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The plasma observed in modern fusion devices very often exhibits strongly non-Maxwellian distribution. This
is the result of magnetic field lines reconnection with formation of magnetic resonant structures like magnetic
islands and stochastic layers. Along with that, the plasma heating by means of neutral beam injection (NBI) and
ion/electron cyclotron resonance frequency (ICRF/ECRF) heating induce the non-Maxwellian fast ions. In order to
get the comprehensive description of plasmas one should take care of plasma particles interaction, i.e. Coulomb
collisions in non-Maxwellian environment. In present paper the expression for the discretized collision operator of a
general Monte Carlo equivalent form in terms of expectation values and standard deviation for the non-Maxwellian
bulk distribution function is derived for a magnetized plasma assuming distribution function isotropy. The
simulation for relaxation of fusion product fractions like a-particles, protons and deuterium ions on background
plasma particles is performed with the use of presented collision operator. On this purpose the &-function

distribution for the bulk plasmas is assumed.

PACS: 52.20.Dq, 52.25.Xz, 52.55.Pi, 52.65.Cc, 52.65.Pp

INTRODUCTION

In modern studies the plasma observed in fusion
devices like Tokamak and Stellarator is very often
characterized by strongly non-Maxwellian distribution.
The transition from Maxwellian to non-Maxwellian
distribution is caused by the reconnection of the
magnetic field lines with the further formation of
magnetic islands and magnetic stochastic layers.
Another reason for the transition is the plasma heating
by means of neutral beam injection (NBI) and
ion/electron cyclotron resonance frequency
(ICRF/ECRF) heating that induce the non-Maxwellian
fast ions, which interact with bulk and thermal ions.
This  phenomenon  significantly — modifies  the
characteristics of plasma in general that is clearly
demonstrated on Tokamak JET [1, 2]. At present time
the variety of numerical techniques to simulate the
transition from Maxwellian to non-Maxwellian
distribution is developed [3 - 5]. At the same time in
order to get the comprehensive description of plasma
dynamics one should take care of plasma particles
interaction, i.e. Coulomb collisions in Maxwellian/non-
Maxwellian environment.  The crucial point is the
fact that the approach to describe the non-Maxwellian
plasma relaxation through collisions should be
introduced. That could be done via discretized collision
operator developed for the test particle tracing approach.
This operator was introduced in the paper [6] for the
pitch-angle scattering and the energy slowing down and
scattering. Later it was extended to different plasma
species [7], and its validity to trace heavy impurities in
fusion plasmas was shown in [8]. The significant
constraint put in this operator is the isotropic
Maxwellian distribution of the background plasmas.

The objective of our work is to extend the
applicability of the discretized collision operator to non-
Maxwellian plasma. Starting from the Fokker-Planck
collision operator, which includes Rosenbluth
potentials, we derive new expressions for the discretized
operator of a general Monte Carlo equivalent form in
terms of expectation value and standard deviation
including an arbitrary shape of distribution function for
bulk plasma.
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The operator is used to simulate slowing down of
fusion products like e-particles, protons and deuterium
ions on background plasma particles. The initial Kinetic
energies for each test particle are chosen as 3.52 MeV
for fusion alphas, 3.02 and 14.7 MeV for protons and
9.5 MeV for deuterons. Under these conditions the bulk
plasma is assumed to have &-function distribution and
the criteria of using the operator under mentioned
conditions is presented. The applicability of the operator
to reproduce the time scale for fusion products slowing
down in bulk plasmas is shown.

1. TEST PARTICLE APPROACH

A test particle approach is an idealized model of an
object whose physical properties are considered to be
negligible except of those sufficient to impact the rest of
the system. Concerning plasma physics, in simulations
with electromagnetic fields and Coulomb collisions the
most important characteristics of a test particle become
its electric charge and its mass. As to the fusion
magnetized plasma, in order to describe test particle
motion [9] one could integrate Newton’s equation with
the Lorentz force to trace the exact particle trajectory

dv Z.e dx
—=Z,eE+—=-|vxB} — =V
C=ZeEr==[vxBl (1)

where, m_ is the test particle mass, z e is its charge,

E and B are the electric field vector and magnetic
induction respectively. On the other hand, the guiding
center equation of the form
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could be used to calculate guiding center trajectory [10]
in the assumption that the Larmor radius is small
comparing to the characteristic lengths of the
inhomogeneity of the background plasma. Here v, and

v, are the parallel and perpendicular components of

test particle velocity with respect to the magnetic field
line direction. The equation (2) should be backed with
the particle energy conservation low
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w=m,(v2 +V2 )/2+ Z, ed =const and conservation of
perpendicular invariant of motion ,, =v? /B =const. To
complete the test particle motion description, the
Coulomb collisions should be included. The idea is that
each integration time step the particle suffers a number
of collisions that leads to modification of kinetic energy
and additional modification of velocity vector direction.
This effect could be described by discretized collision
operator acting on the test particle after each integration
step.

2. DISCRETIZED COLLISION OPERATOR

The Fokker-Planck collision operator acting on
distribution function f_(v) of an arbitrary test particle
species (a) under the assumption of isotropy for the
distribution function £, (v’) of background plasma
species (b) could be rewritten as follows

df, =v,(v) L Lo {v{ M,

dt VZE VS(V)fa+

where chla{(l_/p)afa} is Lorenz collision
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operator, L® =InA(4zZ2,z,e?/m, )’ is function of
Coulomb logarithm |nA , charge numbers z_and z ,

and  the massm_. v, =L"/v(l+m,/m,)op,/0V,

al ab 2 .
_ L0y and , o2 9% are slowing
Vg = 3 [ 2 2
v oV Ve oV
down, deflection and parallel velocity diffusion

frequencies respectively. The Rosenbluth potentials
_ 1 1 ’ 3., _ l ’ 3y,
%“E_[afb(v)d v l//b—_g_[u fb(v)d v (4)

are functions of the relative velocity of particles
u= \v— v'| and distribution function f, .

The Monte Carlo equivalent of the collision
operator of the general form expressed in terms of time
derivative of expectation values and the square of the
standard deviation reads

F, =F, +d(F)/dt Ar+/{do? /dt)Az, )

where Az is integration time step and function F could
be replaced either by the kinetic energy of test particle
K =m,v? /2 or by its pitch angle ;= v, /V- The sign +
is to be chosen randomly but with the equal probability
[6]. By definition, the expectation value is
<F>:IF f,dF, and its time derivative reads as
@:jpﬂdFJrIf didF , where the second
dt dt ®dt
term vanishes due to the fact of constant random
variable values. Then the time derivative of square of

dot d(F7) _ dF)
=)L

dt dt dt
Taking into account the derivative ¢ f,/dt of the form

standard deviation becomes

(3) the analytical treatment under assumption of an
arbitrary isotropic distribution function leads us to
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general expression for the energy slowing down and
scattering operator
m, 5
Vs =5Vi—
m, +m, 2
o,

0

K, =K ,—2K, A{
(6)

JiZKO v, At .
K=Kq

Now we are out of the possibility to derive the
analytical form for the collision operator basing on
arbitrary distribution function for the background
plasma particles. Nevertheless, we can integrate
numerically the expression (6) for any shape of bulk
distribution and are able to study some special cases of
the background plasma distribution function f, .

3. FAST PARTICLES RELAXATION ON
“3-FUNCTION” BACKGROUND

The discretized collision operator for isotropic
Maxwellian distribution of the background plasma is
fairly well described and its validity approval is
presented in literature in details [6-8].

We have to point that Maxwellian operator [6-8]
could be derived analytically, as a special case, from the
newly obtained expression (6) including the
transformation of Rosenbluth potentials (4).

Since the non-Maxwellian plasma is the point of
our interest, to test the applicability of the operator (6),
we consider a simplified case assuming the bulk ions
distribution to be in the form of & -function
f,(v')=n, 5(v'). This approach is valid for the fast test

particles colliding with the bulk ions since the initial test
particle velocity is much higher than the bulk thermal
velocity. For example, the slowing down of
fusion ¢ -particles with birth energy of 3.52 MeV, which
are the result of D + T fusion, is of interest for our test
approach. Along with that the relaxation of fast protons
with energies 3.02 and 14.7 MeV that are the result of
D+ D and D + He® fusion respectively and deuterium
ions of 9.5 MeV that are the result of He3+T reaction is
studied further in details.

In the case of § -function distribution for the bulk
ions the Fokker-Planck collision operator (3) becomes
df. _|= nbl[maafa_l_lL j In accordance to the

dt 4z v*(m, ov v
general formula (5) the discretized operator (6) reduces
to the form
K, =K, —2K, v, At (7

i i L* n, m

in terms of collision frequency ,, _= "o Ta. The
OV Ar m,

fact that time derivative of square of standard deviation

is do%/dt=0 excludes the broadening of kinetic energy.

On the Fig.1 the relaxation of different fusion
products calculated by means of the operator (7)
is compared to the same processes calculated by the
collision operator based on Maxwellian distribution [6-
8] for different bulk plasmas with density 10* cm™ and
the temperature 5 keV for all cases.
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Fig. 1. Slowing down of fusion a-particles with initial
energy 3.52 MeV (a), fast protons with initial energies
3.02 MeV and 14.7 MeV (b and c), deuterium with
initial energy 9.5 MeV (d) on Maxwellian bulk plasmas
and on bulk with J-function distribution
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The Fig. 2 is the extension of Fig. 1,a. It shows in
different scale the fluctuations of kinetic energy of
a-particle colliding with the helium Maxwellian plasma.
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Fig. 2. Extension of figure 1,a: the fluctuations of

a-particle velocity caused by collisions with the
Maxwellian background

The fluctuation peaks represent the interaction with
the bulk particles existing in the tail of Maxwellian
distribution function.

Good agreement of the results for the typical time
scale for the relaxation process proofs the validity of the
operator (7) to simulate fast test particles slowing down
in the energy frame starting from the high initial
energies down to thermal energies of bulk plasmas. The
advantages of this operator are the simplicity and the
possibility to reduce significantly the calculation time
for the certain plasma scenarios.

CONCLUSIONS

Current research is devoted to the derivation of
general comprehensive form of the Monte Carlo
equivalent of slowing down and scattering collision
operator. The integration of equations of motion (1) and
(2) together with the collision operator that is called
discretized collision operator (5) completes the
description of test particle motion in fusion collisional
plasma.

Starting from the Fokker-Planck collision operator
(3) the general form of discretized collision operator for
kinetic energy slowing down and scattering (6) is
obtained. It includes the collision frequencies expressed
via Rosenbluth potentials in general integral form (4).

The crucial point is the fact that the only
assumption made for this derivation is the isotropy of
the distribution function of bulk plasma in velocity
space. Hence the distribution depends only on the value
of the velocity but not on its direction f (v')— f,(v')-

No any other assumption on the shape of bulk
distribution function is made in operator (6). The test of
newly derived operator was performed in two steps.

Firstly, the ability to pass from the general form (6)
to the form that is well known and described in [6-8]
assuming the isotropic Maxwellian distribution of bulk
plasma was successfully checked.
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As the second step basing on bulk particles
distribution in the form of ¢ -function the simplified
version of discretized collision operator is derived (7)
and studied in details. Its validity to calculate relaxation
reflected in energy slowing down for energetic particles
like ion beams and fusion products is proved.

Generally, the numerical integration of the
collision operator (6) gives us possibility to study
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JUCKPETHBIN CTOJIKHOBHUTEJIbHBIN OITEPATOP JIJISI MOJEJIUPOBAHUS PEJIAKCALIUMA
TEPMOSIJIEPHON HEMAKCBEJIJIOBCKOM I1JIA3MbI

O A. lluwkun, /1.B. Bo3niok, H.A. I'upxa

[Mna3ma, koropas HaOmIOZaeTcss B COBPEMEHHBIX YCTAaHOBKAaX TEMOSJIEPHOTO CHHTE3a, OYEHb 4YacTo
XapakTepu3yeTcsi HEMaKCBEIUIOBCKOM (yHKIMEH pacnpeneneHus. Takoe pacrpeeseHiue MOXKeT ObITh pe3yIbTaToM
MEePECOCMHEHHST CHUIIOBBIX JIMHUI MArHUTHOTO TOJISI C MOCIEAYIONUM (OPMHUPOBAHHEM PE30HAHCHBIX CTPYKTYD,
TaKUX KaKk MAarHUTHBIE OCTPOBA M CTOXAaCTHYECKHE MarHUTHbIE clion. Kpome TOro, HarpeB Imia3Mbl METOJaMHU
HMOHHOTO M DJIEKTPOHHOTO I[HKJIOTPOHHBIX PE30HAHCOB MPUBOAUT K MOSBICHHIO HEMAKCBEIUIOBCKHX OBICTPBIX
HMOHOB, KOTOpbIE, B CBOIO O4Yepe/b, B3aWMOJACHCTBYIOT C OCHOBHOM IUIA3MOM ¥ TEIUIOBHIMH HOHaMu. YToObI
MOJIYYUTh TIOJIHOE ONUCAHUE MOBE/ICHHS IJIa3Mbl B TAKUX YCIOBHUSIX, HEOOXOIUMO yYECTh B3aUMOJEHCTBUE MEKTY
YaCcTHIIAMHM, & HUMEHHO — KYJIOHOBCKHE CTOJIKHOBEHHsS B HEMaKCBEJUIOBCKOW cpeje. IlpeicraBieHo MOJHOE
BBIp@KEHUE JJIsI TUCKPETHOTO CTOJKHOBUTEILHOTO Omeparopa B oOIieil skBuBasieHTHOUW (hopme Monrte Kapio c
HUCIIOJIb30BAHUEM 0)1(1/1/:[aeM0171 BCIIMYUHBI M KBaJpaTa CTaHAAPTHOI'O OTKJIOHCHHA, a TaKXKE B HpI/I6J'H/DKeHI/II/I
M30TPOITHOTO PACIpE/CNICHNs] OCHOBHOM Iu1a3Mbl. [Ipy moMomlM JaHHOrO omneparopa IPOBENEHO YHCICHHOE
MO/JIC/IMPOBAHKE PEIAKCAIMU MPOJAYKTOB TEPMOSIICPHOW PEaKIUU, TAaKUX Kak anb(a-dacTHIlbl, TPOTOHBI M HOHBI
JieiiTepust Ha OCHOBHOM mia3me. B TaHHOM MOJCITUPOBAHUHN UCIIONIB30BATIOCH IPUOIMIKEHHE, T/Ie OCHOBHAS IUIa3Ma
MOJKET OBITh OIKCaHA JIeJIbTa-()YHKIHEH.

JIMCKPETHUM ONEPATOP 3ITKHEHB U151 MOJEJIOBAHHSA PEJIAKCAILIl TEPMOSIIEPHOI
HEMAKCBEJIBCBKOI IIJIA3MHA

0.0. HMuwikin, /1.B. Bosuwk, 1.O. Tipka

[Mna3ma, 1m0 croCTepiraeThcss B CYYacHHX MPHUCTPOSX KEPOBAHOTO TEPMOSJIEPHOTO CHHTE3Y, 4YacTo
XapaKTePU3y€EThCSI HEMAKCBENIBChKOIO  (QyHKIE posmoaity. Llei posmomin Moxke OyTH pe3yabTaToM
nepe3’€IHAaHHST CHJIOBHX JIIHIM MarHiTHOTO MOJIS 3 MOJANBIIMM (OPMYBaHHSM PE30HAHCHUX CTPYKTYD, TAKHX SK
MarHiTHI OCTPOBM Ta MAarHiTHi croxacTW4Hi mapu. KpiM I1poro, HarpiBaHHA IUTa3MH METOJaMH 10HHOTO Ta
€JICKTPOHHOTO IUKJIOTPOHHUX PE30HAHCIB TPHU3BOJUTH JI0 TOSBH HEMAaKCBETIBCHKMX IIBHJIKHX 10HIB, SKi
B32€EMOJIIIOTh 3 OCHOBHOIO IUIA3MOIO Ta TEIIOBUMHM ioHamu. 11106 oTpumary NMOBHUWH ONKC MOBEIIHKH IUIa3MH B
TaKMX yMOBax, HEOOXITHO ypaxyBaTH B3a€MO/III0 YaCTHHOK IIJIa3MU MK 00010, a caMe — KYJIOHIBCBbKI 3iTKHEHHSI B
HEMaKCBEJIIBCbKOMY cepefoBHii. [IpencraBineHo MOBHMI BHIJIS JUCKPETHOTO OIEpaTOpa 3iTKHEHb y 3arajbHii
exBiBaJieHTHIH (opmi MonTte Kapno i3 BHKOpPHCTaHHSM BEJIMYMHM OYIKYBaHHS Ta KBaJIpaTy CTaHAApPTHOTO
BigxwieHHs. TakoX BHMKOPHCTAaHO HAOJIDKEHHS 130TpPONMHOI IUla3MH. [3 BUKOPHCTaHHSM IOTO OllepaTropa
MPOBEJCHO YKCIOBE MOJENIOBAHHS peJlakcalii HPOJYyKTiB TepMOsAepHOi peakuii, Takux SK anbda-4acTHHKH,
MPOTOHM Ta 10HW JAEHTEpil0 HAa OCHOBHIN ma3Mmi. Y MOJaHOMY MOJICNIOBAHHI BHKOPHCTOBYETHCS HAONMKECHHS, /1€
OCHOBHA IUTa3Ma MOXe OyTH OIFCaHa 3a JOITOMOTOIO JIebTa-(QyHKII.
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