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Abstract. In the paper we derive rational solutions for the lattice potential modified
Korteweg–de Vries equation, and Q2, Q1(δ), H3(δ), H2 and H1 in the Adler–Bobenko–Suris
list. Bäcklund transformations between these lattice equations are used. All these rational
solutions are related to a unified τ function in Casoratian form which obeys a bilinear
superposition formula.
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1 Introduction

In recent decades the research of discrete integrable systems has undergone rapid progress
(see [13] and the references therein). As a new concept, multidimensional consistency, allowing
suitable lattice equations to be embedded into a higher-dimensional space in a consistent way,
has played an important role in the research of quadrilateral equations [2, 3, 8, 12, 18, 20].
Quadrilateral equations that are consistent around the cube (CAC) with additional restriction
(D4 symmetry and tetrahedron property) were searched and classified by Adler, Bobenko and
Suris (ABS) [2] and in their list only 9 equations are included: Q4, Q3(δ), Q2, Q1(δ), A2,
A1(δ), H3(δ), H2 and H1. All these equations have been solved from different approaches
[5, 6, 7, 14, 19, 21, 22].

As for rational solutions, which are solutions expressed by fractions of polynomials, in general,
such type of solutions can be derived from soliton solutions through a special limit procedure
(or a Taylor expansion), which corresponds to a way to generate multiple zero eigenvalues for
certain spectral problems (see [1, 16] as examples). For the δ-dependent equations in the ABS
list, for example, H3(δ) and Q1(δ), the existence of δ (i.e., δ 6= 0) plays a crucial role [21]
in the procedure of obtaining rational solutions from their soliton solutions. For H1 which is
independent of δ, its rational solutions were obtained recently by making use of the Hirota–
Miwa equation and a continuous auxiliary variable [9]. Besides, as a generic (2+1)-D bilinear
model, polynomial solutions of the Hirota–Miwa equation have been derived from several ways
and presented via different forms [11, 17].

In this paper we systematically construct rational solutions for the ABS list by means of
Bäcklund transformations (BTs). A fundamental role playing in the paper is the lattice potential
modified Korteweg–de Vries (lpmKdV) equation. There is a non-auto BT which connects the
lpmKdV equation and Q1(0) (also known as the lattice Schwarzian Korteweg–de Vries equation
and cross-ratio equation). The two equations and their BT constitute a consistent triplet, say,
viewing the BT as a two-component system, then the compatibility of each component yields
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a lattice equation of another component which is in the triplet. This means any pair of solutions
of the BT provide solutions to the two equations that the BT connects. Details will be shown
in Sections 3.1 and 3.2 on how such a consistent triplet works in generating rational solutions.
We also make use of non-auto BTs between equations in the ABS list [4]. Starting from the
lpmKdV equation and Q1(0), rational solutions of Q2, Q1(δ), A1(δ), H3(δ), H2 and H1 in the
ABS list can be derived through the map:

H2 Q1(0) −→ Q1(δ) −→ Q2xy xy y
H1 ←− lpmKdV A1(δ) ←→ H3(δ)

Figure 1. A map for generating rational solutions.

In the map the double-head arrow means the two equations it connects and their BT form
a consistent triplet.

Moreover, we find all the obtained rational solutions are related to a unified τ function in
Casoratian form which obeys a bilinear superposition formula (see (5.22)). Compared with those
rational solutions of H3(δ) and Q1(δ) derived in [21], here we obtain new solutions. In fact, we
will see that rational solutions of Q1(δ) can explicitly be expressed through the rational solutions
of Q1(0). Similar results hold for H3(δ) as well.

The paper is organized as follows. In Section 2 as preliminary we list quadrilateral equa-
tions that we consider in the paper and some notations. Then in Sections 3 and 4 we derive
some rational solutions for the equations listed in Section 2. In Section 5 rational solutions in
Casoratian form are proved. Finally in Section 6 we give conclusions.

2 Preliminary

We list quadrilateral equations that we consider in the paper:

H1: (ũ− û)
(̂̃u− u) = q − p, (2.1)

H2: (ṽ − v̂)
(
v − ̂̃v)+ (q − p)

(
v + ṽ + v̂ + ̂̃v)+ q2 − p2 = 0, (2.2)

lpmKdV: a
(
V Ṽ − V̂ ̂̃V )− b(V V̂ − Ṽ ̂̃V ) = 0, (2.3)

H3: a
(
ZZ̃ + Ẑ

̂̃
Z
)
− b
(
ZẐ + Z̃

̂̃
Z
)

+ 2δ
(
a2 − b2

)
= 0, (2.4)

Q1(0) : p(v − v̂)
(
ṽ − ̂̃v)− q(v − ṽ)

(
v̂ − ̂̃v) = 0, (2.5)

Q1(δ) : p(u− û)
(
ũ− ̂̃u)− q(u− ũ)

(
û− ̂̃u)+ δ2pq(p− q) = 0, (2.6)

A1(δ) : p(z + ẑ)
(
z̃ + ̂̃z)− q(z + z̃)

(
ẑ + ̂̃z)− δ2pq(p− q) = 0, (2.7)

Q2: p(w − ŵ)
(
w̃ − ̂̃w)− q(w − w̃)

(
ŵ − ̂̃w)+ pq(p− q)

(
w + w̃ + ŵ + ̂̃w)

− pq(p− q)
(
p2 − pq + q2

)
= 0. (2.8)

Here we use conventional notations ũ
.
= un+1,m, û

.
= un,m+1. In the above equations, p and a

are spacing parameters of n-direction and q and b are of m-direction; δ is an arbitrary constant.
Casoratian is a discrete version of Wronskian. Suppose that a basic column vector is

ψ(n,m, l) =
(
ψ1(n,m, l), ψ2(n,m, l), . . . , ψN (n,m, l)

)T
.

Introduce a shift operator Eν to denote

Esnψ ≡ ψ(n+ s,m, l), Esmψ ≡ ψ(n,m+ s, l), Esl ψ ≡ ψ(n,m, l + s).
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Then a Nth-order Casoratian w.r.t. El-shift is defined by∣∣ψ,Elψ,E2
l ψ,E

3
l ψ, . . . , E

N−1
l ψ

∣∣,
and usually is compactly written as (cf. [10])∣∣N̂ − 1| = |0, 1, 2, . . . , N − 1

∣∣.
Another notation which is often used is |N̂ − 2, N | = |0, 1, . . . , N − 2, N |.

Besides, in Wronskian/Casoratian verification of solutions to a bilinear equation, the equation
is usually reduced to a Laplace expansion of a zero-valued 2N×2N determinant. The expansion
is described as

Lemma 2.1 ([10]). Suppose that B is an N × (N − 2) matrix and a, b, c, d are N th-order
column vectors, then

|B,a,b||B, c,d| − |B,a, c||B,b,d|+ |B,a,d||B,b, c| = 0.

3 Rational solutions to lpmKdV, Q1, H3 and Q2

In this section we first investigate relation between the lpmKdV equation and Q1(0). Such
a relation will be used to construct rational solutions to not only the two equations themselves
but also to Q1(δ), H3(δ) and Q2.

3.1 Solution sequence of Q1(0) and lpmKdV

Q1(0) is the equation (2.6) with δ = 0. Between (2.5) and the lpmKdV equation (2.3) there is
a non-auto Bäcklund transformation [19]

ṽ − v = aV Ṽ , v̂ − v = bV V̂ , (3.1)

where

p = a2, q = b2. (3.2)

Equations (2.5), (2.3) and (3.1) constitute a consistent triplet in the following sense: as an

equation set, the compatibility of ˜̂v = ̂̃v and
˜̂
V =

̂̃
V respectively yield (2.3) and (2.5).

Such an consistency can be used to construct solutions for equation (2.5) and (2.3):

Lemma 3.1. With the consistent triplet composed of (2.5), (2.3) and (3.1), we have the fol-
lowing:

(1) starting from any solution v of (2.5), by integration through (3.1), the resulted V solves
equation (2.3), and vice versa;

(2) any solution pair (v, V ) of (3.1) gives a solution v to (2.5) and V to (2.3).

Further than that, we have

Lemma 3.2. For an arbitrary solution pair (v, V ) of (3.1) where V 6= 0, function V1 = v/V
solves the lpmKdV equation (2.3).

Proof. Substituting V1 = v/V into (2.3) and making use of relation (3.1), it is easy to check V1
satisfies (2.3). �
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This lemma provides an approach to generate a sequence of solution pairs of the BT (3.1).

Theorem 3.3. For any solution pair (vN , VN ) of the BT (3.1), define

VN+1 =
vN
VN

, (3.3a)

and it solves the lpmKdV equation (2.3). Next, the BT system

ṽN+1 − vN+1 = aVN+1ṼN+1, v̂N+1 − vN+1 = bVN+1V̂N+1, (3.3b)

(i.e., (3.1)) determines a function vN+1 that satisfies equation Q1(0) (2.5). vN and vN+1 obey
the relation

(ṽN+1 − vN+1)(ṽN − vN ) = a2vN ṽN , (v̂N+1 − vN+1)(v̂N − vN ) = b2vN v̂N , (3.4)

which is an auto BT of Q1(0).

Proof. The first part of the theorem holds due to Lemma 3.2. For the second part, since

(vN , VN ) is a solution pair of the BT (3.1), they have compatibility
̂̃
A =

˜̂
A, and so does VN+1.

Then, on the basis of Lemma 3.1, vN+1 defined by (3.3b) solves Q1(0). For the relation (3.4),
substituting (3.3a) into (3.3b) and making use of (3.1) with (v, V ) = (vN , VN ), we arrive at (3.4),
which provides an auto BT for Q1(0). In fact, there is a non-auto BT [4]

(u− ũ)(v − ṽ) = p
(
vṽ − δ2

)
, (u− û)(v − v̂) = q

(
vv̂ − δ2

)
, (3.5)

to map v to u from Q1(0) to Q1(δ). It holds as well for the degenerated case δ = 0, in which
both v and u are solutions of Q1(0). �

3.2 Rational solutions of Q1(0) and lpmKdV

Theorem 3.3 describes an iterative mechanism to generate new solutions for Q1(0) and the
lpmKdV equation. Thus, if we start from a simple solution pair, e.g., (v1 = an+bm+γ1, V1 = 1),
we can generate a sequence of rational solutions to Q1(0) and the lpmKdV equation. Some low
order solutions in this sequence are

v1 = x1, V1 = 1, (3.6a)

v2 =
1

3

(
x31 − x3

)
, V2 = x1, (3.6b)

v3 =
1

x1

(
1

45
x61 −

1

9
x31x3 +

1

5
x1x5 −

1

9
x23

)
, V3 =

x31 − x3
3x1

, (3.6c)

v4 =
3

x31 − x3

(
1

4725
x101 −

1

315
x71x3 +

1

75
x51x5 −

1

27
x1x

3
3

− 1

25
x25 +

1

15
x21x3x5 −

1

21
x31x7 +

1

21
x3x7

)
,

V4 =
3

x31 − x3

(
1

45
x61 −

1

9
x31x3 +

1

5
x1x5 −

1

9
x23

)
, (3.6d)

where

xi = ain+ bim+ γi, γi ∈ C, i = 1, 2, . . . . (3.7)

We note that {VN} are different from the rational solutions of the lpmKdV equation obtained
in [17] as a reduction of the Hirota–Miwa equation.

In the following we prove that if we start from (3.6), all the solutions generated from (3.3)
are meaningful. First, let us look at non-zero property.
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Lemma 3.4. Suppose a > 0, b > 0, vN (0, 0) > 0, and we restrict (n,m) in the first quadrant
{n ≥ 0, m ≥ 0}. Then vN and VN generated from (3.3) with (3.6a) satisfy vN > 0, VN > 0.

Proof. Obviously, under assumption of the lemma, from (3.6a) we have v1 > 0, V1 > 0 and
V2 = v1/V1 > 0. Then, suppose that vN > 0, VN > 0 and consequently VN+1 = vN/VN > 0.
Next, from (3.3b) we have

vN+1(n+ 1,m)− vN+1(n,m) > 0, vN+1(n,m+ 1)− vN+1(n+ 1,m) > 0.

This implies

vN+1(n,m) > vN+1(n− 1,m) > vN+1(n− 1,m− 1) > · · · > vN+1(0, 0).

If we take “integration” constant vN+1(0, 0) > 0, then vN+1(n,m) must be positive in quadrant
{n ≥ 0, m ≥ 0}. �

Next, we observe that in v1, v2 and v3 the order of leading terms (in terms of x1) are
respectively 1, 3 and 5. Now we prove all the vN defined through (3.3) with (3.6a) are distinct
in the sense of having different leading orders in terms of x1.

Lemma 3.5. vN has a leading order 2N − 1 in terms of x1 and VN has a leading order N − 1
in the same sense.

Proof. From (3.6) we can suppose the lemma is correct up to some integer N . Then one can
find

VN+1 =
vN
VN
∼ O

(
xN1
)
,

and from (3.3b)

ṽN+1 − vN+1 = aVN ṼN ∼ O
(
x2N1

)
, v̂N+1 − vN+1 = bVN V̂N ∼ O

(
x2N1

)
,

which means vN+1 ∼ O
(
x2N+1
1

)
. Based on mathematical induction, the lemma holds. �

We conclude the following.

Theorem 3.6. The iteration relation (3.3) is meaningful in terms of generating distinct rational
solutions from initial solutions (3.6a) for Q1(0) and the lpmKdV equation. These solutions are
positive at least on the first quadrant {n ≥ 0, m ≥ 0} if we take a > 0, b > 0, vN (0, 0) > 0.

Note that not all solutions can be effectively iterated through (3.3). For example,

v1 = αnβm, V1 = v
1
2
1

are confined in (3.3) due to V2 = v1/V1 = V1. Here the parameterizations for a and b are
a2 = p = (1− α)2/α, b2 = q = (1− β)2/β.

3.3 Solutions to Q1(δ)

The iteration (3.3) can be extended to N ≤ 0.

Lemma 3.7. Define

v−N = − 1

vN+1
, V−N = (−1)N+1 1

VN+2
, for N ≥ 0. (3.8)

Then the iteration relation (3.3) can be extended to N ∈ Z.
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This lemma can be checked directly.
Note that the extension does not lead to new solutions to Q1(0) and the lpmKdV equation

because these two equations are invariant under transformations of type u→ c/u. However, the
extension does bring more rational solutions to Q1(δ).

Theorem 3.8. For the pair (vN , VN ) determined by (3.3) with N ∈ Z, function

uN = vN +
δ2

vN−2
, N ∈ Z, (3.9)

gives a sequence of solutions to Q1(δ). uN and vN−1 are connected via

ũN − uN =
a2(vN−1ṽN−1 − δ2)

ṽN−1 − vN−1
, ûN − uN =

b2(vN−1v̂N−1 − δ2)
v̂N−1 − vN−1

, (3.10)

which is the non-auto BT (3.5) between Q1(δ) and Q1(0). Also, (3.9) agrees with the chain

u1
δ=0
−−−→ v1

BT (3.10)
−−−→ u2

δ=0
−−−→ v2

BT (3.10)
−−−→ u3 · · · · · · . (3.11)

Proof. We only need to prove uN defined by (3.9) satisfies (3.10). Since {vN} obey the
BT (3.4), using which we can find

ṽk − vk =
a2ṽk−1vk−1
ṽk−1 − vk−1

,
1

ṽk−2
− 1

vk−2
=

−a2

ṽk−1 − vk−1
.

Then, from (3.9) by direct calculation we immediately have

ũN − uN = ṽN − vN + δ2
(

1

ṽN−2
− 1

vN−2

)
=
a2(vN−1ṽN−1 − δ2)

ṽN−1 − vN−1
,

which coincides with the first equation in (3.10). Similarly we can find ûN − uN satisfies the
second equation in (3.10) as well. �

Formula (3.9) provides an explicit relation between solutions of Q1(δ) and Q1(0), where {vN}
is a sequence generated from (3.3). For vN given as in (3.6), some rational solutions of Q1(δ)
generated from (3.9) are

u1 = x1 −
1

3
δ2
(
x31 − x3

)
,

u2 =
1

3

(
x31 − x3

)
− δ2x1, (3.12)

u3 =
1

x1

(
1

45
x61 −

1

9
x31x3 +

1

5
x1x5 −

1

9
x23 + δ2

)
,

where we have made use of relation (3.8) in order to get v−1 and v0.
Here we give two remarks.

Remark 3.9. There are some overlaps (dual forms) in the chain (3.9). Note that Q1(δ) equa-
tion is formally invariant under transformation first replacing u with εδ2u and then δ with 1/δ
where ε = ±1, by which (3.9) is transformed into its dual form

uN = ε

(
δ2vN +

1

vN−2

)
,

which gives a sequence of solutions to Q1(δ) as well. By the relation (3.8) given in Lemma 3.7,
uN and u3−N in (3.9) are dual forms of each other.
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Remark 3.10. Not all the rational solutions of Q1(δ) are included in the chain (3.9). We give
two exceptions. One is

u = αn+ βm+ γ, (3.13a)

where γ is a constant and α, β are defined by parametrization

p =
c0

a2 − δ2
, q =

c0
b2 − δ2

, α = pa, β = qb, (3.13b)

with arbitrary constant c0, and the other is

u = δx21 + δγ0, (3.14)

where x1 is defined as (3.7), p, q are parameterized as in (3.2) and γ0 is a constant.

3.4 Rational solutions to Q2

We make use of a non-auto BT between Q1(δ) (2.6) and Q2 (2.8) to derive rational solutions
of Q2. The BT reads [4]

δ(u− ũ)(w − w̃) = p(2uũ− δ2w − δ2w̃) + δp2(u+ ũ+ δp),

δ(u− û)(w − ŵ) = q(2uû− δ2w − δ2ŵ) + δq2(u+ û+ δq). (3.15)

When u is given by (3.13a) with parametrization (3.13b), from (3.15) we can find

w =
u2

δ2
− c0u

δ3
+

c20
2δ4

+

(
a− δ
a+ δ

)n(b− δ
b+ δ

)m
γ0, u = αn+ βm+ γ,

where γ0 is a constant. This is not a pure rational solution.
For u defined in (3.14) with parametrization (3.2), from (3.15) we find

w =
1

5
x41 +

2

3
γ0x

2
1 +

4γ0x3
3x1

+
4x5
5x1

+ γ20 .

For u = u2 given by (3.12) with parametrization (3.2), from (3.15) we find

w =
1

45δ(x1 − δ)
[
30δ3

(
x31 − x3

)
− 15δ2

(
x41 + 2x1x3

)
− 3δ

(
x51 − 10x21x3 − 6x5

)
+ 2x61 + 18x1x5 − 10x23 − 10x31x3

]
.

3.5 Solutions to H3(δ)

To obtain solutions to H3(δ) we make use of A1(δ) (2.7). Solutions to A1(δ) can be obtained
from those of Q1(δ) (2.6) through transformation [2]

z = (−1)n+mu.

Similar to the triplet composed by (2.5), (2.3) and (3.1), A1(δ) (2.7) with parametrization (3.2),
H3(δ) (2.4) and their non-auto BT [4]

z̃ + z − δa2 = aZZ̃, ẑ + z − δb2 = bZẐ (3.16)

constitute a consistent triplet, i.e., compatibility ̂̃z = ˜̂z in (3.16) requires Z satisfies (2.4) and̂̃
Z =

˜̂
Z requires z satisfies (2.7). Such a consistency leads to
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Lemma 3.11.

(1) Starting from any solution z of (2.7), by integration through (3.16), the resulted Z sol-
ves (2.4), and vice versa.

(2) any solution pair (z, Z) of (3.16) gives a solution z to (2.7) and Z to (2.4).

Solution sequences of A1(δ) and H3(δ) are then given as follows.

Theorem 3.12. For vN and VN constructed in Theorem 3.3 and Lemma 3.7, function

zN = (−1)n+m
(
vN +

δ2

vN−2

)
, N ∈ Z, (3.17)

solves A1(δ) (2.7), and

ZN = (−1)
n+m

2
+ 1

4

(
VN +

(−1)n+mδ

VN−1

)
, N ∈ Z, (3.18)

solves H3(δ) (2.4).

Proof. Since uN defined in (3.9) solves Q1(δ), it is obvious that (3.17) provides a solution
to A1(δ). Besides, making use of iterative relation (3.3), one can find (3.17) and (3.18) provide
a solution pair to (3.16), which proves the present theorem. �

Here we list some solutions for H3(δ),

Z1 = (−1)
n+m

2
+ 1

4
(
1− (−1)n+mδx1

)
,

Z2 = (−1)
n+m

2
+ 1

4
(
x1 + (−1)n+mδ

)
,

Z3 = (−1)
n+m

2
+ 1

4
x31 − x3 + 3(−1)n+mδ

3x1
.

Similar to Q1(δ), there are also overlaps (dual forms) in the chain (3.18) for H3(δ). H3(δ) is
formally invariant under transformation first Z → εδ−1(−1)n+mZ and then δ → −δ−1 with
ε = ±1, by which (3.18) becomes

ZN = ε(−1)
n+m

2
+ 1

4

(
δ(−1)n+mVN −

1

VN−1

)
.

Thus, ZN and Z3−N in (3.18) are dual forms of each other in light of relation (3.8).

4 Solutions of H1 and H2

In this section we first derive solutions of H1 using a relation between H1 and the lpmKdV
equation. Then from H1 we derive solutions of H2.

4.1 H1

There is a non-auto BT [13]

ũ− û =
bṼ − aV̂
abV

, ̂̃u− u =
b
̂̃
V + aV

abV̂
(4.1)

to connect H1(u) (2.1) and the lpmKdV(V ) equation (2.3). We use it to derive solutions for H1
on the basis of the following fact.
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Lemma 4.1. When V solves the lpmKdV equation (2.3), function u defined by (4.1) satis-
fies H1 (2.1) with parametrization

p = −1/a2, q = −1/b2. (4.2)

Proof. We rewrite the lpmKdV equation (2.3) as(
bṼ − aV̂

)(
b
̂̃
V + aV

)
=
(
b2 − a2

)
V V̂ . (4.3)

Then, multiplying both equations in (4.1) and making use of (4.3) we immediately reach H1 (2.1)
provided p, q are parameterized as (4.2). �

From (4.1) we find

˜̃u− u =
V +

˜̃
V

aṼ
, ̂̂u− u =

V +
̂̂
V

bV̂
, (4.4)

of which we make use to derive u from known V .
For V1 = 1 and V2 = x1 given in (3.6), we derive same solution for H1,

u1 = u2 = x−1, (4.5a)

where x−1 follows the definition (3.7) with i = −1. For V3 and V4 given in (3.6), we respectively
find

u3 = x−1 −
1

x1
, (4.5b)

and

u4 = x−1 −
3x21

x31 − x3
. (4.5c)

Note that the lpmKdV equation (2.3) is invariant under V → 1
V . So we can replace V by 1/V

in (4.4) and get

˜̃u− u =
Ṽ

a

(
1

V
+

1˜̃
V

)
, ̂̂u− u =

V̂

b

(
1

V
+

1̂̂
V

)
.

One may wonder if the above relation can be used to generate more solutions for H1. However,
making use of iterative relations (3.3) we find

˜̃uN+1 − uN+1 =
VN+1 +

˜̃
V N+1

aṼN+1

=
ṼN
a

(
1

VN
+

1˜̃
V N

)
,

and a same formula for ( ̂, b), which means V → 1
V does not lead to new solutions for H1. This

can also explain the fact u1 = u2 due to V1 = 1
V1

= 1.

4.2 H2

Again, H2 (2.2), H1 (2.1) and their non-auto BT [4]

v + ṽ + p = 2uũ, v + v̂ + q = 2uû (4.6)

constitute a consistent triplet with parametrization (4.2). Then, from solutions (4.5) of H1 and
BT (4.6), we find the following rational solutions for H2:

v1 = v2 = x2−1, v3 = x2−1 −
2x−1
x1

, v4 = x2−1 −
6x1(x1x−1 − 1)

x31 − x3
.
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5 Rational solutions in determinant form

From the previous section it is understood that the sequence {VN} plays a crucial role in con-
structing solutions in the whole paper. With regard to rational solutions, it is hard to do
“integration” from (3.3b) to get high order vN and consequently it is difficult to get high or-
der VN . In this section we aim to construct Casoratian expressions for vN and VN , as well as
rational solutions of other equations.

5.1 Bilinear relation of VN and vN

We express

VN =
PN−1
PN−2

(5.1a)

and it then follows from (3.3a) that

vN =
PN
PN−2

. (5.1b)

From V2 = x1 we introduce

P0 = 1, P1 = x1,

and from (3.6) we find successively

P2 =
x31 − x3

3
,

P3 =
1

45
x61 −

1

9
x31x3 +

1

5
x1x5 −

1

9
x23,

P4 =
1

4725
x101 −

1

315
x71x3 +

1

75
x51x5 −

1

27
x1x

3
3 −

1

25
x25 +

1

15
x21x3x5 −

1

21
x31x7 +

1

21
x3x7,

where P4 is obtained from the relation P4
P3

= V5 = v4
V4

.

Viewing (5.1) as transformations, the BT (3.3b) yields

P̃P − PP̃ = aP P̃ , P̂P − PP̂ = bP P̂ , (5.2)

where

P
.
= PN , P

.
= PN+1, P

.
= PN−1.

This is a bilinear system for polynomials {PN}. Note that based on (3.8) the relations (5.1)
and (5.2) can be extended to N ∈ Z by defining

P−N = (−1)[
N
2
]PN−1, (5.3)

where [ · ] denotes the greatest integer function.

In Section 5.3 we will give a Casoratian form of P . To achieve that, we make use of H1.
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5.2 Casoratian form of rational solutions of H1

For H1 (2.1), using 3D consistency we have its BT

(ũ− u)
(
ũ− u

)
= a−2 − k−2, (û− u)

(
û− u

)
= b−2 − k−2, (5.4)

where u stands for a new solution of H1, we adopt parametrization (4.2) and the arbitrary
number k−2 = r acts as a “soliton number” which leads to a new soliton (cf. [14]). Now we
remove the term k−2 from (5.4), i.e., taking r = 0, and consequently we have

(ũ− u)
(
ũ− u

)
= a−2, (û− u)

(
û− u

)
= b−2, (5.5)

which can generate a rational part in the new solution u.
To find solutions from (5.5), first, we introduce

ũ− u =
ff̃

af̃f
, (5.6a)

ũ− u =
f̃f

af f̃
, (5.6b)

û− u =
ff̂

bf̂f
, (5.6c)

û− u =
f̂f

bf f̂
, (5.6d)

which provide a factorization of (5.5). Such an assumption coincides with the previous results.

In fact, suppose V = f/f , then from (5.6) we can find ũ − û and ̂̃u − u agree with (4.1) and˜̃u− u and ̂̂u− u agree with (4.4). Then we introduce

u = x−1 −
g

f
, u = x−1 −

g

f
, (5.7)

by which we bilinearize (5.6) as

gf̃ − fg̃ +
1

a
(ff̃ − f̃f) = 0, (5.8a)

gf̃ − fg̃ − 1

a
(ff̃ − f̃f) = 0, (5.8b)

gf̂ − fĝ +
1

b
(ff̂ − f̂f) = 0, (5.8c)

gf̂ − fĝ − 1

b
(ff̂ − f̂f) = 0. (5.8d)

Next, we introduce Casoratian forms for f , f , g and g. Consider function

ψi(n,m, l) = ψ+
i (n,m, l) + ψ−i (n,m, l),

ψ±i (n,m, l) = %±i (1± si)l(1± asi)n(1± bsi)m, (5.9)

where %±i and si are nonzero constants1. This can be used to construct soliton solutions for H1
equation (cf. [14])2. To derive the rational solutions obtained in the previous section, we take

%±i = ±1

2
exp

− ∞∑
j=1

(∓si)j

j
γj

 (5.10)

1If %±i are independent on si, in practice in (5.9) we replace (1± si)
l with (1± si)

l+l0 and suppose l0 is either
a large enough integer or a non-integer so that the derivative ∂h

si(1± si)
l+l0 |si=0 6= 0.

2One needs to use gauge property of bilinear H1 and make certain extension from (±si)l+l0 to (1± si)
l+l0 .
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with arbitrary constant γj . Then we expand ψ±i (n,m, l) as

ψ±i (n,m, l) = ±1

2

∞∑
h=0

α±h s
h
i , α±h = ± 2

h!
∂hsiψ

±
i |si=0. (5.11)

By noticing that

ψ±i (n,m, l) = ±1

2
exp

− ∞∑
j=1

(∓si)j

j
◦
xj

 , ◦
xj = xj + l,

where xj are exactly defined as (3.7), all {α±h } can be expressed in terms of {xj}. For {α+
h } we

have

α±h
.
= α±h (n,m, l) = (∓1)h

∑
||µ||=h

(−1)|µ|
◦
xµ

µ!
, (5.12)

where

µ = (µ1, µ2, . . . ), µj ∈ {0, 1, 2, . . .}, ||µ|| =
∞∑
j=1

jµj ,

|µ| =
∞∑
j=1

µj , µ! = µ1! · µ2! · · · ,
◦
x
µ

=

( ◦
x1
1

)µ1 ( ◦x2
2

)µ2
· · · .

The first few α+
h are

α+
0 = 1, α+

1 =
◦
x1, α+

2 =
1

2

( ◦
x21 −

◦
x2
)
, α+

3 =
1

6

( ◦
x31 − 3

◦
x1
◦
x2 + 2

◦
x3
)
,

α+
4 =

1

24

( ◦
x41 − 6

◦
x21
◦
x2 + 8

◦
x1
◦
x3 + 3

◦
x22 − 6

◦
x4
)
,

α+
5 =

1

120

( ◦
x51 − 10

◦
x2
◦
x31 + 20

◦
x3
◦
x21 + 15

◦
x22
◦
x1 − 30

◦
x4
◦
x1 − 20

◦
x2
◦
x3 + 24

◦
x5
)
.

Introduce a column vector

α(n,m, l) = (α0, α1, . . . , αN−1)
T, αj = α+

2j+1. (5.13)

With α(n,m, l) as a basic column vector we introduce Casoratians w.r.t. shifts in l:

f =
∣∣N̂ − 1

∣∣
R

= |α(n,m, 0), α(n,m, 1), . . . , α(n,m,N − 1)|, (5.14a)

f =
∣∣N̂ ∣∣

R
, g =

∣∣N̂ − 2, N
∣∣
R
−Nf, g =

∣∣N̂ − 1, N + 1
∣∣
R
− (N + 1)f. (5.14b)

Some f , g of low orders are

fN=1 = x1, gN=1 = 1, (5.15a)

fN=2 =
x31 − x3

3
, gN=2 = x21, (5.15b)

fN=3 =
1

45
x61 −

1

9
x31x3 +

1

5
x1x5 −

1

9
x23, gN=3 =

2

15
x51 −

1

3
x21x3 +

1

5
x5. (5.15c)

Through (5.7), (f, g) with N = 1, 2 provide solutions (4.5b) and (4.5c) for H1. For general N ,
we have the following.
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Theorem 5.1. The Casoratians (5.14) solve the bilinear BT (5.8) and (5.7) provides rational
solutions to H1.

Proof will be given in Appendix A.

Remark 5.2. There is an alternative choice for the Casoratians (5.14), which are given by just
replacing the basic column vector α given in (5.13) by

β(n,m, l) = (β0, β1, . . . , βN−1)
T, βj = α+

2j , (5.16)

where α+
2j are defined in (5.12), or equivalently,

βj =
1

(2j)!
∂2jsi ψi

∣∣
si=0

with

%±i =
1

2
exp

− ∞∑
j=1

(∓si)j

j
γj

 .
5.3 Casoratian solutions to (5.2)

We can make use of the BT of H1 to obtain solutions to bilinear equation (5.2). By the
compatibility of (5.6a) and (5.6b), i.e., (En−EN )(EnEN −1)u = (EnEN −1)(En−EN )u where
ENf = f , we find

f̃f − ff̃

f̃ f
= En

 f̃f − ff̃
f̃ f

 .

Similarly,

f̂f − ff̂

f̂ f
= Em

 f̂f − ff̂
f̂ f

 .

This means

f̃f − ff̃ = λ1(m,N)f̃ f , f̂f − ff̂ = λ2(n,N)f̂ f . (5.17)

Next we go to prove λ1(m,N) = a and λ2(n,N) = b. Again, from (5.6), we can derive

u− u =
ff̃

af̃f
− f f̃

af̃ f
=

ff̂

bf̂f
− f f̂

bf̂ f
.

Using (5.17) to eliminate f̃ and f̂ from the above equation, we find

u− u = −λ1(m,N)
f
2

aff
= −λ2(n,N)

f
2

bff
, (5.18)

which means

aλ2(n,N) = bλ1(m,N),
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and it then follows that both λ1 and λ2 must be (n,m)-independent. We assume

γ(N) = λ1/a = λ2/b,

and then (5.17) yields

γ(N) =
f̃f − ff̃

af̃ f
=
f̂f − ff̂

bf̂ f
. (5.19)

To determine the value of γ(N), we investigate properties of f near the point (n,m) = (0, 0),
which are presented through the following lemmas.

Lemma 5.3. According to the definitions of u in (5.7), f and g in (5.14) and α±h in (5.12), we
find the value of α±h |(n,m)=(0,0) is independent of (a, b), and so are f(0, 0), g(0, 0) and u(0, 0).
Then, from (5.18) we find that γ(N) must be independent of (a, b).

Lemma 5.4. For same N , there exists relation

fN (α(n,m, l)) = fN+1(β(n,m, l)), (5.20)

where α(n,m, l) and β(n,m, l) are respectively N -th order and (N + 1)-th order column vectors

defined as (5.13) and (5.16). Here and below fN (ψ) stands for a N -th order Casoratian |N̂ − 1|
composed by a N -th order basic column vector ψ.

Proof. First, noticing that relation

ψ±i (n,m, l + 1)− ψ±i (n,m, l) = ±siψ±i (n,m, l),

from the definition of α+
h in (5.11), we immediately get

α+
h (n,m, l + 1)− α+

h (n,m, l) = α+
h−1(n,m, l), h ≥ 1, (5.21)

from which, taking h = 2j, we reach

βj(n,m, l + 1)− βj(n,m, l) = αj−1(n,m, l), j ≥ 1.

It then follows that

β(n,m, l + 1)− β(n,m, l) =

(
0

α(n,m, l)

)
,

where α(n,m, l) and β(n,m, l) are respectively N -th order and (N + 1)-th order column vectors
defined as (5.13) and (5.16). This immediately leads to the relation (5.20). �

Lemma 5.5. For Casoratian fN (α(n,m, l)), the relation

fN (α(1, 0, l)) = aNfN−1(α(0, 0, l)) +O
(
aN−1

)
holds.

Proof.

fN (α(1, 0, l)) = fN (aβ(0, 0, l) + α(0, 0, l))

= aNfN (β(0, 0, l)) +O
(
aN−1

)
= aNfN−1(α(0, 0, l)) +O

(
aN−1

)
,

where we have made use of relation (5.20). �
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With this lemma, for f = fN (α(n,m, l)) in (5.19), we have

f̃ |n=m=0 = aNf |n=m=0 +O
(
aN−1

)
, f̃ |n=m=0 = aN+1f |n=m=0 +O

(
aN
)
,

f̃ |n=m=0 = aN+2f |n=m=0 +O
(
aN+1

)
.

Then, since γ(N) is independent of a, from (5.19) we arrive at

γ(N) = lim
a→∞

f̃f − ff̃

af̃ f

∣∣∣∣∣
n=m=0

= 1.

We can sum up this subsection with the following theorem.

Theorem 5.6. The Casoratian f = fN (α(n,m, l)) solves bilinear equation set

f̃f − ff̃ = af̃ f , (5.22a)

f̂f − ff̂ = bf̂ f . (5.22b)

P = fN (α(n,m, l)) provides a Casoratian form of solution to (5.2). By defining

f−N = (−1)[
N
2
]fN−1, f0 = 1, (5.23)

one can consistently extend (5.22) to N ∈ Z, which coincides with (5.3).

5.4 Casoratian rational solutions to H2 and a sum-up

We can derive Casoratian rational solutions for H2 through non-auto BT (4.6), in which we
suppose

u = x−1 −
g

f
, v = x2−1 − 2(x−1 +N)

g

f
+
h

f
−N2. (5.24)

Then BT (4.6) is bilinearized as

fh̃+ f̃h+ 2
(
a−1 −N

)
gf̃ − 2

(
a−1 +N

)
g̃f − 2gg̃ − 2N2ff̃ = 0, (5.25a)

fĥ+ f̂h+ 2
(
b−1 −N

)
gf̂ − 2

(
b−1 +N

)
ĝf − 2gĝ − 2N2ff̂ = 0. (5.25b)

Based on the bilinear form we have

Theorem 5.7. The Casoratians

f =
∣∣N̂ − 1

∣∣
R
, g =

∣∣N̂ − 2, N
∣∣
R
−Nf,

h =
∣∣N̂ − 2, N + 1

∣∣
R

+
∣∣N̂ − 3, N − 1, N

∣∣
R

(5.26)

solve the bilinear BT system (5.25), in which the basic Casoratian column vector α is given
by (5.13). Consequently, (5.24) provides rational solutions to H1 and H2.

Proof will be given in Appendix B.
Besides (5.15), some h of low orders are

hN=1 = x1 + 2, hN=2 =
4

3

(
x31 − x3

)
+ 4x21 + 2x1,

hN=3 =
1

5
x61 − x31x3 +

9

5
x1x5 − x23 +

4

5
x51 − 2x21x3 +

6

5
x5 +

2

3
x41 −

2

3
x1x3,

where all γi = li in xi.
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So far we have obtained Casoratian expressions for the rational solutions of Q1(0), lpmKdV,
Q1(δ), H3(δ), H1 and H2. Noting that all these solutions are related to the rational solutions VN
of the lpmKdV equation, it is necessary to express all these obtained solutions through the
Casoratians with a unified N . We collect them in the following theorem.

Theorem 5.8. Suppose that

f
.
= fN =

∣∣N̂ − 1
∣∣
R
, g

.
= gN =

∣∣N̂ − 2, N
∣∣
R
−Nf,

h
.
= hN =

∣∣N̂ − 2, N + 1
∣∣
R

+
∣∣N̂ − 3, N − 1, N

∣∣
R
, (5.27)

and denote f = fN+1 and f = fN−1. Then the rational solutions for Q1(0), lpmKdV, Q1(δ),
H3(δ), H1 and H2 are respectively

Q1(0) : vN+2 =
f

f
, (5.28a)

lpmKdV: VN+2 =
f

f
, (5.28b)

Q1(δ) : uN+2 =
f + δ2f

f
, (5.28c)

H3(δ) : ZN+2 = (−1)
n+m

2
+ 1

4
f + (−1)n+mδf

f
, (5.28d)

H1: uN+2 = x−1 −
g

f
, (5.28e)

H2: vN+2 = x2−1 − 2(x−1 +N)
g

f
+
h

f
−N2. (5.28f)

5.5 Rational solutions to Q2

Now we come to the final equation, Q2. We start from the non-auto BT (3.15) in which we
take parametrization (3.2) and u to be (5.28c) which is a solution of Q1(δ). Introduce auxiliary
function

w = y +
u2

δ2

by which the BT (3.15) yields

ỹ =
ũ− u− δp
ũ− u+ δp

y +
1

δ2
(u+ δp− ũ)(u+ δp+ ũ),

ŷ =
û− u− δq
û− u+ δq

y +
1

δ2
(u+ δq − û)(u+ δq + û). (5.29)

Then, making use of the relation (5.22), from (5.28c) we can find

ũN+2 − uN+2 + δp = a
(f + δf)

(
f̃ − δf̃

)
ff̃

,

ũN+2 − uN+2 − δp = a
(f − δf)

(
f̃ + δf̃

)
ff̃

.

On the basis of the above relations together with their (q, ̂) version, and introducing

θN+2 = yN+2

f − δf
f + δf

,
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we then reduce (5.29) to

θN+2 − θ̃N+2 =
a(f − δf)

(
f̃ − δf̃

)
δ2ff̃

(uN+2 + ũN+2 + δp),

θN+2 − θ̂N+2 =
b(f − δf)

(
f̂ − δf̂

)
δ2ff̂

(uN+2 + ûN+2 + δq). (5.30)

To solve this system we expand

θN+2 =

2∑
i=−2

θ
(i)
N+2δ

i.

It then follows from (5.30) that

θ
(−2)
N+2 − θ̃

(−2)
N+2 =

af̃ f

f2f̃2

(
f̃f + f̃ f

)
, (5.31a)

θ
(−1)
N+2 − θ̃

(−1)
N+2 =

−2a

f2f̃2

(
f f̃ f̃ f + f̃f f̃ f

)
, (5.31b)

θ
(0)
N+2 − θ̃

(0)
N+2 =

a2

f2f̃2

(
f̃2f

2 − f2f̃2
)

+
2
(
f̃f − f̃ f

)
ff̃

, (5.31c)

θ
(1)
N+2 − θ̃

(1)
N+2 =

−2a

f2f̃2

(
f f̃ f̃f + f̃ f f̃ f

)
, (5.31d)

θ
(2)
N+2 − θ̃

(2)
N+2 =

af̃ f

f2f̃2

(
f̃f + f̃f

)
, (5.31e)

among which, except θ
(0)
N+2, we find explicit expressions for θ

(i)
N+2 in terms of f :

θ
(−1)
N+2 = −f

2

f2
, θ

(−1)
N+2 =

2f2f + 2f2f

f2f
,

θ
(1)
N+2 = −

2f2f + 2f2f

f2f
, θ

(2)
N+2 =

f2

f2
. (5.32)

For θ
(0)
N+2 which is determined by (5.31c), the simplest two items are

θ
(0)
2 =

1

3
x41 +

2

3
x1x3, θ

(0)
3 = − 1

15
x41 +

2

3
x1x3 +

2x5
5x1

.

However, so far we do not find an explicit expression for θ
(0)
N+2 in terms of f and other auxiliary

functions.
As a conclusion of rational solutions of Q2, we give the following theorem.

Theorem 5.9. Suppose that f = fN is defined as in (5.27). Our construction provides rational
solutions of Q2 in the following form

wN+2 =
u2N+2

δ2
+
f + δf

f − δf

−f2
δ2f2

+
2f2f + 2f2f

δf2f
+ θ

(0)
N+2 −

2δf2f + 2δf2f

f2f
+
δ2f2

f2

,(5.33)

where uN+2 is given by (5.28c) and θ
(0)
N+2 is determined by (5.31c).

We note that it might be not sufficient to call (5.33) a rational solution for arbitrary N ,

because for this moment we do not have a general solution form (like (5.32)) for θ
(0)
N+2.
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6 Conclusions

In the paper we have derived rational solutions for the lpmKdV equation and some lattice
equations in the ABS list. We make use of lpmKdV-Q1(0) consistent triplet to construct their
rational solutions iteratively. This then becomes a starting point and through the route in
Fig. 1 to generate solutions for other equations. All these rational solutions are related to
a unified τ function in Casoratian form, f(α) = |N̂ − 1|, which obeys the bilinear superposition
formula (5.22).

There are several interesting points we would like to remark. First, formula (3.9) reveals
an explicit relation between certain solutions of Q1(δ) and Q1(0). This formula holds not
only for rational solutions but also for solitons. Once we obtain vN−2 and vN from (3.3),
formula (3.9) gives a solution uN to Q1(δ), and these solutions provide a solution sequence
for the chain (3.11) which is based on BT (3.5), i.e., (3.10). The second thing is about bilinear
superposition formula (5.22) or (5.2). Casoratian f with ψi (5.9) as a basic entry is also a solution
of bilinear equation

(a+ b)̂̃ff̃ + (b− a)˜f ̂̃f = 2bf f̂ , (6.1)

as well as its dual version by switching (a, ˜) and (b, ̂). (6.1) can be considered as a bilinear
form of Hirota’s discrete KdV equation (see [15] and [13, Section 8.4.1]). It was also derived from
the Cauchy matrix approach as a bilinear form that is related to H1 (see [13, Section 9.4.3]).
It is also well known that (6.1) can be derived as a reduction of the Hirota–Miwa equation, of
which some rational solutions were derived from several different ways and reductions of few
cases was already considered [11, 17]. Here we can consider (5.22) as a bilinear superposition
formula of (6.1) for rational solutions. Since (5.22) holds for all N ∈ Z, it might be possible to
connect (5.22) with some 3D lattice equations. Finally, let us go back to xi defined in (3.7). It is
interesting that all the {αN} can be expressed in terms of xi. Recalling Lemma 3.4 in which vN
can be positive in the first quadrant {n ≥ 0, m ≥ 0} if we take vN (0, 0) > 0 which can be done
by suitably choosing value for γ2N−1 (see (3.6) as examples), we can make use of the relation
between vN and f to formulate a mechanism for choosing γj so that f is nonzero in the first
quadrant. This will be done in Appendix C.

At the end of the paper we would like to make a comparison for the rational solutions and their
derivation between the present paper and [21]. In this paper the construction of rational solutions

is based on iteration of a chain of transformations, and the unified τ function f(α) = |N̂ − 1| is
proved to satisfy the bilinear superposition formula (5.22). In [21], rational solutions (most of
them with exponential background) for H3(δ) and Q1(δ) are obtained via a limiting procedure
from soliton solutions in Casoratian expression. The method used in [21] can be extended to H1
and H2 (by selecting (5.9) as a basic Casoratian entry) and the results will be the same as the
present paper. However, for H3(δ) and Q1(δ) it is obvious that our construction, which brings
pure rational solutions, allows reduction δ = 0 and relies only on a unified τ function, has more
advantage than the limiting procedure used in [21]. It is hard to say what is the reason of this
difference, but a fact is all the BTs we used in our paper are only parametrically related to
spacing parameters a, b without any extra parameters for solitons. These BTs are natural for
generating rational solutions.

A Proof of Theorem 5.1 for H1

Here we prove Theorem 5.1 which gives Casoratian form of rational solutions of H1.
First, we prove (5.8a). Noticing that ψi defined in (5.9) satisfies shift relation

ψi(l)− a˜ψi(l + 1) = (1− a)˜ψi(l)
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and ψi (with %±i (5.10)) and αj defined by (5.13) actually obey the relation

ψi(l) =
∞∑
j=0

αj(l)s
2j+1
i (A.1)

we have

αi(l)− a˜αi(l + 1) = (1− a)˜αi(l). (A.2)

With such a shift relation and using the technique in [14], for the Casoratians in (5.14) we find

(1− a)N−1˜f =
∣∣N̂ − 2,˜α(N − 1)

∣∣, (A.3a)

−a(1− a)N−1˜f =
∣∣N̂ − 1,˜α(N − 1)

∣∣, (A.3b)

−a(1− a)N−1˜g =
∣∣N̂ − 2, N,˜α(N − 1)

∣∣+ (1− a)N−1(1 + aN)˜f, (A.3c)

where we have neglected subscript “R” without making any confusion.

Substituting (5.14) and (A.3) into the downtilde-shifted (5.8a), for the l.h.s. we reach∣∣N̂ ∣∣∣∣N̂ − 2,˜α(N − 1)
∣∣−∣∣N̂ − 1,˜α(N − 1)

∣∣∣∣N̂ − 2, N
∣∣+∣∣N̂ − 1

∣∣∣∣N̂ − 2, N,˜α(N − 1)
∣∣, (A.4)

which is zero in light of Lemma 2.1. In fact, we can replace the N -th order vector α with (N+1)-
th order one, introduce an auxiliary (N + 1)-th order column vector eN+1 = (0, 0, . . . , 0, 1)T,
and rewrite

f =
∣∣N̂ − 1, eN+1

∣∣, g =
∣∣N̂ − 2, N, eN+1

∣∣,∣∣N̂ − 2,˜α(N − 1)
∣∣ =

∣∣N̂ − 2,˜α(N − 1), eN+1

∣∣;
then after taking B = (N̂ − 2), a = α(N−1), b = eN+1, c = α(N), d = ˜α(N−1), (A.4) vanishes
due to Lemma 2.1.

Next, to prove (5.8b) we consider Casoratians f and g composed by φ(l) = (φ1, φ2, . . . , φN )T

where

φi(n,m, l) = %+i (1 + si)
l(1− asi)−n(1 + bsi)

m + %−i (1− si)l(1 + asi)
−n(1− bsi)m,

which satisfies

φi(l) + aφ̃i(l + 1) = (1 + a)φ̃i(l). (A.5)

Introduce vector

ω(l) = (ω1(l), ω2(l), . . . , ωN (l))T, ωj =
1

(2j + 1)!
∂2j+1
si φi|si=0.

Noticing the expression (A.1) for αj(l) and relation

φi =
1

(1− a2s2i )n
ψi

where we have taken %±i defined as (5.10), we find

ω = Aα, (A.6)
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where A = (aij)N×N is a lower triangular Toeplitz matrix defined by

aij =


0, i < j,

∂
2(i−j)
si

[2(i− j)]!
1

(1− a2s2i )n
∣∣∣
si=0

, i ≥ j.

Noticing the relation (A.6) and |A| = 1, we have

f(ω(l)) = |A|f(α(l)) = f(α(l)), g(ω(l)) = g(α(l)).

Besides, ωi obeys the same shift relation as (A.5), i.e.,

ωi(l) + aω̃i(l + 1) = (1 + a)ω̃i(l), (A.7)

which leads to

(1 + a)N−1f̃(ω(l)) =
∣∣N̂ − 2, ω̃(N − 1)

∣∣,
a(1 + a)N−1f̃(ω(l)) =

∣∣N̂ − 1, ω̃(N − 1)
∣∣,

a(1 + a)N−1g̃(ω(l)) =
∣∣N̂ − 2, N, ω̃(N − 1)

∣∣− (1 + a)N−1(Na− 1)f̃ .

Then one can find the l.h.s. of (5.8b) yields∣∣N̂ ∣∣∣∣N̂ − 2, ω̃(N − 1)
∣∣− ∣∣N̂ − 1, ω̃(N − 1)

∣∣∣∣N̂ − 2, N
∣∣+
∣∣N̂ − 1

∣∣∣∣N̂ − 2, N, ω̃(N − 1)
∣∣,

which vanishes as (A.4).
(5.8c) and (5.8d) can be proved similarly.

B Proof of Theorem 5.7 for H2

To prove Theorem 5.7, we rewrite

h = s+ t, s =
∣∣N̂ − 2, N + 1

∣∣
R
, t =

∣∣N̂ − 3, N − 1, N
∣∣
R
.

With the relation (A.2) and using the technique in [14], for the Casoratians (5.26) we have

a(1− a)N−2
[̃
s+ (a−1 − 1)(˜g +N˜f)

]
= −

∣∣N̂ − 3, N,˜α(N − 2)
∣∣,

a(1− a)N−2
[
˜g + (a−1 +N − 1)˜f

]
= −

∣∣N̂ − 3, N − 1,˜α(N − 2)
∣∣,

a(1− a)N−2˜f = −
∣∣N̂ − 3, N − 2,˜α(N − 2)

∣∣.
Again, here and after we drop off subscript “R” without making any confusion. Then we find
that

a(1− a)N−2
{
f
[̃
s+ (a−1 − 1)(˜g +N˜f)

]
− (g +Nf)

[
˜g + (N + a−1 − 1)˜f

]
+˜ft

}
= −

∣∣N̂ − 1
∣∣∣∣N̂ − 3, N,˜α(N − 2)

∣∣+
∣∣N̂ − 2, N

∣∣∣∣N̂ − 3, N − 1,˜α(N − 2)
∣∣

−
∣∣N̂ − 3, N − 2,˜α(N − 2)

∣∣∣∣N̂ − 3, N − 1, N
∣∣ = 0. (B.1)

Since

f(ω(l)) = f(α(l)), g(ω(l)) = g(α(l)), s(ω(l)) = s(α(l)), t(ω(l)) = t(α(l)),
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using (A.7) one has

a(1 + a)N−2
[
s̃(ω)−

(
a−1 + 1

)
(g̃(ω) +Nf̃(ω))

]
=
∣∣N̂ − 3, N, ω̃(N − 2)

∣∣,
a(1 + a)N−2

[
g̃(ω)−

(
a−1 −N + 1

)
f̃(ω)

]
=
∣∣N̂ − 3, N − 1, ω̃(N − 2)

∣∣,
a(1 + a)N−2f̃(ω) =

∣∣N̂ − 2, ω̃(N − 2)
∣∣.

Consequently it reaches

a(1 + a)N−2
{
f
[
s̃− (a−1 + 1)(g̃ +Nf̃)

]
− (g +Nf)

[
g̃ − (a−1 −N + 1)f̃

]
+ f̃ t

}
=
∣∣N̂ − 1

∣∣∣∣N̂ − 3, N, ω̃(N − 2)
∣∣− ∣∣N̂ − 2, N

∣∣∣∣N̂ − 3, N − 1, ω̃(N − 2)
∣∣

+
∣∣N̂ − 2, ω̃(N − 2)

∣∣∣∣N̂ − 3, N − 1, N
∣∣ = 0. (B.2)

Then, adding (B.2) and the uptilde-shifted (B.1) yields (5.25a). The other equation in (5.25)
can be proved similarly.

C Property of f

In the following we take a close look at Casoratian fN defined by (5.14a), i.e.,

fN =
∣∣N̂ − 1

∣∣ = |α(n,m, 0), α(n,m, 1), . . . , α(n,m,N − 1)|, (C.1)

where α is given by (5.13). Due to relation (5.23), we only consider the case N ∈ Z+. To investi-
gate properties of fN , we introduce “degree” for a polynomial. For a monomial

∏
i≥1 x

ki
i where xi

is defined in (3.7), we assign it a degree
∑

i≥1 iki and denote this number by D
[∏

i≥1 x
ki
i

]
.

A polynomial P = P [{xi}] in which each monomial has same degree d is called homogeneous
and its degree is denoted by D[P ] = d. Under this definition, for the fN given in (5.15), they are
all homogeneous and their degrees are D[f1] = 0, D[f2] = 3, D[f3] = 6. In particular, we have

Lemma C.1. For α+
h (n,m, l) defined in (5.12), α+

h (n,m, 0) is homogeneous with degree

D[α+
h (n,m, 0)] = h.

Now we come to investigate properties of fN .

Theorem C.2. Casoratian fN in which α is given by (5.13) has the following properties:

(i) fN is homogeneous with degree D[fN ] = N(N+1)
2 ;

(ii) fN depends only on {x1, x3, . . . , x2N−1};
(iii) fN (n,m) is positive in the first quadrant {n ≥ 0, m ≥ 0} provided a > 0, b > 0 and

fN (0, 0) > 0;

(iv) in construction, fN (0, 0) > 0 is guaranteed by successively choosing

(−1)N+1γ2N−1 > −
(2N − 1)fN (0, 0)|γ2N−1=0

fN−2(0, 0)
.

Proof. We prove the items of the theorem one by one.
(i) Consider Casoratian fN (C.1) in which α is given by (5.13). fN is written as |(fij)N×N |

where fij = α+
2i−1(n,m, j − 1). Noting that it is not α+

h (n,m, l) but α+
h (n,m, 0) that is ho-

mogeneous, in the following we make use of shift relation (5.21) to rewrite fN in terms of
{α+

h (n,m, 0)}. To do that, first from (5.21) we have

α(l + 1)− α(l) = β(l), (C.2a)

β(l + 1)− β(l) = Λα(l), (C.2b)
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where

Λ = (δi,j+1)N×N , δi,j =

{
1, i = j,

0, i 6= j.

Here in (C.2) we have omitted n, m in α(n,m, l) and β(n,m, l) for convenience. Successively
making use of (C.2a) we can rewrite (C.1) from the last to the first column, and we have

fN = |α(0), β(0), β(1), β(2), . . . , β(N − 3), β(N − 2)|.

Then, employing (C.2b) and in a similar manner we have

fN = |α(0), β(0),Λα(0),Λα(1), . . . ,Λα(N − 4),Λα(N − 3)|.

This procedure can be continued until we arrive at

fN =
∣∣α(0), β(0),Λα(0),Λβ(0),Λ2α(0),Λ2β(0), . . . ,Λ[(N−1)/2]σ(0)

∣∣, (C.3)

where

σ(0) =

{
α(0), N odd,

β(0), N even.

(C.3) can be denoted by fN = |(f ′ij)N×N | where

f
′
ij =

{
α+
2i−j(0), i = 1, 2, . . . , N, 1 ≤ j ≤ min{2i,N},

0, min{2i,N} < j ≤ N.

Now it is evident that each element in (C.3) is homogenous with degree

D[f
′
ij ] =

{
2i− j, i = 1, 2, . . . , N, 1 ≤ j ≤ min{2i,N},
not available, min{2i,N} < j ≤ N.

Note that the degree of nonzero f
′
ij is separable in terms of i and j. Meanwhile, fN is an algebraic

summation in which each term is a nonzero product
∏N
i=1 f

′
i,ji

where ji runs over a permutation
of the set {1, 2, . . . , N}. It is easy to get

D

[
N∏
i=1

f
′
i,ji

]
=

N∑
i=1

(2i)−
N∑
j=1

j =
N(N + 1)

2
,

which means fN is homogeneous with degree D[fN ] = N(N+1)
2 .

(ii) In the following we come to the statement that fN depends only on {x1, x3, . . . , x2N−1},
which has been shown correct for N = 1, 2, 3 in (5.15). Now we assume the statement is
correct for fj where j ∈ {1, 2, . . . , N − 1}. For fN , first, it contains x2N−1. In fact, from the
expression (C.3) we can see that x2N−1 only appears in the element f

′
N,1, and doing Laplace

expansion for (C.3) along the first two columns it is easy to find the only term involving x2N−1 is

(−1)N+1

2N − 1
x2N−1fN−2. (C.4)

Next, we note that for each monomial A =
∏
i≥1 x

ji
i , the commutating relation

∂xiÃ = ∂̃xiA
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holds, which indicates ∂xi f̃N = ∂̃xifN . Taking derivative ∂x2i on both sides of double down bar
shifted (5.22a) we have

fN−2∂̃x2ifN − f̃N−2∂x2ifN = 0,

where the right hand side has vanished due to the assumption that fj is independent of x2i

for j ∈ {1, 2, . . . , N − 1}. The above relation indicates
∂x2ifN
fN−2

is independent of n. In a same

manner, from (5.22b) we can find
∂x2ifN
fN−2

is independent of m. Thus we come to a relation

∂x2ifN = cfN−2, (C.5)

where c is a constant. Based on item (i) of the current theorem the degrees in (C.5) read

N(N + 1)

2
− 2i =

(N − 2)(N − 1)

2
,

i.e.,

2N − 1 = 2i,

which is contradictory for any i ∈ Z+ and then indicates c = 0 in (C.5). Thus, ∂x2ifN = 0, i.e.,
fN is independent of x2i. In conclusion, fN depends only on {x1, x3, . . . , x2N−1}.

(iii) It is known that vN = fN/fN−2 and VN = fN−1/fN−2 provide a solution pair to (3.3b).
Meanwhile, from Lemma 3.4 both vN and VN are positive in the first quadrant {n ≥ 0, m ≥ 0}
if a > 0, b > 0 and vN (0, 0) > 0. Obviously, from vN = fN/fN−2 and f−1 = f0 = 1, for each
N = 2, 3, . . . , we can successively find fN (n,m) > 0 in the first quadrant if a > 0, b > 0 and
fN (0, 0) > 0.

(iv) Finally, we formulate a mechanism to guarantee fN (0, 0) > 0 by choosing suitable γj .
From item (ii) we know that fN (0, 0) is only related to {γ1, γ3, . . . , γ2N−1}. Since in fN the term
involving x2N−1 is (C.4), we express fN as

fN (n,m) = fN (n,m)|x2N−1=0 +
(−1)N+1

2N − 1
x2N−1fN (n,m),

which, at point (0, 0), yields

fN (0, 0) = fN (0, 0)|γ2N−1=0 +
(−1)N+1

2N − 1
γ2N−1fN−2(0, 0).

To guarantee fN (0, 0) > 0, we need to take

(−1)N+1γ2N−1 > −
(2N − 1)fN (0, 0)|γ2N−1=0

fN−2(0, 0)
. (C.6)

Thus, as a starting step we take f0 = 1 and f1 = x1 with γ1 > 0, for N = 2, using the above
formula we choose a value for γ3 so that f2(0, 0) > 0. We can repeatedly use (C.6) and will
successively choose γ2N−1 and get fN (0, 0) > 0 for higher N . �
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