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1 Introduction

The one-dimensional Dunkl kernel eγ , γ > −1/2, is defined by

eγ(z) = jγ(iz) +
z

2(γ + 1)
jγ+1(iz), z ∈ C,

where

jγ(z) = Γ(γ + 1)
∞∑

n=0

(−1)n (z/2)2n

n! Γ(n+ γ + 1)

is the normalized spherical Bessel function of index γ. It is well-known (see [3]) that the functions
eγ(λ·), λ ∈ C, are solutions of the differential-difference equation

Λγu = λu, u(0) = 1,

where

Λγf(x) = f ′(x) +
(
γ +

1
2

)
f(x)− f(−x)

x

is the Dunkl operator with parameter γ+1/2 associated with the reflection grour Z2 on R. Those
operators were introduced and studied by Dunkl [2, 3, 4] in connection with a generalization
of the classical theory of spherical harmonics. Besides its mathematical interest, the Dunkl
operator Λα has quantum-mechanical applications; it is naturally involved in the study of one-
dimensional harmonic oscillators governed by Wigner’s commutation rules [6, 11, 16].

It is known, see for example [14, 15], that the Dunkl kernels on R possess the following Sonine
type integral representation

eβ(λx) =
∫ |x|

−|x|
Kα,β(x, y) eα(λy) |y|2α+1 dy, λ ∈ C, x 6= 0, (1.1)
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where

Kα,β(x, y) :=


aα,β sgn(x) (x+ y)

(
x2 − y2

)β−α−1

|x|2β+1
if |y| < |x|,

0 if |y| ≥ |x|,

(1.2)

with β > α > −1/2, and

aα,β :=
Γ(β + 1)

Γ(α+ 1) Γ(β − α)
.

Define the Dunkl–Sonine integral transform Xα,β and its dual tXα,β, respectively, by

Xα,βf(x) =
∫ |x|

−|x|
Kα,β(x, y) f(y) |y|2α+1 dy,

tXα,βf(y) =
∫
|x|≥|y|

Kα,β(x, y) f(x) |x|2β+1 dx.

Soltani has showed in [14] that the dual Dunkl–Sonine integral transform tXα,β is a trans-
mutation operator between Λα and Λβ on the Schwartz space S(R), i.e., it is an automorphism
of S(R) satisfying the intertwining relation

tXα,β Λβ f = Λα
tXα,β f, f ∈ S(R).

The same author [14] has obtained inversion formulas for the transform tXα,β involving pseudo-
differential-difference operators and only valid on a restricted subspace of S(R).

The purpose of this paper is to investigate the use of Dunkl wavelets (see [5]) to derive a new
inversion of the dual Dunkl–Sonine transform on some Lebesgue spaces. For other applications
of wavelet type transforms to inverse problems we refer the reader to [7, 8] and the references
therein.

The content of this article is as follows. In Section 2 we recall some basic harmonic analysis
results related to the Dunkl operator. In Section 3 we list some basic properties of the Dunkl–
Sonine integral trnsform and its dual. In Section 4 we give the definition of the Dunkl continuous
wavelet transform and we establish for this transform a Calderón formula. By combining the
results of the two previous sections, we obtain in Section 5 two new inversion formulas for the
dual Dunkl–Sonine integral transform.

2 Preliminaries

Note 2.1. Throughout this section assume γ > −1/2. Define Lp(R, |x|2γ+1dx), 1 ≤ p ≤ ∞, as
the class of measurable functions f on R for which ||f ||p,γ <∞, where

||f ||p,γ =
(∫

R
|f(x)|p|x|2γ+1dx

)1/p

, if p <∞,

and ||f ||∞,γ = ||f ||∞ = ess supx∈R|f(x)|. S(R) stands for the usual Schwartz space.

The Dunkl transform of order γ+1/2 on R is defined for a function f in L1(R, |x|2γ+1dx) by

Fγf(λ) =
∫

R
f(x) eγ(−iλx) |x|2γ+1dx, λ ∈ R. (2.1)
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Remark 2.2. It is known that the Dunkl transform Fγ maps continuously and injectively
L1(R, |x|2γ+1dx) into the space C0(R) (of continuous functions on R vanishing at infinity).

Two standard results about the Dunkl transform Fγ are as follows.

Theorem 2.3 (see [1]).

(i) For every f ∈ L1 ∩ L2(R, |x|2γ+1dx) we have the Plancherel formula∫
R
|f(x)|2|x|2γ+1dx = mγ

∫
R
|Fγf(λ)|2|λ|2γ+1dλ,

where

mγ =
1

22γ+2(Γ(γ + 1))2
. (2.2)

(ii) The Dunkl transform Fα extends uniquely to an isometric isomorphism from
L2(R, |x|2γ+1dx) onto L2(R,mγ |λ|2γ+1dλ). The inverse transform is given by

F−1
γ g(x) = mγ

∫
R
g(λ)eγ(iλx)|λ|2γ+1dλ,

where the integral converges in L2(R, |x|2γ+1dx).

Theorem 2.4 (see [1]). The Dunkl transform Fα is an automorphism of S(R).

An outstanding result about Dunkl kernels on R (see [12]) is the product formula

eγ(λx)eγ(λy) = T x
γ (eγ(λ·)) (y), λ ∈ C, x, y ∈ R,

where T x
γ stand for the Dunkl translation operators defined by

T x
γ f(y) =

1
2

∫ 1

−1
f
(√

x2 + y2 − 2xyt
)(

1 +
x− y√

x2 + y2 − 2xyt

)
Wγ(t)dt

+
1
2

∫ 1

−1
f
(
−
√
x2 + y2 − 2xyt

)(
1− x− y√

x2 + y2 − 2xyt

)
Wγ(t)dt, (2.3)

with

Wγ(t) =
Γ(γ + 1)√
π Γ(γ + 1/2)

(1 + t)
(
1− t2

)γ−1/2
.

The Dunkl convolution of two functions f , g on R is defined by the relation

f ∗γ g(x) =
∫

R
T x

γ f(−y)g(y)|y|2γ+1dy. (2.4)

Proposition 2.5 (see [13]).

(i) Let p, q, r ∈ [1,∞] such that 1
p + 1

q−1 = 1
r . If f ∈Lp(R, |x|2γ+1dx) and g ∈Lq(R, |x|2γ+1dx),

then f ∗γ g ∈ Lr(R, |x|2γ+1dx) and

||f ∗γ g||r,γ ≤ 4||f ||p,γ ||g||q,γ . (2.5)

(ii) For f ∈ L1(R, |x|2γ+1dx) and g ∈ Lp(R, |x|2γ+1dx), p = 1 or 2, we have

Fγ(f ∗γ g) = FγfFγg. (2.6)

For more details about harmonic analysis related to the Dunkl operator on R the reader is
referred, for example, to [9, 10].
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3 The dual Dunkl–Sonine integral transform

Throughout this section assume β > α > −1/2.

Definition 3.1 (see [14]). The dual Dunkl–Sonine integral transform tXα,β is defined for
smooth functions on R by

tXα,βf(y) :=
∫
|x|≥|y|

Kα,β(x, y)f(x)|x|2β+1 dx, y ∈ R, (3.1)

where Kα,β is the kernel given by (1.2).

Remark 3.2. Clearly, if supp (f) ⊂ [−a, a] then supp
(
tXα,βf

)
⊂ [−a, a].

The next statement provides formulas relating harmonic analysis tools tied to Λα with those
tied to Λβ, and involving the operator tXα,β.

Proposition 3.3.

(i) The dual Dunkl–Sonine integral transform tXα,β maps L1(R, |x|2β+1dx) continuously into
L1(R, |x|2α+1dx).

(ii) For every f ∈ L1(R, |x|2β+1dx) we have the identity

Fβ(f) = Fα ◦ tXα,β(f). (3.2)

(iii) Let f, g ∈ L1(R, |x|2β+1dx). Then

tXα,β(f ∗β g) = tXα,βf ∗α
tXα,βg. (3.3)

Proof. Let f ∈ L1(R, |x|2β+1dx). By Fubini’s theorem we have∫
R

tXα,β(|f |)(y)|y|2α+1dy =
∫

R

(∫
|x|≥|y|

Kα,β(x, y)|f(x)||x|2β+1 dx

)
|y|2α+1dy

=
∫

R
|f(x)|

(∫ |x|

−|x|
Kα,β(x, y)|y|2α+1dy

)
|x|2β+1 dx.

But by (1.1),∫ |x|

−|x|
Kα,β(x, y)|y|2α+1dy = eβ(0) = 1. (3.4)

Hence, tXα,βf is almost everywhere defined on R, belongs to L1(R, |x|2α+1dx) and ||tXα,βf ||1,α ≤
||f ||1,β , which proves (i). Identity (3.2) follows by using (1.1), (2.1), (3.1), and Fubini’s theorem.
Identity (3.3) follows by applying the Dunkl transform Fα to both its sides and by using (2.6),
(3.2) and Remark 2.2. �

Remark 3.4. From (3.2) and Remark 2.2, we deduce that the transform tXα,β maps L1(R,
|x|2β+1dx) injectively into L1(R, |x|2α+1dx).

From [14] we have the following result.
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Theorem 3.5. The dual Dunkl–Sonine integral transform tXα,β is an automorphism of S(R)
satisfying the intertwining relation

tXα,βΛβf = Λα
tXα,βf, f ∈ S(R).

Moreover tXα,β admits the factorization
tXα,βf = tV −1

α ◦ tVβf for all f ∈ S(R),

where for γ > −1/2, tVγ denotes the dual Dunkl intertwining operator given by

tVγf(y) =
Γ(γ + 1)√
π Γ(γ + 1/2)

∫
|x|≥|y|

sgn(x) (x+ y)
(
x2 − y2

)γ−1/2
f(x) dx.

Definition 3.6 (see [14]). The Dunkl–Sonine integral transform Xα,β is defined for a locally
bounded function f on R by

Xα,βf(x) =


∫ |x|

−|x|
Kα,β(x, y) f(y) |y|2α+1 dy if x 6= 0,

f(0) if x = 0.

(3.5)

Remark 3.7.

(i) Notice that by (3.4), ||Xα,βf ||∞ ≤ ||f ||∞ if f ∈ L∞(R).

(ii) It follows from (1.1) that

eβ(λx) = Xα,β(eα(λ·)(x) (3.6)

for all λ ∈ C and x ∈ R.

Proposition 3.8.

(i) For any f ∈ L∞(R) and g ∈ L1(R, |x|2β+1dx) we have the duality relation∫
R
Xα,βf(x)g(x)|x|2β+1dx =

∫
R
f(y) tXα,βg(y)|y|2α+1dy. (3.7)

(ii) Let f ∈ L1(R, |x|2β+1dx) and g ∈ L∞(R). Then

Xα,β

(
tXα,βf ∗α g

)
= f ∗β Xα,βg. (3.8)

Proof. Identity (3.7) follows by using (3.1), (3.5) and Fubini’s theorem. Let us check (3.8).
Let ψ ∈ S(R). By using (3.3), (3.7) and Fubini’s theorem, we have∫

R
f ∗β Xα,βg(x)ψ(x)|x|2β+1dx =

∫
R
Xα,βg(x)ψ∗βf

−(x) |x|2β+1dx

=
∫

R
g(y) tXα,β(ψ∗βf

−)(y)|y|2α+1dy =
∫

R
g(y)

(
tXα,βψ ∗α

tXα,βf
−) (y)|y|2α+1dy,

where f−(x) = f(−x), x ∈ R. But an easy computation shows that tXα,βf
− =

(
tXα,βf

)−.
Hence,∫

R
f ∗β Xα,βg(x)ψ(x)|x|2β+1dx =

∫
R
g(y) tXα,βψ ∗α

(
tXα,βf

)− (y)|y|2α+1dy

=
∫

R

tXα,βf ∗αg(y) tXα,βψ(y)|y|2α+1dy =
∫

R
Xα,β

(
tXα,βf ∗α g

)
(x)ψ(x)|x|2β+1dx.

This clearly yields the result. �
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4 Calderón’s formula for the Dunkl continuous
wavelet transform

Throughout this section assume γ > −1/2.

Definition 4.1. We say that a function g ∈ L2(R, |x|2γ+1dx) is a Dunkl wavelet of order γ, if
it satisfies the admissibility condition

0 < Cγ
g :=

∫ ∞

0
|Fγg(λ)|2dλ

λ
=
∫ ∞

0
|Fγg(−λ)|2dλ

λ
<∞. (4.1)

Remark 4.2.

(i) If g is real-valued we have Fγg(−λ) = Fγg(λ), so (4.1) reduces to

0 < Cγ
g :=

∫ ∞

0
|Fγg(λ)|2dλ

λ
<∞.

(ii) If 0 6= g ∈ L2(R, |x|2γ+1dx) is real-valued and satisfies

∃ η > 0 such that Fγg(λ)−Fγg(0) = O(λη) as λ→ 0+

then (4.1) is equivalent to Fγg(0) = 0.

Note 4.3. For a function g in L2(R, |x|2γ+1dx) and for (a, b) ∈ (0,∞)× R we write

gγ
a,b(x) :=

1
a2γ+2

T−b
γ ga(x),

where T−b
γ are the generalized translation operators given by (2.3), and ga(x) := g(x/a), x ∈ R.

Remark 4.4. Let g ∈ L2(R, |x|2γ+1dx) and a > 0. Then it is easily checked that ga ∈ L2(R,
|x|2γ+1dx), ||ga||2,γ = aγ+1 ||g||2,γ , and Fγ(ga)(λ) = a2γ+2Fγ(g)(aλ).

Definition 4.5. Let g ∈ L2(R, |x|2γ+1dx) be a Dunkl wavelet of order γ. We define for regular
functions f on R, the Dunkl continuous wavelet transform by

Φγ
g (f)(a, b) :=

∫
R
f(x)gγ

a,b(x)|x|
2γ+1dx

which can also be written in the form

Φγ
g (f)(a, b) =

1
a2γ+2

f ∗γ g̃a(b),

where ∗γ is the generalized convolution product given by (2.4), and g̃a(x) := g(−x/a), x ∈ R.

The Dunkl continuous wavelet transform has been investigated in depth in [5] in which precise
definitions, examples, and a more complete discussion of its properties can be found. We look
here for a Calderón formula for this transform. We start with some technical lemmas.

Lemma 4.6. For all f, g ∈ L2(R, |x|2γ+1dx) and all ψ ∈ S(R) we have the identity∫
R
f ∗γ g(x)F−1

γ ψ(x)|x|2γ+1dx = mγ

∫
R
Fγf(λ)Fγg(λ)ψ−(λ)|λ|2γ+1dλ,

where mγ is given by (2.2).
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Proof. Fix g ∈ L2(R, |x|2γ+1dx) and ψ ∈ S(R). For f ∈ L2(R, |x|2γ+1dx) put

S1(f) :=
∫

R
f ∗γ g(x)F−1

γ ψ(x)|x|2γ+1dx

and

S2(f) := mγ

∫
R
Fγf(λ)Fγg(λ)ψ−(λ)|λ|2γ+1dλ.

By (2.5), (2.6) and Theorem 2.3, we see that S1(f) = S2(f) for each f ∈ L1 ∩L2(R, |x|2γ+1dx).
Moreover, by using (2.5), Hölder’s inequality and Theorem 2.3 we have

|S1(f)| ≤ ||f ∗γ g||∞||F−1
γ ψ||1,γ ≤ 4||f ||2,γ ||g||2,γ ||F−1

γ ψ||1,γ

and

|S2(f)| ≤ mγ ||FγfFγg||1,γ ||ψ||∞ ≤ mγ ||Fγf ||2,γ ||Fγg||2,γ ||ψ||∞ = ||f ||2,γ ||g||2,γ ||ψ||∞,

which shows that the linear functionals S1 and S2 are bounded on L2(R, |x|2γ+1dx). Therefore
S1 ≡ S2, and the lemma is proved. �

Lemma 4.7. Let f1, f2 ∈ L2(R, |x|2γ+1dx). Then f1 ∗γ f2 ∈ L2(R, |x|2γ+1dx) if and only if
Fγf1Fγf2 ∈ L2(R, |x|2γ+1dx) and we have

Fγ(f1 ∗γ f2) = Fγf1Fγf2

in the L2-case.

Proof. Suppose f1 ∗γ f2 ∈ L2(R, |x|2γ+1dx). By Lemma 4.6 and Theorem 2.3, we have for any
ψ ∈ S(R),

mγ

∫
R
Fγf1(λ)Fγf2(λ)ψ(λ)|λ|2γ+1dλ =

∫
R
f1 ∗γ f2(x)F−1

γ ψ−(x)|x|2γ+1dx

=
∫

R
f1 ∗γ f2(x)F−1

γ ψ(x)|x|2γ+1dx = mγ

∫
R
Fγ(f1 ∗γ f2)(λ)ψ(λ)|λ|2γ+1dλ,

which shows that Fγf1Fγf2 = Fγ(f1 ∗γ f2). Conversely, if Fγf1Fγf2 ∈ L2(R, |x|2γ+1dx), then
by Lemma 4.6 and Theorem 2.3, we have for any ψ ∈ S(R),∫

R
f1 ∗γ f2(x)F−1

γ ψ(x)|x|2γ+1dx = mγ

∫
R
Fγf1(λ)Fγf2(λ)ψ̃(λ)|λ|2γ+1dλ

=
∫

R
F−1

γ (Fγf1Fγf2)(x)F−1
γ ψ(x)|x|2γ+1dx,

which shows, in view of Theorem 2.4, that f1 ∗γ f2 = F−1
γ (Fγf1Fγf2). This achieves the proof

of Lemma 4.7. �

A combination of Lemma 4.7 and Theorem 2.3 gives us the following.

Lemma 4.8. Let f1, f2 ∈ L2(R, |x|2γ+1dx). Then∫
R
|f1 ∗γ f2(x)|2|x|2γ+1dx = mγ

∫
R
|Fγf1(λ)|2|Fγf2(λ)|2|λ|2γ+1dλ,

where both sides are finite or infinite.
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Lemma 4.9. Let g ∈ L2(R, |x|2γ+1dx) be a Dunkl wavelet of order γ such that Fγg ∈ L∞(R).
For 0 < ε < δ <∞ define

Gε,δ(x) :=
1
Cγ

g

∫ δ

ε
ga ∗γ g̃a(x)

da

a4γ+5
(4.2)

and

Kε,δ(λ) :=
1
Cγ

g

∫ δ

ε
|Fγg(aλ)|2da

a
. (4.3)

Then

Gε,δ ∈ L2(R, |x|2γ+1dx), Kε,δ ∈
(
L1 ∩ L2

)
(R, |x|2γ+1dx), (4.4)

and

Fγ(Gε,δ) = Kε,δ.

Proof. Using Schwarz inequality for the measure
da

a4γ+5
we obtain

|Gε,δ(x)|2 ≤
1

(Cγ
g )2

(∫ δ

ε

da

a4γ+5

)∫ δ

ε
|ga ∗γ g̃a(x)|2

da

a4γ+5
,

so ∫
R
|Gε,δ(x)|2|x|2γ+1dx ≤ 1

(Cγ
g )2

(∫ δ

ε

da

a4γ+5

)∫ δ

ε

∫
R
|ga ∗γ g̃a(x)|2|x|2γ+1dx

da

a4γ+5
.

By Theorem 2.3, Lemma 4.8, and Remark 4.4, we have∫
R
|ga ∗γ g̃a(x)|2|x|2γ+1dx = mγ

∫
R
|Fγ(ga)(λ)|4|λ|2γ+1dλ

≤ mγ ||Fγ(ga)||2∞
∫

R
|Fγ(ga)(λ)|2|λ|2γ+1dλ

= ||Fγ(ga)||2∞ ||ga||22,γ = a6γ+6 ||Fγg||2∞ ||g||
2
2,γ .

Hence∫
R
|Gε,δ(x)|2|x|2γ+1dx ≤

||Fγg||2∞ ||g||
2
2,γ

(Cγ
g )2

(∫ δ

ε
a2γ+1da

)(∫ δ

ε

da

a4γ+5

)
<∞.

The second assertion in (4.4) is easily checked. Let us calculate Fγ(Gε,δ). Fix x ∈ R. From
Theorem 2.3 and Lemma 4.7 we get

ga ∗γ g̃a(x) = mγ

∫
R
|Fγ(ga)(λ)|2eγ(iλx)|λ|2γ+1dλ,

so

Gε,δ(x) =
mγ

Cγ
g

∫ δ

ε

(∫
R
|Fγ(ga)(λ)|2eγ(iλx)|λ|2γ+1dλ

)
da

a4γ+5
.

As |eγ(iz)| ≤ 1 for all z ∈ R (see [12]), we deduce by Theorem 2.3 that

mγ

∫ δ

ε

∫
R
|Fγ(ga)(λ)|2|eγ(iλx)||λ|2γ+1dλ

da

a4γ+5
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≤
∫ δ

ε
||ga||22,γ

da

a4γ+5
= ||g||22,γ

∫ δ

ε

da

a2γ+3
<∞.

Hence, applying Fubini’s theorem, we find that

Gε,δ(x) = mγ

∫
R

(
1
Cγ

g

∫ δ

ε
|Fγg(aλ)|2da

a

)
eγ(iλx)|λ|2γ+1dλ

= mγ

∫
R
Kε,δ(λ)eγ(iλx)|λ|2γ+1dλ

which completes the proof. �

We can now state the main result of this section.

Theorem 4.10 (Calderón’s formula). Let g ∈ L2(R, |x|2γ+1dx) be a Dunkl wavelet of order
γ such that Fγg ∈ L∞(R). Then for f ∈ L2(R, |x|2γ+1dx) and 0 < ε < δ <∞, the function

fε,δ(x) :=
1
Cγ

g

∫ δ

ε

∫
R

Φγ
g (f)(a, b)ga,b(x)|b|2γ+1db

da

a

belongs to L2(R, |x|2γ+1dx) and satisfies

lim
ε→0, δ→∞

∥∥fε,δ − f
∥∥

2,γ
= 0. (4.5)

Proof. It is easily seen that

fε,δ = f ∗γ Gε,δ,

where Gε,δ is given by (4.2). It follows by Lemmas 4.7 and 4.9 that fε,δ ∈ L2(R, |x|2γ+1dx) and
Fγ(fε,δ) = Fγ(f)Kε,δ, where Kε,δ is as in (4.3). From this and Theorem 2.3 we obtain

∥∥fε,δ − f
∥∥2

2,γ
= mγ

∫
R
|Fγ(fε,δ − f)(λ)|2|λ|2γ+1dλ

= mγ

∫
R
|Fγf(λ)|2(1−Kε,δ(λ))2|λ|2γ+1dλ.

But by (4.1) we have

lim
ε→0, δ→∞

Kε,δ(λ) = 1, for almost all λ ∈ R.

So (4.5) follows from the dominated convergence theorem. �

Another pointwise inversion formula for the Dunkl wavelet transform, proved in [5], is as
follows.

Theorem 4.11. Let g ∈ L2(R, |x|2γ+1dx) be a Dunkl wavelet of order γ. If both f and Fγf are
in L1(R, |x|2γ+1dx) then we have

f(x) =
1
Cγ

g

∫ ∞

0

(∫
R

Φγ
g (f)(a, b)gγ

a,b(x)|b|
2γ+1db

)
da

a
, a.e.,

where, for each x ∈ R, both the inner integral and the outer integral are absolutely convergent,
but possibly not the double integral.
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5 Inversion of the dual Dunkl–Sonine transform
using Dunkl wavelets

From now on assume β > α > −1/2. In order to invert the dual Dunkl–Sonine transform, we
need the following two technical lemmas.

Lemma 5.1. Let 0 6= g ∈ L1∩L2(R, |x|2α+1dx) such that Fαg ∈ L1(R, |x|2α+1dx) and satisfying

∃ η > β − 2α− 1 such that Fαg(λ) = O (|λ|η) as λ→ 0. (5.1)

Then Xα,βg ∈ L2(R, |x|2β+1dx) and

Fβ(Xα,βg)(λ) =
mα

mβ

Fαg(λ)
|λ|2(β−α)

.

Proof. By Theorem 2.3 we have

g(x) = mα

∫
R
Fαg(λ)eα(iλx)|λ|2α+1dλ, a.e.

So using (3.6), we find that

Xα,βg(x) = mβ

∫
R
hα,β(λ)eβ(iλx)|λ|2β+1dλ, a.e. (5.2)

with

hα,β(λ) :=
mα

mβ

Fαg(λ)
|λ|2(β−α)

.

Clearly, hα,β ∈ L1(R, |x|2β+1dx). So it suffices, in view of (5.2) and Theorem 2.3, to prove that
hα,β belongs to L2(R, |x|2β+1dx). We have∫

R
|hα,β(λ)|2|λ|2β+1dλ =

(
mα

mβ

)2 ∫
R
|λ|4α−2β+1|Fαg(λ)|2dλ

=
(
mα

mβ

)2
(∫

|λ|≤1
+
∫
|λ|≥1

)
|λ|4α−2β+1|Fαg(λ)|2dλ := I1 + I2.

By (5.1) there is a positive constant k such that

I1 ≤ k

∫
|λ|≤1

|λ|2η+4α−2β+1dλ =
k

η + 2α− β + 1
<∞.

From Theorem 2.3, it follows that

I2 =
(
mα

mβ

)2 ∫
|λ|≥1

|λ|2(α−β)|Fαg(λ)|2|λ|2α+1dλ

≤
(
mα

mβ

)2 ∫
|λ|≥1

|Fαg(λ)|2|λ|2α+1dλ ≤
(
mα

mβ

)2

||Fαg||22,α =
mα

(mβ)2
||g||22,α <∞

which ends the proof. �
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Lemma 5.2. Let 0 6= g ∈L1 ∩L2(R, |x|2α+1dx) be real-valued such that Fαg ∈L1(R, |x|2α+1dx)
and satisfying

∃ η > 2(β − α) such that Fαg(λ) = O(λη) as λ→ 0+. (5.3)

Then Xα,βg ∈ L2(R, |x|2β+1dx) is a Dunkl wavelet of order β and Fβ(Xα,βg) ∈ L∞(R).

Proof. By combining (5.3) and Lemma 5.1 we see that Xα,βg ∈ L2(R, |x|2β+1dx), Fβ(Xα,βg) is
bounded and

Fβ(Xα,βg)(λ) = O
(
λη−2(β−α)

)
as λ→ 0+.

Thus, in view of Remark 4.2, Xα,βg satisfies the admissibility condition (4.1) for γ = β. �

Remark 5.3. In view of Remark 4.2, each function satisfying the conditions of Lemma 5.1 is
a Dunkl wavelet of order α.

Lemma 5.4. Let g be as in Lemma 5.2. Then for all f ∈ L1(R, |x|2β+1dx) we have

Φβ
Xα,βg(f)(a, b) =

1
a2(β−α)

Xα,β

[
Φα

g

(
tXα,βf

)
(a, ·)

]
(b).

Proof. By Definition 4.5 we have

Φβ
Xα,βg(f)(a, b) =

1
a2β+2

f ∗β
˜(Xα,βg)a(b).

But ˜(Xα,βg)a = Xα,β (g̃a) by virtue of (1.2) and (3.5). So using (3.8) we find that

Φβ
Xα,βg(f)(a, b) =

1
a2β+2

f ∗β [Xα,β (g̃a)] (b)

=
1

a2β+2
Xα,β

[
tXα,βf ∗α g̃a

]
(b) =

1
a2(β−α)

Xα,β

[
Φα

g

(
tXα,βf

)
(a, ·)

]
(b),

which gives the desired result. �

Combining Theorems 4.10, 4.11 with Lemmas 5.2, 5.4 we get

Theorem 5.5. Let g be as in Lemma 5.2. Then we have the following inversion formulas for
the dual Dunkl–Sonine transform:

(i) If both f and Fβf are in L1(R, |x|2β+1dx) then for almost all x ∈ R we have

f(x) =
1

Cβ
Xα,βg

∫ ∞

0

(∫
R
Xα,β

[
Φα

g

(
tXα,βf

)
(a, ·)

]
(b)
(
Xα,βg

)β
a,b

(x)|b|2β+1db

)
da

a2(β−α)+1
.

(ii) For f ∈ L1 ∩ L2(R, |x|2β+1dx) and 0 < ε < δ <∞, the function

fε,δ(x) :=
1

Cβ
Xα,βg

∫ δ

ε

∫
R
Xα,β

[
Φα

g

(
tXα,βf

)
(a, ·)

]
(b)
(
Xα,βg

)β
a,b

(x)|b|2β+1db
da

a2(β−α)+1

satisfies

lim
ε→0, δ→∞

∥∥fε,δ − f
∥∥

2,β
= 0.

Acknowledgements

The author is grateful to the referees and editors for careful reading and useful comments.



12 M.A. Mourou

References

[1] de Jeu M.F.E., The Dunkl transform, Invent. Math. 113 (1993), 147–162.

[2] Dunkl C.F., Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc.
311 (1989), 167–183.

[3] Dunkl C.F., Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213–1227.

[4] Dunkl C.F., Hankel transforms associated to finite reflection groups, Contemp. Math. 138 (1992), 123–138.

[5] Jouini A., Dunkl wavelets and applications to inversion of the Dunkl intertwining operator and its dual, Int.
J. Math. Math. Sci. 6 (2004), 285–293.

[6] Kamefuchi S., Ohnuki Y., Quantum field theory and parastatistics, Springer-Verlag, Berlin, 1982.
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