) such that x* <u”. For u? e Uy(X?),
by the definition of the dominance relation <, and (B2), from Uy(X?) <y Ly(X?)=x7, it follows
that u? <, 9. By the transitivity of the relations <, <, we obtain x <o u” <y x7. Hence,
x" <y x? € X, which means that x* is not an >=y-nondominated element of X, a contradiction.

(c¢) Suppose the opposite that, at some iteration k, there is a singleton Uj-nondiminated
partition set Y¥ = ye P, such that Y¥¢ X*. Then there is an element xe X, such that x 0 Y-
Moreover, due to the theorem assumptions, there is an element x*e X such that 1™ =, x >, y . By
(b), the element x” is not deleted, so there is a partition set X” € P, such that x" € X”. By (B1),
(B2), the following relation holds true: Uy(XP) =g x" =y y =Uy(Y*), i, Upy(XP) =y =Uy(Y5),
which means that Y* is not an U,-nondominated partition set in P, , a contradiction.
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(d) Due to the finiteness of the number of elements in X, there can be only a finite number
of iterations with the partitioning of sets. So, there ex1sts an iteration k£ such that all Uj-non-
dominated partition sets become singletons, Y¥ =y* , and the CBB-algorithm stops. Then,
by (¢), all such sets Y¥ = y eX, .

Let the algorithm stoped at the iteration £” and let some x e X By (b), x was not removed
in the course of 1terat10ns Hence, there exists a partition set X e Py such that e X¥ and, by
(B1), =, U, (X ) Let us show that the set X* cannot be U, 0 -dominated. Suppose the opp051te
Then there is a finite sequence of partition sets {X¥ e Py}, such that Uy(X¥)<, Uo (X1 ),

Uy(X* )<0 Uy(X¥ ), U, (XI ) <o Uy (V¥), and V¥ e P, is Uynondominated. Hence, the set ¥ = v¥
is a singleton and, by (c), it belongs to X. Thus, ¥ <, UO()?k’)<0 Uo(l?k,)=yAk, and, hence,
£ < 7* € X, which means that £¢ X7, a contradiction. Hence, the set X¥ 5 # is U,-nondomi-

nated. Then X¥ isa singleton and x = X¥e Py . On the other hand, by (c), all Uj-nondominated
singleton partition sets X” € P, belong to X . The proof is completed.

3. Conclusions. We have analyzed a general framework for the discrete branch and bound
(B&B) methods designed to find optimal (i.e. nondominated) elements in a partial order or qua-
siorder (with certain extended transitivity property) space. The framework generalizes particu-
lar B&B schemes from the vector optimization to more general objective spaces. For example, the
space may be an infinite-dimensional vector space, space of strings with ordered components,
space of sets with a defined partial or quasiorder relation. We have also considered the so-called
constrained quasiorder optimization problems involving several partial /quasi orders. Solutions
of the problems are understood as nondominated points of the feasible or objective set. A non-
standard element of the considered B&B framework is that it exploits set-valued (including sin-
gle-valued) lower and upper bounds for subsets generated by the algorithm. As a lower bound, any
subset of feasible points may be used. For a finite discrete feasible set, the B&B algorithm either
finds all optimal elements or discover that the feasible set is empty.

Thus, the paper extends horizons of optimization theory to general spaces, not necessary lin-
ear or metric, only the order is important. The further research may be devoted to the exploration
of the efficiency of the developed B&B method on particular classes of problems and to its exten-
sion to the continuous case.
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METO/I TIJIOK TA MEX JIJI INMCKPETHOT ONITUMI3AILIT
B YACTKOBUX ABO KBA3IITOPAJAKAX

Y po6ori MeToz risiok i Mesk/o1inok (B&B-MeTon) momupioeThest Ha 3a1a4i MOIIyKy HeJOMIiHOBAHUX €JIEMEHTIB
Y 4aCTKOBO ab0 KBa3iynmopsiAKoBaHiil MHOKMHI. B& B-MeTo/1 3aCTOCOBYETHCS /10 3aa4 ONTHMI3aIlii, e 10myCcTh-
Ma MHOXKHHA CaMa BU3HAUYAETHCS ciMelcTBOM KBasinopsakiB. CTpykTypa y3araibHeHoro B&B-merony € cran-
JIAPTHOIO: BiH BKJITOYa€ B cebe posOUTTS Ha Mif3a1adi, OIliHIOBaHHS MMiA3a/a4 i BiIGpaKOBYBaHHs ITi/[3a/1a4, aje
OLIHKM ITii3a1a4 BiAPI3HAIOTHCS, BOHM MOKYTh OyTH MHOKMHaMK. J[JIst OLiHIOBaHHS Mifzagay MeTO BUKOPKC-
TOBYE BIOPSIZIKYBaHHI MHOKIH Y TakoMy ceHci. OJiHa MHOKIHA “MeHIia abo AopiBHIoe” THIIi, AKIIO A7 Oy 1b-
SIKOTO eJIeMeHTa [epIioi MHOKUHY icHye “Olibiunii abo piBuuii” esiement y apyriit. ¥ B&B-meroai po3durtst 3a-
CTOCOBYETBCA 10 Mifi3a/1ad 3 HEJIOMIHOBAaHUMM BepxHimu orfinkamu. [ligzazadi 3 MasumMu BepxXHIMU OIiHKaMU
(MeHIIIe IeKOT HUAKHBOI OIIIHKK ) BUAIAJISIOThCsL. BCTaHOBIEHO 3015KHICTh METOLY 10 MHOKIHU BCIX HEJIOMIHOBAHUX
eseMeHTiB. [IprCKOpEHHS 110 BiZIHOIIEHHIO 10 TIEPeGOPHOTO MOIIYKY JOCSATAETHCS 32 PAXYHOK TPYMOBOI OIIHKH

€JIEMEHTIB BUXiJTHOTO MTPOCTOPY.
Kntouoei cnosa: x6asinopsoox, uacmrosuil nopsdox, HedoMino8ani pose’sisku, OUCKpemua onmumisayis, memoo
2110K ma mevic.
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METO/] BETBEI 1 TPAHUII /I JUCKPETHOM OIITUMUN3AIINN
B YACTUYHBIX NJIN KBASUITOPALKAX

B pa6ore metos Berseii u rpanui (B&B-Meros) pacripocrpansieTcs Ha 3a[auil MOMCKa HEAOMUHUPYEMBIX TOUEK
B YaCTUYHO WJIU KBA3NYTOPSIOUEHHOM MHOKecTBe. B&B-MeTos nmpuMenseTcs K 3aziauaM ONTUMUBAINH, T/IE J10-
IIyCTUMOE MHOKECTBO CaMO OIIPEIEIISIETCST CeMelicTBOM KBasunopsiakos. CTpykrypa obobienHoro B&B-mertona
SIBJISIETCSI CTAHIAPTHOM: OH BKJIIOUAET B cebst pasOreH e Ha TT0/13a a4, OIEHKH M0/[33/1a4 1 0TOPAKOBKY T10/13a/1a4,
HO OIIEHOYHbIE I'PAHMIbI OTJMYAIOTCS, OHU MOTYT OBITh MHOKeCTBaMM. [ oleHUBaHMS IOA3a4a4 METOJ
HCIIOJTh3YET YIOPs0Uenie MHOKECTB B cJieyionieM cMbicye. OHO MHOKECTBO “MeHbIIe NN PaBHO” IPYTOMY,
eca sl 0O0T0 HIEMEHTA TIEPBOTO MHOKECTBA CyHIECTBYET “GOJIBIIMI WM PaBHBIA” 2JIEMEHT BO BTOPOM. B
B&B-metojie pasbuenne npuMeHsieTcst K 1M0/[3a/la4aM ¢ HeJIOMUHUPYEMbIMU BepXHUMHE rpanutiamu. [loazamadun
€ MAJIBIMU BEPXHUMM TPaHUIaMU (MeHbIIIe HEKOTOPOI HUKHEN TPAHUITBI ) YIATISIOTCS. YCTAaHOBJIEHA CXOIUMOCTD
MeTojla K MHOKECTBY BCEX HEJIOMUHHUPOBAHHBIX TOUEK. YCKOPEHHE IO OTHOIIEHUIO K MepebOPHOMY TOMCKY
JIOCTUTAETCS 32 CYET IPYTIIOBOI OIEHKH 2JIEMEHTOB NCXOHOTO IIPOCTPAHCTBA.

Kntoueevie cnosa: x6asunopsook, 4acmudnwlii NOPL00K, HEOOMUHUPYEMbLE Peulerist, OUCKPEMHaAsL ONMUMU3AYUSL,
Memoo eemesetl U 2panul,.
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