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1 Introduction

The one-dimensional Dunkl kernel e, v > —1/2, is defined by

er(2) =y (i2) + g qyilis), 2€C

2(y+1
where

& —1)" (2 2n
J2(2) =T(r+1) ) n(! rl()n J(r fi 1)

n=0

is the normalized spherical Bessel function of index . It is well-known (see [3]) that the functions
ev(A), A € C, are solutions of the differential-difference equation

Ayu = Au, u(0) =1,

where

A f@) = )+ (4 5 ) HEZLED
is the Dunkl operator with parameter y+1/2 associated with the reflection grour Z, on R. Those
operators were introduced and studied by Dunkl [2, 3, 4] in connection with a generalization
of the classical theory of spherical harmonics. Besides its mathematical interest, the Dunkl
operator A, has quantum-mechanical applications; it is naturally involved in the study of one-
dimensional harmonic oscillators governed by Wigner’s commutation rules [6, 11, 16].

It is known, see for example [14, 15], that the Dunkl kernels on R possess the following Sonine
type integral representation

||
eg(A\r) = Kop(®,y) ea(\y) [y)**trdy, AeC,  x#0, (1.1)

—l=|
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where

(@ =)
aa,g5g0(x) (¢ +y) ez if |y| < |,

Ica,ﬁ($ay> = (12>
0 if [y| > |zl
with 8 > a > —1/2, and

T8+
B T Ta+ )T(B-a)

Define the Dunkl-Sonine integral transform X, g and its dual ‘X, g, respectively, by

||

Xopf(x) = Kap(z,y) f(y) ly[?** dy,

— x|

Wosf (y) = / Ko, y) F () |25+ de.

|z|>]y]

Soltani has showed in [14] that the dual Dunkl-Sonine integral transform X, 5 is a trans-
mutation operator between A, and Ag on the Schwartz space S(R), i.e., it is an automorphism
of S(R) satisfying the intertwining relation

Kophgf=MXapf, feSR).

The same author [14] has obtained inversion formulas for the transform X, 3 involving pseudo-
differential-difference operators and only valid on a restricted subspace of S(R).

The purpose of this paper is to investigate the use of Dunkl wavelets (see [5]) to derive a new
inversion of the dual Dunkl-Sonine transform on some Lebesgue spaces. For other applications
of wavelet type transforms to inverse problems we refer the reader to [7, 8] and the references
therein.

The content of this article is as follows. In Section 2 we recall some basic harmonic analysis
results related to the Dunkl operator. In Section 3 we list some basic properties of the Dunkl-
Sonine integral trnsform and its dual. In Section 4 we give the definition of the Dunkl continuous
wavelet transform and we establish for this transform a Calderén formula. By combining the
results of the two previous sections, we obtain in Section 5 two new inversion formulas for the
dual Dunkl-Sonine integral transform.

2 Preliminaries

Note 2.1. Throughout this section assume v > —1/2. Define LP(R, |z|?*ldz), 1 < p < oo, as
the class of measurable functions f on R for which ||f||,~ < oo, where

1/p
Hf\lm:< / \f(m)plmlwldx) L peoo,

and || f||oo,y = ||f|loc = esssup,cr|f(z)]. S(R) stands for the usual Schwartz space.

The Dunkl transform of order v+ 1/2 on R is defined for a function f in L}(R, |z|>**!dz) by

]—"Wf()\):/Rf(a:)ev(—z'/\x)\xlz'”ldm, AeR. (2.1)
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Remark 2.2. It is known that the Dunkl transform F, maps continuously and injectively
L' (R, |z|?>"*1dz) into the space Co(R) (of continuous functions on R vanishing at infinity).

Two standard results about the Dunkl transform F, are as follows.

Theorem 2.3 (see [1]).

(i) For every f € L' N L%(R, |z|>*"dz) we have the Plancherel formula

/R’f (@)l de = m, /R F PP,

where
1
Mey = .
T 20T (y + 1))

(2.2)

(1i) The Dunkl transform F, extends wuniquely to an isometric isomorphism from
L3R, |z|**1dz) onto L*(R,m,|A\|** " dX). The inverse transform is given by

Fylga) =y [ ge, )P
R

where the integral converges in L*(R, |z|>T1dz).

Theorem 2.4 (see [1]). The Dunkl transform Fy, is an automorphism of S(R).

An outstanding result about Dunkl kernels on R (see [12]) is the product formula
ey(Ar)ey(A\y) =T (ex(A) (y),  AeC, wzyeR,

where T stand for the Dunkl translation operators defined by

x _1 ! 2 2 _ r—Yy
i =5 [ (V) (1w

L P e v B T —y
+2/1f( \/m> (1 m) W, (t)dt, (2.3)

_ T(y+1)
V(v +1/2)
The Dunkl convolution of two functions f, g on R is defined by the relation

[y g(x) = /RTé”f(—y)g(y)!yIQVde- (2.4)

Proposition 2.5 (see [13]).

W, (1) (1+1) (1—2) 2

(i) Letp,q,r €[1,00] such that %—i—%—l =1 Iff eLP(R, |2+ dz) and g € LI(R, |z|Pdx),
then f x, g € L"(R,|z[**dz) and

F #y gllray < 4l FllpAllglla- (2.5)
(i) For f € LY(R,|z[**dz) and g € LP(R, |z|*'"1dz), p =1 or 2, we have
Fy(f #y 9) = Fyf Frg. (2.6)

For more details about harmonic analysis related to the Dunkl operator on R the reader is
referred, for example, to [9, 10].
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3 The dual Dunkl-Sonine integral transform
Throughout this section assume 3 > o > —1/2.

Definition 3.1 (see [14]). The dual Dunkl-Sonine integral transform ‘X, g is defined for
smooth functions on R by

Wosfly) = / Kop(e, ) [(@)zP7 dz,  yeR, (3.1)
|z|>]y]

where /C, g is the kernel given by (1.2).
Remark 3.2. Clearly, if supp (f) C [—a,a] then supp (‘Xn5f) C [—a,a].

The next statement provides formulas relating harmonic analysis tools tied to A, with those
tied to Ag, and involving the operator ‘X, 3.

Proposition 3.3.

(i) The dual Dunkl-Sonine integral transform 'X, 5 maps L'(R, |z|?T1dz) continuously into
LY(R, |z|**ldx).

(ii) For every f € LY(R,|z|?5*1dx) we have the identity

Fa(f) = Fo o Xap(f). (3-2)
(iii) Let f,g € L*(R,|z|*’*T1dx). Then

Ko (f #5.9) = X5 %0 ‘X, pg. (3.3)

Proof. Let f € L'(R, |z|*’*'dz). By Fubini’s theorem we have
[ Fosl @Iy = [ ( [, Kas@uls@li dx> 2y
TIZlY

||
Z/le(w)\< /Ca,ﬁ(w,y)!yl2a+ldy) 74! da

e
But by (1.1),

|z

Ka,6(z, y)ly[** " dy = e5(0) = 1. (3.4)

—|T

Hence, ‘X, gf is almost everywhere defined on R, belongs to L' (R, |z|>***1dz) and ||'X, sf||1.a <
|f]|1,8, which proves (). Identity (3.2) follows by using (1.1), (2.1), (3.1), and Fubini’s theorem.
Identity (3.3) follows by applying the Dunkl transform F, to both its sides and by using (2.6),

(3.2) and Remark 2.2. [

Remark 3.4. From (3.2) and Remark 2.2, we deduce that the transform X, g maps L!(R,
|z|?%*1dx) injectively into L'(R, |z|?*Hdzx).

From [14] we have the following result.
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Theorem 3.5. The dual Dunkl-Sonine integral transform ‘X, 5 is an automorphism of S(R)
satisfying the intertwining relation

o phsf = AN'Xopf,  feESR).
Moreover 'X,, 3 admits the factorization
Xppf ="V, oVsf forall f e S(R),
where for v > —1/2, 'V, denotes the dual Dunkl intertwining operator given by

t _ TI'y+1) ~1/2
Vi f(y) = m /x|2y| sgn(x) (z +vy) (3;2 _ yQ)W f(x)dzx.

Definition 3.6 (see [14]). The Dunkl-Sonine integral transform X, g is defined for a locally
bounded function f on R by

||

Kag(@,y) f(y) |y dy if 2 #0,
Xopf(z) = ~le] (3.5)

f(0) ifx =0.
Remark 3.7.

(i) Notice that by (3.4), [|Xagfllec < |[fllec if f € L>(R).
(73) It follows from (1.1) that

eg(Ar) = Xy plea(N)(z) (3.6)
for all A € C and z € R.
Proposition 3.8.

(i) For any f € L®(R) and g € L*(R, |z|?>*'dz) we have the duality relation
AXa,gf(x)g(w)\x!2ﬁ+ldw = /Rf(y) Kop9(W)lyI***dy. (3.7)
(i) Let f € L'(R,|z|**'dz) and g € L®(R). Then

KXo g (Ko pf *a 9) = [ *5 Xap9- (3.8)

Proof. Identity (3.7) follows by using (3.1), (3.5) and Fubini’s theorem. Let us check (3.8).
Let ¢ € S(R). By using (3.3), (3.7) and Fubini’s theorem, we have

[ 750 Xapg@o@aP* o = [ Xapglopins (o) o2 s
R R

= [ 90) Fasa Yy = [ 9000 (ot 20 o) I,
where f~(z) = f(—z), € R. But an easy computation shows that X, s/~ = (X 5f) .
Hence,

/Rf x5 Xo,39(2)(z)| 2| dr = /Rg(y) Ko gt o (X s f) ™ () w22 Ly

= /R X 5f *a9(y) Xa g(y)|y>*Fdy = /R Xog (X gf *a 9) (2)0(2) |2 da.

This clearly yields the result. |
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4 Calderon’s formula for the Dunkl continuous
wavelet transform

Throughout this section assume v > —1/2.

Definition 4.1. We say that a function g € L*(R, |2|??T!dz) is a Dunkl wavelet of order =, if
it satisfies the admissibility condition

> dA e d\
0<Cy 32/0 [Frg(MIF =/0 [F29(=N)* - < 0. (4.1)

Remark 4.2.

(7) If g is real-valued we have F,g(—\) = F,g()\), so (4.1) reduces to

> dA
0<C) = /0 FoPS < oo

(ii) If 0 # g € L*(R, |z|**1dz) is real-valued and satisfies
dn>0 such that  F,g(\) — Fg(0) = O(N") as A — 07
then (4.1) is equivalent to F,¢(0) = 0.

Note 4.3. For a function g in L?(R, |z|*Y*1dx) and for (a,b) € (0,0) x R we write

L s
glb(x) = WT'Y ga (),

where T b are the generalized translation operators given by (2.3), and g,(z) := g(z/a), z € R.

Remark 4.4. Let g € L*(R, |2|**!dz) and a > 0. Then it is easily checked that g, € L*(R,
|27 d), [19allyy = a7 l9ll2,,, and Fo(ga) (V) = a®7F2F(g)(ad).

Definition 4.5. Let g € L*(R, |z[**1dz) be a Dunkl wavelet of order v. We define for regular
functions f on R, the Dunkl continuous wavelet transform by

1(f)(a,b) = /R @) @2+ ds

which can also be written in the form

()(@8) = i f oy GalD),

where *. is the generalized convolution product given by (2.4), and g,(z) := g(—z/a), x € R.

The Dunkl continuous wavelet transform has been investigated in depth in [5] in which precise
definitions, examples, and a more complete discussion of its properties can be found. We look
here for a Calderén formula for this transform. We start with some technical lemmas.

Lemma 4.6. For all f,g € L*(R, |2|**1dx) and all v € S(R) we have the identity
/f*w g(@)Fy ()7 da = m’y/ FrfN)Fr g™ (VAT
R R

where m is given by (2.2).
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Proof. Fix g € L*(R,|z|**ldz) and ¢ € S(R). For f € L*(R, |z|*"ldx) put
S = [ £ 9@ F ) e da

and
Su(f) =y | FLFNF GO AP

By (2.5), (2.6) and Theorem 2.3, we see that Sy (f) = Sa(f) for each f € L' N L?(R, |z|>"*dx).
Moreover, by using (2.5), Holder’s inequality and Theorem 2.3 we have

SIS 55 glloollF5 1 < 4llfll2olgll2n 175 91

and

1S2(F)] < may (|5 fFrgllia [ ]leo < my 15 Flloq 1P gllza [$]loo = (1 fll2Algll2A 1] loo,

which shows that the linear functionals S; and Sy are bounded on L?(R, |#[*Y*1dz). Therefore
S1 = 52, and the lemma is proved. |

Lemma 4.7. Let fi, fo € L*(R,|z[**"dz). Then fi x, fo € L*(R,|z[*"dz) if and only if
Fo f1iFfa € LA(R, |z|* L dz) and we have

Fy(f1 5y f2) = Fy f1Fy f

in the L2-case.

Proof. Suppose fi *, fo € L*(R, |z|*’T1dz). By Lemma 4.6 and Theorem 2.3, we have for any
) e S(R),

m/ FyfiNF o (NPT A = / fi#y (@) Fy 0 (@)l da
R R
= /Rfl *y f2<33)%]$‘27+1dx = m,y/R]-'y(fl oy f2)()\)¢(>\)|/\\27+1d)\,

which shows that F, f1F, fa = Fy(f1 *y f2). Conversely, if F, f1F, fo € L*(R, |z|>*1dz), then
by Lemma 4.6 and Theorem 2.3, we have for any i) € S(R),

/Rf1 %oy f2(l’).7:,y_11,/)(x)‘x’2’y+ldm_m,y/R]:,Yfl()\)f’,yfz(/\)i/;(/\)’)\F’y-i-ld)\
:/R}—y_l(}} 1‘7'—7f2)($)~7:7_1¢($)|x|27+1d,x,

which shows, in view of Theorem 2.4, that fi *, fo = F Y(F, f1F, f2). This achieves the proof
of Lemma 4.7. [}

A combination of Lemma 4.7 and Theorem 2.3 gives us the following.

Lemma 4.8. Let f1, f € L*(R, |z|*"dz). Then

/ % fa(@)PleTH de = m, / [F5 L PIF LN PIAPTH AN,
R R

where both sides are finite or infinite.
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Lemma 4.9. Let g € L*(R, |z|>7T1dx) be a Dunkl wavelet of order v such that F,g € L*=(R).

For 0 < e < < oo define

1 /0 ~ da
Gs,zS(x) = Cry/ Ga *v ga(x)W
g Je

and
da
2
Kes(A) C”/ [F39(ad)]"—.

Then

G€,5 € Lz(Ra ’$|2W+1d$), K€,5 € (Ll N L2) (Rv |3§‘|27+1d$),

and

Fy(Ges) = Ke 5.

d
Proof. Using Schwarz inequality for the measure fa
a

1
|G8,6(5L’)|2§ (C,-Y)Q (/g a4ﬁ/+5>/ |9a 'yga |2
g
é
/|G55 )z da < 1 </
©H? \J:

By Theorem 2.3, Lemma 4.8, and Remark 4.4, we have

SO

/ 00 % (@) Pl de = m, / I (ga) VAP H A
R R
< my | Fy (g0)| % /R () ) AP+

2 2 2 2
= |55 (9l 19allz,, = a® " [1F5gl15, gl -

( /j o 1aa) ( /j da_

The second assertion in (4.4) is easily checked. Let us calculate F,(Ges).

Hence

2 2
[ (Gesta)Plafrds < 72l Pl
: (3)

Theorem 2.3 and Lemma 4.7 we get

G Gal) = 1, / I, (90) )2y (iAz) AT,

SO

G 5(a) / ([ 17

As |ey(iz)| <1 for all z € R (see [12]), we deduce by Theorem 2.3 that

mo [ [ 1B Qe o

)
) [ [ oo dutaia e
5 R a

ey(ikx)|>\|27+1d)\> -

(4.2)

da
4y+5°

Fix x € R. From



Inversion of the Dual Dunkl-Sonine Transform on R 9

J 5 da , [0 da
< H%Hz,wW = |lgll2, s <
I3 g

Hence, applying Fubini’s theorem, we find that

0
Geslo) = [ (G [ 17 a@nPL ) ey inan
R Cg € a

=m, / K. s(N)ey (idz) | A7 A
R

which completes the proof. |
We can now state the main result of this section.

Theorem 4.10 (Calderén’s formula). Let g € L*(R, |z|**1dz) be a Dunkl wavelet of order
v such that Fg € L*°(R). Then for f € L*(R,|z[**dz) and 0 < ¢ < § < oo, the function

Foa) c”/ [ @ Dasta) P %

belongs to L2(R, |z|>"tdx) and satisfies

lim £ = f[l,, = 0. (4.5)

e—0,0—00
Proof. It is easily seen that
£ = fxy Geg,

where G. s is given by (4.2). It follows by Lemmas 4.7 and 4.9 that f&° € L2(R, |z|>*!dx) and
F(f5°) = Fy(f) Ke 5, where K, ;5 is as in (4.3). From this and Theorem 2.3 we obtain

756 = £, = [ 17,070 = HOOPIART A
= my [ 1 P = Ko s an
But by (4.1) we have

lim K.s(\) =1, for almost all A € R.

So (4.5) follows from the dominated convergence theorem. |

Another pointwise inversion formula for the Dunkl wavelet transform, proved in [5], is as
follows.

Theorem 4.11. Let g € L*(R,|z|*'1dz) be a Dunkl wavelet of order . If both f and F. f are
in L' (R, |z|>"*1dx) then we have

(z) c/ </ )(a,b)g] ()|b|27+1db> daa ae.,

where, for each © € R, both the inner integral and the outer integral are absolutely convergent,
but possibly not the double integral.
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5 Inversion of the dual Dunkl-Sonine transform
using Dunkl wavelets

From now on assume 3 > a > —1/2. In order to invert the dual Dunkl-Sonine transform, we
need the following two technical lemmas.

Lemma 5.1. Let 0 # g € L'NL3(R, |z|?*Tidz) such that Fog € L' (R, |z|>**T1dz) and satisfying
In>pf—-2a-1 such that  Fog(A) = O (A7) as X — 0. (5.1)
Then X, gg € L*(R, |z|***1dx) and

Mgy fag(/\)

Fp(Xa,p9)(A) = g NRG-0)”

Proof. By Theorem 2.3 we have
g(x) = ma/ FagNea(irz) N2“TLdN, a.e.
R

So using (3.6), we find that

Xy 59() :mﬁ/haﬂ(A)eﬁ(Mx)|A|2ﬂ+1dA, a.c. (5.2)
R
with
Ma Fag(N)
hap(N) = —% =000
P mg ARG

Clearly, ho 5 € LY(R, |z|?#*1dz). So it suffices, in view of (5.2) and Theorem 2.3, to prove that
he. belongs to L2(R, |z|?$+1dz). We have

2
[ o= () [ a2tz g0 Pax
R ma R

2
= <m“> (/ +/ ) A2 20H Fug(VN) PdN o= T + L.
mps A<t JIaz1

By (5.1) there is a positive constant k such that

n< k/ rtie-28+igy K
IAI<1 n+2a—-p+1

From Theorem 2.3, it follows that

2
I = (m) / APE | Fag (WP dA
[AI>1

mp

2 2
m m m
<oy Fag(\ 2A2““dA§<a) Fagller = 0 |lgl2,. < o0

(mﬂ> /|,\21| WFIA mg I ||2 (mg)? llgllz,

which ends the proof. |
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Lemma 5.2. Let 0 # g € L' N L2(R, |2|?***dx) be real-valued such that Fog € L'(R, |z|>**T dx)
and satisfying

dn>2(0—a) such that  Fag(\) = O\ as X — 0. (5.3)
Then X, gg € L*(R, |z|***1dz) is a Dunkl wavelet of order 8 and Fp(Xy g) € L=(R).

Proof. By combining (5.3) and Lemma 5.1 we see that X, gg € L3(R, |z|>*Tldz), F3(X, 59) is
bounded and

F5(Xapg)(\) = O(A172672)) as X — 07,
Thus, in view of Remark 4.2, X, gg satisfies the admissibility condition (4.1) for v = 3. |

Remark 5.3. In view of Remark 4.2, each function satisfying the conditions of Lemma 5.1 is
a Dunkl wavelet of order a.

Lemma 5.4. Let g be as in Lemma 5.2. Then for all f € L'(R,|z|**'dz) we have

B (1)@ 0) = s g[8 (Has) (0] 0).

Proof. By Definition 4.5 we have

—_——

oD@ 8) = gy s (Kapg) ()

But (X,39), = Xa,8 (9a) by virtue of (1.2) and (3.5). So using (3.8) we find that

s U@ 0) = s 5 (X (32)] )
= Z;H?fa,ﬁ[ Xopf *a Ga] (b) = ﬁxaﬂ[qf; (“Xa5f) (a,)](b),

which gives the desired result. |
Combining Theorems 4.10, 4.11 with Lemmas 5.2, 5.4 we get

Theorem 5.5. Let g be as in Lemma 5.2. Then we have the following inversion formulas for
the dual Dunkl-Sonine transform:
(i) If both f and Fgf are in L'(R, 2|29 dx) then for almost all x € R we have

da

flz) = </ X ,,6’ a,ﬁf)(av )] (b)(X ,ﬁg)a b( )Wwﬂdb) 20—+l

X .89
(i3) For f € L' N L3(R,|z|*5*1dz) and 0 < € < § < oo, the function

da

1) / / Xy (95 (Ko ) (@] (0) (Ko ) ()P 55

ﬂ
CX 59

satisfies

lim (£ =l =

e—0,0—o0
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