Л.С. Андрійко, В.І. Зарко, В.М. Гунько

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова, 17, Київ, 03164, Україна, andriykolyuda@gmail.com

Методом термостимульованої деполяризації досліджено вплив модифікування поверхні пірогенних кремнезему та алюмокремнеземів з різним вмістом оксиду алюмінію на релаксаційні процеси кластерів води, що формуються в 1%-них водних суспензіях оксидів. Встановлено, що ці процеси визначаються природою модифікатора. Тому вони протікають аналогічно як в 5-% розчині поліетиленгліколю, так і в суспензіях модифікованих нанооксидів завдяки сітчастій структурі шару модифікатора на поверхні оксиду.

Вступ

Широке застосування полімерних і композитних матеріалів в різних галузях людської діяльності, особливо в медицині, поставило перед дослідниками проблему вивчення будови води на межі поділу фаз «вода – полімер – тверде тіло», оскільки відповідні граничні процеси впливають на ефективність роботи адсорбентів, систем доставляння ліків тощо. Властивості вільної і граничної зв'язаної води суттєво відрізняються [1–4]. Будова кластерів (< 1 нм) і нанодоменів (1–10 нм) води на межах поділу фаз в суспензіях пірогенних оксидів залежить від багатьох факторів: природи поверхні, дисперсності, характеру взаємодії частинок між собою та з водою, температури та ін. Ці фактори впливають на співвідношення кількості вільної (незамерзаючої при 273 К) і зв'язаної (замерзаючої при 200-220 < T < 273 К) води, а також на структуру суспензії в цілому [1–4]. При переході від систем «пірогенний оксид-вода» до систем «пірогенний оксид-вода-полімер» будова кластерів і нанодоменів зв'язаної води може суттєво змінюватись.

Тому мета даної роботи полягала в дослідженні кластероутворення води на межі поділу фаз вода – пірогенний оксид, модифікований поліетиленгліколем, та їх вплив на протонну провідність системи.

Дослідження проводили методом термостимулованої деполяризації (ТСД). Метод ТСД дозволяє докладно дослідити структуру води в суспензіях пірогенних оксидів завдяки його великій чутливості до процесів релаксації поляризованих диполів води і певних утворень (кластерів, доменів) з молекул води. Інтерпретація даних ТСД базується на тому, що енергія активації деполяризації заморожених диполів молекул води, що відрізняються за кількістю і енергією водневих зв'язків, буде різною.

Експериментальна частина

В дослідженнях було використано поліетиленгліколь (ПЕГ, М=35000, Fluka), пірогенні кремнезем (А-300, $S_{пит} = 232 \text{ m}^2/\text{г}$) та алюмокремнеземи АК1, АК3, АК8 (C_{A12O3} – 1, 3, 8%, $S_{пит} = 207$, 188 та 308 м²/г, відповідно), синтезовані на Калуському заводі ІХП ім. О.О. Чуйка НАН України. Водні суспензії зразків готували методом ультразвукової (УЗ) обробки (УЗДН-А) протягом 5 хв на частоті 22 кГц [5].

Термогравіметричні (ТГ-ДТА) дослідження було зроблено за допомогою приладу Derivatograph-C (Paulik, Paulik & Erdey, MOM, Budapest) в інтервалі температур 20-1000°C. Точність виміру при основній чутливості складає ± 1% від показуваної величини. Для проведення дериватографічних досліджень зразки кремнезему після адсорбції 125 мг ПЕГ на 1 г кремнезему промивали дистильованою водою та висушували при 60°С.

ТСД-спектри одержували на приладі виробництва СКБ (м. Ангарськ, Росія) в діапазоні температур 90–265 К. При цьому термостимульована деполяризація відбувалася при нагріванні короткозамкненого зразка, який попередньо поляризувався електростатичним полем. Струм короткого замикання в зовнішньому колі зумовлено як струмом провідності, так і струмом зміщення, причому струм провідності викликається дією внутрішнього неоднорідного електричного поля. Для ТСД-досліджень таблетки (діаметр 30 мм, товщина ~1 мм) із замороженою водною суспензією досліджуваних зразків поляризували при 265 К в електростатичному полі при F ~ (2-5)•10⁵ В/м і охолоджували до 90 К. Час витримки зразків при поляризації при 265 К складав 3 хв і при цьому не спостерігалося помітного підвищення температури внаслідок омічного нагріванні. Зразки охолоджували до 90 К при прикладеному полі. Потім зразки нагрівалися без електричного поля з постійною швидкістю h = 0,05 K/c. Помилка вимірювань складала для температури $\delta_T = \pm 2$ K, для струму $\delta_I = \pm 5$ % і для швидкості нагріванні $\delta_h = \pm 5 \%$. Струм, зумовлений деполяризацією зразка, реєстрували високоомним цифровим вольтметром В7-30, що дозволяє проводити вимірювання в діапазоні 10⁻¹⁴-10⁻⁷ А.

Енергія активації деполяризації (Е^{ад}) кластерів води може бути розрахована методом Гарлика-Гібсона [4], коли висхідна ділянка кривої ТСД струму для dcрелаксації (direct current – релаксації) описується рівнянням Арреніуса. Отже, кут нахилу прямої, побудованої в координатах ln I від 1/Т, дозволяє розрахувати енергію активації. Розподіл енергії активації деполяризації було розраховано за рівнянням [3]

$$I(T) = S_{el} \Pi_0 \int_{E_{\min}}^{E_{\max}} \sum_{i=1}^{N} w_0^i \exp\left\{-\frac{E}{k_B T} - \frac{w_0^i k_B T^3}{Eb} \exp\left(-\frac{E}{k_B T}\right) + \frac{w_0^i k_B T_0^3}{Eb} \exp\left(-\frac{E}{k_B T_0}\right)\right\} f(E) dE, \quad (1)$$

де

$$w_0^i = \frac{b}{k_B T_i^3} (E + k_B T_i) \exp\left(\frac{E}{k_B T_i}\right),\tag{2}$$

 $S_{\rm el}$ – площа поверхні електродів, Π_0 – поляризація при заморожуванні, $k_{\rm B}$ – константа Больцмана, T_0 – початкова температура деполяризації, T_i – температура *i*-того ТСД-максимуму.

Рівняння Гібса-Томсона для залежності температури замерзання від розмірів пор можна трансформувати в інтегральне рівняння для ТСД-струму [3]

$$I(T_m) = A' \int_{R_{\min}}^{R_{\max}} \left(\frac{k(T)}{(T_{m,\infty} - T_m(R))R} \right)^2 f_V(R) dR , \qquad (3)$$

де R_{max} і R_{min} – максимальний і мінімальний радіус пор (чи розмірів відповідних водних структур), A' – константа, k(T) – функція температури.

Результати та їхнє обговорення

Найсуттєвіші відмінності в кількості релаксуючих доменів води (льоду) в 1%-них водних суспензіях пірогенних оксидів спостерігаються у двох діапазонах температур:

1) низькотемпературна область A (T = 100–180 K) – з енергіями активації деполяризації води і диполів полярних поверхні оксиду ($E_a^{\ \partial}$) від 10 до 20 кДж/моль (рис. 1, область A);

2) високотемпературна область E(T = 180 - 240 K) – відповідає релаксації кластерів та доменів об'ємної води з $E_a^{\ \partial} = 30-50 \text{ кДж/моль}$ (рис. 1, *область Б*).

Із адсорбційних даних, одержаних за допомогою методу віскозиметрії, було визначено, що ізотерми адсорбції ПЕГ на поверхні всіх досліджуваних зразків мають вигляд ізотерм Ленгмюра і в координатах C/A - C (де C – рівноважна концентрація, A – величина максимальної адсорбції) зводяться до лінійного вигляду. Це дозволило визначити величину ємності моношару ПЕГ на поверхні досліджуваних зразків (табл. 1) [5].

В ТСД-спектрі 5%-ного розчину ПЕГ, порівняно з ТСД-спектром дистильованої води [5] в області A з'являються 4 нових релаксаційних піки (рис. 1, a) при 123, 137, 149, та 167 К (див. табл. 2). В області E порівняно зі спектром чистої води з'являється один новий релаксаційний максимум (Т₉) та пік (Т₈) зміщується на 6 градусів в бік вищих температур (рис. 1, a та табл. 1). Такі зміни в ТСД-спектрі вказують, що ПЕГ сприяє утворенню великої кількості нанодоменів води з низьким числом водневих зв'язків $n_H = 1, 2$ [1, 5], оскільки вклад області A в загальний релаксаційний спектр зріс в десятки разів (табл. 2). Крім того, ПЕГ, що має полярні зв'язки, робить свої внески в релаксаційні процеси. Тобто релаксація кластерів води і сегментів полімеру є кооперативним процесом.

Зразок	Al_2O_3 ,	S _{пит} , м ² /г	А _{макс}	(ПЕГ)	Взаємодія з ≡SiOH			
	70 Mac.		мг/г	мг/м ²	θ, %			
A-300	0	230	125	0,50	100			
AK1	1	207	125	0,60	100			
АК3	3	188	110	0,59	100			
AK8	8	308	113	0,37	100			

Таблиця 1. Характеристики високодисперсних оксидів при адсорбції поліетиленгліколю з його водних розчинів

S_{пит} – величина питомої поверхні зразків, А_{макс} (ΠΕΓ) – величина максимальної адсорбції ПЕГ, θ – ступінь взаємодії з поверхневими ОН-групами, визначений з ІЧ-спектральних даних.

Модифікований поліетиленгліколем пірогенний кремнезем (у кількості, що відповідає ємності моношару) сприяє формуванню доменів води, аналогічно тим, що утворюються в 5%-ному розчині ПЕГ (рис. 1, *a*, *c*). В ТСД-спектрах спостерігаються схожі релаксаційні процеси, температури максимумів (T_2 , T_5 , T_7 , T_8) та інтегральні інтенсивності піків (I) яких відрізняються в незначній мірі (табл. 2).

Така поведінка релаксуючих доменів води і сегментів полімеру вказує на те, що будова кластерів води в 5%-ному водному розчині ПЕГ та на межі поділу фаз «кремнезем, модифікований ПЕГ–вода» (де полімер знаходиться в адсорбованому стані і екранує поверхню оксиду, див. схему на рис. 2) є досить близькою. Це може бути пов'язане з тим, що даний полімер здатен формувати певну просторову сітчасту структуру, яка буде сприяти утворенню близьких за розмірами кластерів води (рис. 1, ∂ , рис. 2), і процеси кооперативної релаксації вільного і зв'язаного полімеру близькі.

В ТСД-спектрі кремнезему, модифікованого ПЕГ, найбільш інтенсивним є пік, який відповідає найменшій кількості водневих зв'язків в доменах води (рис. 1, *г*), тобто в цій системі присутня найбільша кількість нанодоменів води.

Функції f(R) розподілу за розмірами релаксуючих водних структур (рис. 2) показують, що ці структури у випадку «А-300 – ПЕГ – вода» та «А-300 – вода» мають ідентичний розподіл для нанодоменів води (R = 0,2–0,6 нм, рис. 2), які суттєво змінюються при R \geq 1 нм для системи «А-300, ПЕГ–вода». На відміну від системи «А-

300–вода» в системі «А-300–ПЕГ–вода» повністю зникають великі домени води (R ≥ 30 нм, рис. 2) внаслідок більш значної кластеризації води.

		Релаксаційні максимуми																
<16 Зразк		1 2		2	3		4		5		6		7		8		>160	
0 К	И	T _m	Ι	T _m	Ι	T _m	Ι	T _m	Ι	T _m	Ι	T _m	Ι	T _m	Ι	T _m	Ι	К
Об																		Обл.
л.																		Б
Α																		
1%	H_2O^{**}	10	0,0	-				14	0,0	17	0,4	-	-	21	2,			99%
		6	6					2	2	5				1	9			
51	A-300	11	1,2	12	6,	13	5	14	0,8	16	4,1	19	3,	20	1,	21	3,	49%
%		2		2	9	6		8		3		6	8	4	8	5	8	
47	ΠΕΓ	-	-	12	4,	13	1,	14	3,0	16	0,6	-	-	20	1,	22	8,	53%
%				3	4	9	0	9		7				5	4	3	7	
58	A-	-	-	12	5,	13	2,	15	1,5	16	0,6	-	-	20	0,	23	6,	42%
%	300-			3	5	7	1	0		8				8	5	9	5	
	ΠΕΓ																	
59	АК1-	-	-	12	3,	13	1,	15	1,9	16	0,9	-	-	21	4,	23	1,	41%
%	ΠΕΓ			2	6	9	5	0		5				1	4	1	2	
82	АК3-	-	-	12	2,	13	0,	15	0,3	16	0,0	-	-	21	0,	23	0,	18%
%	ΠΕΓ			0	6	9	4	2		6	6			0	3	1	4	
52	АК8-	11	0,2	-	-	14	1,	15	0,7	16	0,2	20	0,	20	1,	23	1,	48
%	ΠΕΓ	1				4	6	5		4		0	7	9	3	2	9	

Таблиця 2. Температури релаксації Т_{max}(К) та інтегральні інтенсивності І (нА×К) ТСДпіків* заморожених 1% водних суспензій пірогенних оксидів

Рис. 1. ТСД-спектри: *a* − 5%-ного водного розчину поліетиленгліколю, *б* − суспензії вихідного А-300, *в* −АК1, *г* − А-300, *∂* − АК3, *е* − АК8, модифікованих ПЕГ у кількості моношару.

На кластероутворення в системі «АК–ПЕГ–вода» впливає присутність на поверхні бренстедівських Si-O(H)-Al містків [7]. Їх концентрація збільшується в ряду AK1 < AK3 < AK8, що впливає на інтенсивність TCД-піків T₂–T₅, особливо на пік T₂, інтенсивність якого зменшується зі збільшенням кількості Si–O(H) –Al містків на поверхні і повністю зникає для системи «AK8–ПЕГ–вода» (табл. 2).

Рис. 2. Функції розподілу за розмірами релаксуючих структур в суспензіях: 1 – вихідного А-300 (1 %мас.), 2 – «А-300–ПЕГ» при $C_{\Pi \in \Gamma} = 125$ мг/г кремнезему

Як відомо, ПЕГ взаємодіє з оксидами через гідроксильні групи їх поверхні [8]. З ураховуванням ступеня збурення SiOH-груп (смуга 3750 см⁻¹ в IЧ-спектрах) та молекулярної маси однієї мономерної ланки молекули ПЕГ ($M_1 = 44$ а.о.м.) нами була розрахована середня кількість ланок ПЕГ, що припадають на одну силанольну групу поверхні кремнезему при його моношаровому покритті. Це число дорівнює 5. Тому взаємодію полімеру з поверхнею кремнезему при моношаровому покритті можна представити наступною схемою (рис. 3):

Рис. 3. Схема взаємодії ПЕГ з поверхнею кремнезему при вмісті полімеру у кількості, що відповідає ємності моношару

Ця схема узгоджується з тим, що поведінка систем з вільним і адсорбованим ПЕГ, яка проявляється в ТСД–спектрах, близька.

Проведені дериватографічні дослідження показують, що втрати маси для зразків кремнезему з адсорбованими ПЕГ при нагріванні до 1000°С становлять від 10 до 15% мас. (рис. 4). Перший пік на кривій ДТГ з максимумом близько 100°С зумовлений втратою маси зразків внаслідок виділення фізично адсорбованої води, другий та третій піки відносяться до деструкції ПЕГ при температурі 170 і 200°С. Наявність двох піків

свідчить при складний характер цього процесу, що перебігає як мінімум в дві стадії. Вміст адсорбату на поверхні кремнезему після адсорбції та після промивання водою майже не відрізняється (рис. 3, криві 2,3). Отже, ПЕГ практично незворотньо адсорбується на поверхні кремнезему з водних розчинів.

Рис. 4. Дериватограми кремнеземів: 1 – вихідного А-300 після контакту з водою; 2 – ПЕГ; 3 – з адсорбованим ПЕГ після додаткового промивання водою.

Дослідження змін величини поверхневого заряду вихідних та модифікованих ПЕГ пірогенних А-300, АК1, АК3, АК8 (рис. 5) підтверджують наявність процесу екранування поверхні при її модифікуванні поліетиленгліколем. Після модифікування густина поверхневого заряду пірогенних оксидів значно зменшується, особливо в області рH > 8 (де заряд на вихідному кремнеземі значний). Отже модифікування поверхні А-300 та АК поліетиленгліколем можна використовувати для стабілізації розмірів їхніх частинок (в суспензіях) в лужному середовищі та для зниження швидкості розчинення фази діоксиду кремнію в нанооксидах.

Рис. 5. Залежність густини поверхневого заряду від рН у водному розчині 10⁻³ M NaClO₄: *a*) 1 – А-300; 2 – «А-300–ПЕГ»; 3 – АК1; 4 – «АК1-ПЕГ»; б) 1 – АКЗ; 2 – «АКЗ-ПЕГ»; 3 – АК8; 4 – «ПЕГ–АК8», (С_{сусп.} = 0,2% мас.).

Енергія активації протонної провідності в результаті адсорбції ПЕГ на поверхні А-300 та АК1 різко зменшується (рис. 6) внаслідок додаткової поляризації поверхневих ОН-групп при взаємодії з полімером. Збільшення концентрації оксиду алюмінію в пірогенному алюмокремнеземів при моношаровому модифікуванні поверхні поліетиленгліколем зумовлює ріст енергії активації протонної провідності. Цей ефект пояснюється відомою концентраційною залежністю бренстедівської кислотності алюмокремнеземів: чим менше поверхнева концентрація $C^s_{Al_2O_3}$, тим більша бренстедівська кислотність АК [9–11].

Рис. 6. Залежність ln I як функції від 1/Т для : 1 – H₂O, 2 – 5% ний розчин ПЕГ; 3 – А-300, 4 – AK1, 5 – AK3, 6 – AK8, модифіковані ПЕГ у кількості моношару.

Відповідно, система АК1 має сильнішу бренстедівську кислотність, ніж АК3, АК8, що забезпечує підвищену рухливість протонів у водних суспензіях у порівнянні з оксидами з меншою бренстедівською кислотністю при більшому поверхневому вмісті оксиду алюмінію. До того ж льюїсівські основні центри на поверхні оксиду алюмінію (атоми кисню з надлишком електронної щільності) є пастками для протонів і кількість таких центрів зростає зі збільшенням C^s_{Al,O_2} .

Висновки

Кластероутворення на межі поділу фаз «високодисперсний оксид, модифікований ПЕГ, – вода» визначається структурою молекули ПЕГ, оскільки тільки біля 20% С-О-С груп полімеру зв'язано з поверхнею оксиду, і є подібним як для суспензій «А-300 – ПЕГ», так і для суспензій «АК – ПЕГ». Зміни кластероутворення води обумовлені змінами концентрацій атомів алюмінію на поверхні АК та станом адсорбованого ПЕГ.

Література

- 1. Маленков Г.Г. Структура воды // Физическая химия. Современные проблемы. Ред. Я.М. Колотыркин. – 2002. – Т. 43, № 1. – С. 547-556.
- 2. Chaplin M. Water structure and behavior, http://www.lsbu.ac.uk/water.
- Вода в дисперсных системах. // Сб. науч. трудов / ред. Б.В. Дерягин, Н.В. Чураев, Ф.Д. Овчаренко. – М.: Химия, 1989.– 286 с.
- 1. Зацепина Г.Н. Свойства и структура воды. М.: Изд-во Моск. ун-та, 1974. 167 с.
- Gun'ko V.M., Zarko V.I., Goncharuk E.V. Andriyko L.S., Turov V.V., Nychiporuk Y.M, Leboda R., Skubiszewska-Zięba J., Gabchak A.L., Osovskii V.D., Ptushinskii Y.G., Yurchenko G.R., Mishchuk O.A., Gorbik P.P., Pissis P., Blitz J.P.TSDC spectroscopy of relaxational and interfacial phenomena // Adv. Colloid. Int. Sci. – 2007. – V. 131, № 1-2. – P. 1-89.
- Гороховатский Ю.А. Основы термодеполяризационного анализа М.: Наука, 1981. 176 с.
- 4. Андрійко Л.С., Зарко В.І., Гончарук О.В., Гунько В.М.. Протонна провідність та релаксаційні процеси в системі пірогенний алюмокремнезем-вода. // Хімія, фізика і технологія поверхні. – 2012. – Т. З. № 3. – С. 283-290.
- 5. Зарко В.И., Андрийко Л.С., Гунько В.М., Малышева М.Л., Гацький О.О., Геращенко И.И.. Структурно-адсорбционные характеристики пирогенных

нанооксидов кремнезема, алюмо- и титанокремнеземов, модифицированных поливиниловым и полиэтиленгликолем // Химия, физика и технология поверхности. – 2006. – Вып. 11-12, С. 221-239.

- 6. Горбик П.П., Гунько В.М., Зарко В.И., Мищук О.А., Спивак О.А., Гончарук Е.В., Андрийко Л.С., Геращенко И.И., Чуйко А.А.Роль поверхности в формировании свойств пирогенных нанокомпозитов SiO₂-Al₂O₃, SiO₂-TiO₂ и Al₂O₃-SiO₂-TiO₂ // Химия, физика и технология поверхности. 2006. Вып. 11 12. С. 207-224.
- 7. Rugal A.A., Gun'ko V.M., Barvinchenko V.N. Turov V.V. Interaction of fibrinogen with nanosilica // Central Europ. J. Chem. 2007. V. 5, № 1. P. 32-54.
- Горбик П.П., Гунько В.М., Зарко В.И. и др. О распределении оксида алюминия в высокодисперсной оксидной системе Al₂O₃/SiO₂ // Доп. АН України. – 2004. – № 11 – С. 150-154.
- 9. Gun'ko V.M., Zar ko V.I., Leboda R., Chibovski E Aqueous suspension of fumed oxides: particle size distribution and zeta potential // J. Colloid. Int. Sci. 2001. v. 91. P. 1-112.
- 10. Gun'ko V.M., Turov V.V., Zarko V.I. Voronin E.F., Tischenko V.A., Dudnik V.V., Pakhlov E.M., Chuiko A.A. Activ site nature of pyrogenic Alumina/Silica and water bound to surfaces // Langmuir. 1997. V. 13, № 6. P. 1529-1544.

КЛАСТЕРООБРАЗОВАНИЕ МОЛЕКУЛ ВОДЫ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ ВОДА – ПИРОГЕННЫЙ АЛЮМОКРЕМНЕЗЕМ, МОДИФИЦИРОВАННЫЙ ПОЛИЭТИЛЕНГЛИКОЛЕМ

Л.С. Андрийко, В.И. Зарко, В.М. Гунько

Институт химии поверхности им. А.А. Чуйка Национальной академии наук Украины ул. Генерала Наумова, 17, Киев, 03164, Украина

Методом термостимулированной деполяризации исследовано влияние модифицирования поверхности пирогенных кремнезема и алюмокремнеземов с различным содержанием оксида алюминия на релаксационные процесси кластеров воды, которые формируються в 1%-ных водных суспензиях оксидов. Установлено, что эти процессы определяются природой модификатора. Поэтому они протекают аналогично как в 5-%му растворе полиэтиленгликоля, так и в суспензиях модифицированных алюмокремнеземов, благодаря образованию сетчастой структуры слоя модифікатора на поверхности оксида.

THE WATER CLUSTERS FORMATION AT INTERFACE WATER – FUMED ALUMINA/SILICA, MODIFEID BY POLYETYLENGLYCOL

L.S. Andriyko, V.I. Zarko, V.M. Gun'ko

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine

The influence of surface modification of silica and alumina/silica with different content of alumina by poly(ethylene glycol), PEG, onto the relaxation processes in water clusters formed in 1% aqueous suspension was studied by thermally stimulated depolarization current method. It was shown that these processes are mainly affected by the modifier. Therefore, they are similar for 5% aqueous solution of PEG and PEG/nanooxide suspensions because of coverage of oxide nanoparticles by the polymer.