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Abstract. We study the entanglement properties of a higher-integer-spin Affleck–Kennedy–
Lieb–Tasaki model with quantum group symmetry in the periodic boundary condition. We
exactly calculate the finite size correction terms of the entanglement entropies from the
double scaling limit. We also evaluate the geometric entanglement, which serves as another
measure for entanglement. We find the geometric entanglement reaches its maximum at the
isotropic point, and decreases with the increase of the anisotropy. This behavior is similar
to that of the entanglement entropies.
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1 Introduction

Quantum entanglement is a fundamental feature in quantum mechanics, and is a primary re-
source in quantum communication and quantum computation [6, 12, 23, 37]. Entanglement has
become an important tool to characterize quantum many-body systems (see [2] for example for
a review). In one dimensional spin systems, typical quantifications of quantum entanglement
are the Rényi entropy SR(L, `) and von Neumann entropy SvN(L, `) of a subsystem A with `
sites and environment B with L− ` sites (see Fig. 1)

SR(L, `) =
log Tr(ρ(L, `))α

1− α
, SvN(L, `) = lim

α→1
SR(L, `).

Here the reduced density matrix ρ(L, `) is obtained from the density matrix of a ground state |Ψ〉
by tracing out all spin degrees of freedom in the environment B

ρ(L, `) = TrB
|Ψ〉〈Ψ|
〈Ψ|Ψ〉

. (1)

The entanglement spectrum, i.e. the set of the eigenvalues of the reduced density matrix, deter-
mines the entanglement entropies. For one-dimensional gapless spin chains, the generic behavior
of the entanglement entropies has been analyzed [7] by use of the conformal field theory. The
entanglement entropies scale logarithmically with the size of the subsystem, the prefactor essen-
tially given by the central charge of the corresponding conformal field theory.

On the other hand, gapful chains have been analyzed by investigating particular models. One
of the most important models is the Affleck–Kennedy–Lieb–Tasaki (AKLT) model [1] which was
introduced to understand the massive behavior of integer spin chains [13, 14]. The entanglement
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Figure 1. Schematic pictures of the entanglement entropies (left) and the geometric entanglement (right)

for the q-AKLT model with S = 3.

entropies of the isotropic AKLT models have been investigated by examing the exact valence-
bond-solid (VBS) ground state [9, 16, 17, 18, 22, 28, 31, 40]. For gapped systems which have
finite correlation lengths, the entanglement entropies saturate at certain values when the size
of the subsystems exceed certain lengths. The saturated values of higher rank and higher spin
AKLT models are larger than the spin-1 AKLT model.

Recently Santos et al. found surprisingly simple and useful formula for calculating the reduced
density matrix for matrix product ground states [32, 33]. They applied it to the AKLT model
of spin-1 and general integer spin S with quantum group symmetry (q-AKLT model) [3, 5,
10, 19, 20, 24, 35], and another massive Klümper–Schadschneider–Zittartz model [21] to study
anisotropic effect.

In this article, we study the entanglement properties of the q-AKLT model, following the
results of [32, 33] and giving remarks and additional results. The more precise definition of the
q-AKLT model on an L-site chain with the periodic boundary condition is as follows

H =
∑
k∈ZL

2S∑
J=S+1

CJ(k, k + 1)(πJ)k,k+1, (2)

where CJ(k, k+1) > 0, and (πJ)k,k+1, which acts on the k-th and (k+1)-th sites, is the Uq(su(2))
projection operator from VS ⊗ VS to VJ , where Vj is the (2j + 1)-dimensional highest weight
representation of the quantum group Uq(su(2)) [8, 15]. The valence-bond-solid (VBS) ground
state of this hamiltonian H has a matrix product form [3, 24], which generalize the isotropic
higher-integer-spin [4, 11, 36] and spin-1 q-deformed AKLT models [5, 19, 35]. We check that the
entanglement spectra for ` = 1 calculated from the formula of the reduced density matrix [32, 33]
reproduce the one point functions originally derived in [3]. We achieve the finite size corrections
of the entanglement entropies from the double scaling limit, which requires the second order
term of the perturbation of the entanglement spectrum. We exactly calculate the finite size
correction term of the von Neumann entanglement entropy SvN(`).

Besides the entanglement entropies which characterize the bipartite entanglement, we also
study the geometric entanglement, which is another kind of measure for entanglement, see Fig. 1.
The geometric entanglement has been proposed as a measure for multipartite entanglement. It
has been used to study quantum phase transitions [25, 26, 27, 28, 29, 30, 34, 38, 39], and
has been measured experimentally recently [41]. Systems near criticality exhibit logarithmic
divergences as the entanglement entropies. On the other hand, only a few analytic results are
known for gapped systems. The geometric entanglement defined below can be regarded as the
actual distance between the ground state of the system and the nearest fully separable state in
the Hilbert space.

We divide the L-site chain into N parties (L = N`). Consider a pure quantum state of N
parties |Ψ〉 ∈ H = ⊗Ni=1H

[i], where H [i] is the space of the ith party. The entanglement can be
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quantified by maximizing the fidelity |Λ| between the quantum state |Ψ〉 and all the possible
separable and normalized states of N parties |Φ〉 = ⊗Ni=1|φ[i]〉, |φ[i]〉 ∈ H [i],

|Λmax| = max
|Φ〉
|Λ|, Λ =

〈Φ|Ψ〉√
〈Ψ|Ψ〉

. (3)

The logarithm of |Λmax| is taken

E(Ψ) = −Log |Λmax|2,

such that its value becomes zero when |Ψ〉 is separable or positive otherwise. The geometric
entanglement per block is defined as the above quantity per party

E(`) = − lim
N→∞

E(Ψ)

N
,

well defined in the thermodynamic limit. We evaluate the geometric entanglement for the spin S
q-deformed VBS state |Ψ〉. We obtain the expression of the geometric entanglement for `→∞
and its finite size corrections with help of numerical calculations. For the evaluation of the
entanglement entropies and the geometric entanglement, the spectral structure of the transfer
matrix of the q-VBS state in the matrix product representation [3, 24] will be helpful.

This article is organized as follows. In Section 2, we briefly review the matrix product repre-
sentation [3, 24] of the VBS ground state of the q-AKLT model, which helps us for evaluating the
entanglement entropies and the geometric entanglement. In Section 3, the finite-size correction
terms of the entanglement entropies from the double scaling limit are calculated by perturba-
tive analysis. We emphasize that the double scaling limits of the entanglement entropies and
the leading term of the finite-size correction of the entanglement spectrum have been originally
obtained by Santos et al. [32]. But we make Section 3 partially overlap their results so that
this article can be self-contained and easy to read. In Section 4, we investigate the geometric
entanglement with help of numerical calculations. Section 5 is devoted to the summary of this
article.

2 q-VBS state

In this section, we briefly review the matrix product representation of the higher-integer-spin q-
VBS ground state and the spectral structure of the transfer matrix of the q-AKLT model [3, 24].
We use the following notations. For a real number c we define its q analogue as

[c] =
qc − q−c

q − q−1
.

We also define the q-shifted factorial and the q-shifted binomial for n ∈ Z≥0 as

[n]! =


n∏
i=1

[i], n ∈ N,

1, n = 0,

[
n
k

]
=


[n]!

[n]![n− k]!
, k = 0, . . . , n,

0, otherwise.

The q-VBS state [3, 24], which is the exact ground state of the q-AKLT model (2), is expressed
in the following matrix product form

|Ψ〉 = Tr[g1 ? g2 ? · · · ? gL−1 ? gL],
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where gk is an (S + 1)× (S + 1) vector-valued matrix acting on the k-th site whose element is
given by

gk(a, b) = (−1)S−iq(a+b−S)(S+1)/2

√[
S
a

] [
S
b

]
[S − a+ b]![S + a− b]! |S; b− a〉k

=: hab|S; b− a〉k, (0 ≤ a, b ≤ S).

The symbol ? denotes the product A ? B =
{∑

y |α〉xy ⊗ |β〉yz
}
xz

for vector-valued matrices

A = {|α〉xy}xy and B = {|β〉xy}xy.
We define g†k by replacing each ket vector in the matrix gk by its corresponding bra vector:

g†k(a, b) = hab k〈S; b− a|.

Let us set an (S + 1)2 dimensional vector space as

W =
⊕

0≤a,b≤S
C|ab〉〉,

where {|ab〉〉 | a, b = 0, . . . , S} is an orthonormal basis. We define an (S+1)2×(S+1)2 matrix G
acting on the space W as

G = g† ⊗ g, 〈〈ab|G|cd〉〉 = g†(a, c)g(b, d) = δa−c,b−dhachbd,

which plays the role of a transfer matrix.
In [3], the spectral structure of the G matrix was clarified, i.e. the eigenvalues of G are given

as

λn = (−1)n([S]!)2

[
2S + 1
S − n

]
, n = 0, 1, . . . , S,

with the degree of degeneracy 2n+ 1, and thus the squared norm of the ground state is given as

〈Ψ|Ψ〉 = TrGL =
∑

0≤n≤S
(2n+ 1)λLn . (4)

The matrix G has the following block diagonal structure since 〈〈ab|G|cd〉〉 = 0 for a−b 6= c−d:

G =
⊕

−S≤j≤S
G(j), G(j) ∈ EndWj , Wj =

min(S,S−j)⊕
i=max(0,−j)

C|i, i+ j〉〉.

The size of each block G(j) is (S − |j|+ 1)× (S − |j|+ 1). Each element of G(j) is

〈〈a, a+ j|G(j)|c, c+ j〉〉 = (−1)jq(a+c+j−S)(S+1) [S − a+ c]! [S + a− c]!

×

√[
S
a

] [
S

a+ j

] [
S
c

] [
S

c+ j

]
.

We construct intertwiners among the 2S + 1 blocks G(j) (j = −S, . . . , S). This helps us to
construct eigenvectors of each block from another block with a smaller size.

Let us define a family of linear operators {Ij}1≤|j|≤S as

Ij : Wj →Wj−1 (j > 0),
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〈〈a, a+ j − 1|Ij |c, c+ j〉〉 =


q−a

√
[a+ j] [S − a− j + 1]

[j] [S − j + 1]
, c = a,

−q1−a−j

√
[a] [S − a+ 1]

[j] [S − j + 1]
, c = a− 1,

0, otherwise,

Wj →Wj+1 (j < 0), 〈〈a− j − 1, a|Ij |c− j, c〉〉 = 〈〈a, a− j − 1|I−j |c, c− j〉〉.

By direct calculation, one finds that the matrix Ij enjoys the intertwining relation IjG
(j) =

G(j−1)Ij (1 ≤ j ≤ S), IjG
(j) = G(j+1)Ij (−S ≤ j ≤ −1). Each block G(j) has a simple

(nondegenerated) spectrum

SpecG(j) = {λ`}|j|≤`≤S ,

and the corresponding eigenvectors are given by

|λn〉〉j =



∑
0≤i≤S−n

q(n+1)i

√
[S − n]! [i+ n]! [S − i]!
[S]![n]![S − i− n]![i]!

|i, i+ n〉〉, n = j ≥ 0,

∑
0≤i≤S−n

q(n+1)i

√
[S − n]! [i+ n]! [S − i]!
[S]![n]![S − i− n]![i]!

|i+ n, i〉〉, −n = j < 0,

Ij+1Ij+2 · · · In|λn〉〉n, 1 ≤ j + 1 ≤ n ≤ S,
Ij−1Ij−2 · · · I−n|λn〉〉−n, 1 < −j + 1 ≤ n ≤ S.

(5)

The `th-power of the G matrix is formally expanded as

G` =
⊕

−S≤j≤S

∑
|j|≤n≤S

λ`n

j〈〈λn|λn〉〉j
|λn〉〉j j〈〈λn|.

3 Finite size correction of the entanglement entropies

In this section, we examine the finite-size correction of the entanglement entropies by studying
the reduced density matrix. Recently, the following simple formula for the reduced density
matrix (1) was found [33]

ρ(L, `) =
K(L− `)K(`)

TrGL
, (6)

where the “K matrix” is defined as

K(`) =MG`

with a linear map M

M (|ab〉〉〈〈cd|) = |ac〉〉〈〈bd|. (7)

The reduced density matrix (6) is an (S + 1)2 × (S + 1)2 matrix, from which the rank of the
density matrix is equal to or smaller than (S + 1)2. We study the reduced density matrix by
combining (6) and the spectral structure of the transfer matrix G reviewed in the last section.

Here we introduce some notations and make some general remarks. We define

Kn =
∑

−n≤j≤n

1

j〈〈λn|λn〉〉j
M (|λn〉〉j j〈〈λn|) ,
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so that the K matrix and the reduced density matrix are written as

K(`) =
∑

0≤n≤S
λ`nKn,

ρ(L, `) =
1∑

0≤n≤S
(2n+ 1)λLn

∑
0≤n≤S
0≤n′≤S

λL−`n′ λ`nKn′Kn. (8)

One observes that Kn, K(`) and ρ(L, `) enjoy the same block diagonal structure as G:

Kn =
⊕

−S≤j≤S
K(j)
n , K(`) =

⊕
−S≤j≤S

K(j)(`), ρ(L, `) =
⊕

−S≤j≤S
ρ(j)(L, `),

K(j)
n ,K(j)(`), ρ(j)(L, `) ∈ EndWj ,

since 〈〈ab|Kn|cd〉〉 = 0 for a−b 6= c−d. Note thatM (7) does not always map a matrix acting on
a sector Wj to a matrix acting on the same sector. The spectrum of ρ(L, `) is, of course, given by
the union of the spectra of ρ(j)(L, `)’s. Due to the symmetry 〈〈ab|ρ(L, `)|cd〉〉 = 〈〈ba|ρ(L, `)|dc〉〉,
we have the degeneracy

Spec ρ(j)(L, `) = Spec ρ(−j)(L, `).

3.1 Double scaling limit

We first review the double scaling limit [32, 33]

ρ = lim
`→∞

lim
L→∞

ρ(L, `), ρ(i) = lim
`→∞

lim
L→∞

ρ(i)(L, `).

Noting the form (8) and |λn/λ0| < 1 (n = 1, . . . , S), we find the reduced density matrix becomes
diagonal

ρ = K0K0, 〈〈ab|ρ|cd〉〉 = δacδbd
q2(a+b−S)

[S + 1]2
(=: δacδbdpab). (9)

The entanglement spectrum is, of course, given by the diagonal elements of ρ, i.e. {pab|a, b =

0, 1, . . . , S}.1 We notice that the degree of the degeneracy of the eigenvalue q2k

[S+1]2
is S− |k|+ 1.

For example, the spectrum for S = 2 is given as

Spec ρ(2) : p02 =
1

[3]2
,

Spec ρ(1) : p01 =
1

q2[3]2
, p12 =

q2

[3]2
,

Spec ρ(0) : p00 =
1

q4[3]2
, p11 =

1

[3]2
, p22 =

q4

[3]2
,

Spec ρ(−1) : p10 =
1

q2[3]2
, p21 =

q2

[3]2
,

Spec ρ(−2) : p20 =
1

[3]2
. (10)

One can calculate

P := Tr ρα =
∑

0≤a≤S
0≤b≤S

pαab =

(
[α(S + 1)]

[α][S + 1]α

)2

. (11)

1This notation is different from that in [32].
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Figure 2. The von Neumann entropy in the double scaling limit SvN (12).

Then we achieve the entanglement entropies in the double scaling limit [32, 33]

SR =
1

1− α
LogP =

2

1− α
Log

[α(S + 1)]

[α][S + 1]α
,

SvN = 2 Log q

(
q + q−1

q − q−1
− (S + 1)

qS+1 + q−(S+1)

qS+1 − q−(S+1)

)
+ 2 Log[S + 1], (12)

see Fig. 2 for the von Neumann entropy in the double scaling limit. In particular, when q = 1,
the spectrum is totally degenerated

pab =
1

(S + 1)2
, (13)

and the entropies become

SR = SvN = 2 Log(S + 1),

which agree with the case of the open boundary condition [16, 22, 40]. On the other hand, in
the limit q → 0, only one eigenvalue survives p00 = 1, pab = 0 (a + b > 0), and the entropies
become zero.

3.2 Finite-size correction

We examine the finite-size correction of the entanglement entropies. We first take the limit
L→∞

ρ(`) := lim
L→∞

ρ(L, `) = K0

∑
0≤n≤S

Knκ
`
n, (14)

ρ(j)(`) := lim
L→∞

ρ(j)(L, `) = K
(j)
0

∑
0≤n≤S

K(j)
n κ`n, (15)

with κn = λn
λ0

, and then consider the case ` = 1 and the behavior of the entropies for ` → ∞.
Fig. 3 provides plots of the spectrum Spec ρ(`) of the reduced density matrix (14), i.e. the union
of the spectra Spec ρ(j)(`)’s of (15), and the von Neumann entropy for S = 2 with q = 4/5.

For ` = 1 and L→∞ the reduced density matrix becomes

ρ(1) = K0(MG)/λ0.
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Figure 3. The entanglement spectrum of ρ(`) (left) and the von Neumann entropy (right) for S = 2

with q = 4/5. The lines are drawn for ` ∈ R with replacement κ`n → |κn|` and κ`n → κn|κn|`−1 in (14)

or (15). In the left figure, the dashed, dotted and solid lines correspond to Spec ρ(±2)(`), Spec ρ(±1)(`)

and Spec ρ(0)(`), respectively.

The eigenvalues of ρ(1) become zero except 2S + 1 ones, which is pointed out for S = 1 and 2
in [32, 33]

pab(1) =


δa+b,k

[S + |k|]![S − |k|]!
[2S + 1]!

S−|k|∑
c=0

q(S+2)(2c+|k|−S)

[
S

c

][
S

c+ |k|

]
, a× b = 0,

0, otherwise.

(16)

For example, the spectrum {pab(1)}ab of ρ(1) for S = 2 is given as

Spec ρ(2)(1) : p02(1) =
1

[5]
,

Spec ρ(1)(1) : p01(1) =
1 + q8

q2(1 + q4)[5]
, p12(1) = 0,

Spec ρ(0)(1) : p00(1) =
1− q2 + 2q6 − q10 + q12

q4(1 + q4)[5]
, p11(1) = 0, p22(1) = 0,

Spec ρ(−1)(1) : p10(1) =
1 + q8

q2 (1 + q4) [5]
, p21(1) = 0,

Spec ρ(−2)(1) : p20(1) =
1

[5]
.

Let us show (16). We consider the submatrix ρ(k)(1), k ≥ 0. The case for k < 0 is similar.
By direct calculation, we find the matrix elements of (S− k+ 1)× (S− k+ 1) submatrix ρ(k)(1)
are given by

〈〈c, c+ k|ρ(k)(1)|c+ j, c+ j + k〉〉 = (−1)jq2c+k−S+(2c+j+k−S)(S+1) [S + k]! [S − k]!

[2S + 1]!

×

√[
S
c

] [
S

c+ j

] [
S

c+ k

] [
S

c+ j + k

]
. (17)

The rank of ρ(k)(1) is 1, since the element of ρ(k)(1) (17) has a form Ac ×Bc+j . Thus, only one
eigenvalue of ρ(k)(1) is nonzero, which is given by

Tr(k) ρ
(k)(1) =

S−k∑
c=0

〈〈c, c+ k|ρ(k)(1)|c, c+ k〉〉



Entanglement Properties of a Higher-Integer-Spin AKLT Model 9

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

2.0

2.5

q

Log3

Log5

Log7

Log9
Log11

S=1

S=2

S=3

S=4

S=5

S    (1)vN

Figure 4. The von Neumann entropy of the one-site subsystem SvN(1).

=
[S + k]![S − k]!

[2S + 1]!

S−k∑
c=0

q(S+2)(2c+k−S)

[
S
c

] [
S

c+ k

]
, (18)

from the fact that the other eigenvalues are all 0. The expression (18) is actually identical to
the one point functions derived in [3]. In particular, when q = 1, the non-zero eigenvalues are
degenerated as pab(1) = 1

2S+1 (a× b = 0), and we have SR(1) = SvN(1) = Log(2S+ 1) [32]. One
observes the monotonicity of the von Neumann entropy SvN(1) while 0 < q < 1, see Fig. 4.

We turn to the behavior of entropies for ` → ∞. Noting again the form (8) and |κn| < 1
(n = 1, . . . , S), we find

ρ(`) = ρ+ κ`1K0K1 +O
(
κ`2
)
, `→∞.

We denote the eigenvalue of ρ(`) by pab(`) corresponding to pab (9) when `→∞. Since the
density matrix ρ in the double scaling limit is a diagonal matrix, it is not difficult to perform
perturbative calculation. Noting |κ1|2 > |κ2| > |κ3| > · · · , we find

pab(`) = pab + rabκ
`
1 + tabκ

2`
1 + o

(
κ2`

1

)
, `→∞, (19)

rab = 〈〈ab|K0K1|ab〉〉, tab =
∑

(c,d)6=(a,b)
0≤c,d≤S

〈〈cd|K0K1|ab〉〉〈〈ab|K0K1|cd〉〉
pab − pcd

.

Inserting (5) into rab and tab defined above, we have

rab =
qa+b−S

[S + 1]

qa+b−3S [3](1− q2a − q2a+2 + q2S+2)(1− q2b − q2b+2 + q2S+2)

(q2 − 1)2[S][S + 1][S + 2]
, (20)

tab =

(
q2(a+b−S)[3][2]

[S + 2][S + 1][S]

)2

× q−4[S − a+ 1][a][S − b+ 1][b]− q4[S − a][a+ 1][S − b][b+ 1]

q2 − q−2
. (21)

The first-order term (20) has been originally obtained in [32] (see equation (59) of [32] by
changing the indices µ = S/2−a, ν = S/2−b and redefining q → q1/2), where the characteristic
length is given by ξ = 1

Log([S+2]/[S]) . We also calculated the second-order term (21) which is
needed for seeing the finite-size correction of the von Neumann entropy.

For example, the spectrum {pab(`)}ab (`→∞) for S = 2 (which is shifted from (10) as (19))
is given as

Spec ρ(2)(`) :
1

[3]2
− [2]

[3][4]
κ`1,
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Spec ρ(1)(`) :
1

q2[3]2
+

(1− q2)[2]

q2[3][4]
κ`1 +

q2[2]2

(1− q4)[4]2
κ2`

1 ,

q2

[3]2
− (1− q2)[2]

[3][4]
κ`1 −

q2[2]2

(1− q4)[4]2
κ2`

1 ,

Spec ρ(0)(`) :
1

q4[3]2
+

[2]

q2[3][4]
κ`1 +

[2]2

q2(1− q4)[4]2
κ2`

1 ,

1

[3]2
+

(1− q2)2[2]

q2[3][4]
κ`1 −

[2]

[4]
κ2`

1 ,
q4

[3]2
+
q2[2]

[3][4]
κ`1 −

q6[2]2

(1− q4)[4]2
κ2`

1 ,

Spec ρ(−1)(`) :
1

q2[3]2
+

(1− q2)[2]

q2[3][4]
κ`1 +

q2[2]2

(1− q4)[4]2
κ2`

1 ,

q2

[3]2
− (1− q2)[2]

[3][4]
κ`1 −

q2[2]2

(1− q4)[4]2
κ2`

1 ,

Spec ρ(−2)(`) :
1

[3]2
− [2]

[3][4]
κ`1,

where we omit the symbol +o
(
κ2`

1

)
.

The Rényi entropy is expressed by pab, rab and tab up to the order of κ2`
1 as

SR(`) =
1

1− α
Log Tr (ρ(`))α =

1

1− α
Log

∑
0≤a≤S
0≤b≤S

(pab(`))
α

=
1

1− α
Log

{
P
(
1 +Rκ`1 + Tκ2`

1

)
+ o
(
κ2`

1

)}
= SR +

R

1− α
κ`1 +

1

1− α

(
T − R2

2

)
κ2`

1 + o
(
κ2`

1

)
, `→∞, (22)

where

R =
α

P

∑
0≤a≤S
0≤b≤S

pα−1
ab rab, T =

α

P

∑
0≤a≤S
0≤b≤S

(
pα−1
ab tab +

α− 1

2
pα−2
ab r2

ab

)
,

with P defined by (11).

By tedious but straightforward calculation, one finds

R =
α[3]

[S][S + 2]

(
[S + 2][αS]− [α(S + 2)][S]

(q − q−1)[α(S + 1)][α+ 1]

)2

,

T = α

(
[2][3]

(q − q−1)2[S][S + 2]

)2
[

[2(α− 1)]

[2]

(
([(S + 2)(α+ 1)][S]− [S + 2][S(α+ 1)])

[α+ 2][α+ 1][α(S + 1)]

)2

+
α− 1

2

(
[2(S + 1)]2

[2][S + 1]2
− 2[2(S + 1)][α][(α+ 1)(S + 1)]

[S + 1][α(S + 1)][α+ 1]
+

[2][α][(α+ 2)(S + 1)]

[(S + 1)α][α+ 2]

)2
]
.

Then we find

SvN(`) = SvN +

(
4q2 Log q

1− q4
− 1

2

)
κ2`

1 + o
(
κ2`

1

)
, `→∞, (23)

where the coefficient of κ`1 vanishes. Since the leading order term is κ2`
1 , the characteristic length

is 2ξ. We find the coefficient of κ2`
1 depends on the anisotropy parameter q but is independent

of the spin value S.
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As discussed in [32], the perturbation fails for the isotropic case due to the degeneracy (13),
but the entanglement spectrum can be written by linear combinations of κn’s and has the same
spectral structure for the transfer matrix G. For example, for S = 2, we have

Spec ρ(2)(`) :
1

3

(
1

3
− κ`1

2
+
κ`2
6

)
,

Spec ρ(1)(`) :
1

3

(
1

3
− κ`1

2
+
κ`2
6

)
,

1

3

(
1

3
+
κ`1
2
− 5κ`2

6

)
,

Spec ρ(0)(`) :
1

3

(
1

3
− κ`1

2
+
κ`2
6

)
,

1

3

(
1

3
+
κ`1
2
− 5κ`2

6

)
,

1

3

(
1

3
+ κ`1 +

5κ`2
3

)
,

Spec ρ(−1)(`) :
1

3

(
1

3
− κ`1

2
+
κ`2
6

)
,

1

3

(
1

3
+
κ`1
2
− 5κ`2

6

)
,

Spec ρ(−2)(`) :
1

3

(
1

3
− κ`1

2
+
κ`2
6

)
,

where no higher order term is needed. In [32] the finite-size corrections of the entanglement
entropies for q = 1 were calculated as

SR(`) = 2 Log(S + 1)− 3

2
ακ2`

1 + o
(
κ2`

1

)
, `→∞,

SvN(`) = 2 Log(S + 1)− 3

2
κ2`

1 + o
(
κ2`

1

)
, `→∞,

which agree with the limits q → 1 of (22) and (23).

4 Geometric entanglement

In this section, we evaluate the geometric entanglement, which is another kind of measure of
entanglement. We divide the chain into N parties (L = N`), and each of the N parties to be
contiguous blocks of ` spins S. When N is large enough, the following expression for the fidelity
|Λmax| (3) has been shown for PT -symmetric matrix product ground states |Ψ〉 in [25, 26, 29]

|Λmax|2 = lim
N→∞

|d|2N

〈Ψ|Ψ〉
, (24)

where |d|2 is the quantity

|d|2 = max

{xi}:
S∑

i=0
|xi|2=1

〈Aux |G`|Aux 〉, |Aux 〉 =
∑

0≤a≤S
0≤b≤S

xax
∗
b |ab〉〉. (25)

Performing the maximization (25), one obtains the fidelity |Λmax| which finally leads to the
analytic expression for the geometric entanglement E(`)

E(`) = − lim
N→∞

Log |Λmax|2

N
.

For convenience we set xi = rie
√
−1θi (ri ≥ 0, θi ∈ R), and write x•i = r•i e

√
−1θ•i if the setting

{xi = x•i } maximizes 〈Aux |G`|Aux〉.
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Figure 5. The geometric entanglements for ` = 1 (left) and 2 (right). In each graph, the line corresponds

to S = 1 (26), and the markers × (S = 2), � (S = 3) and + (S = 4) are plotted based on numerical

calculations.

4.1 Spin-1

We calculate the geometric entanglement for S = 1. By direct calculation, we have

〈Aux |G`|Aux 〉 =

(
[3]`

q[2]
+

(−1)`

q−1[2]

)
|x0|4 +

(
2[3]`

[2]
+ 2(−1)` − 2(−1)`

[2]

)
|x0|2|x1|2

+

(
q[3]`

[2]
+
q−1(−1)`

[2]

)
|x1|4.

Inserting r2
1 = 1− r2

0, we get

〈Aux |G`|Aux 〉 =
1− q
1 + q2

(
[3]` − (−1)`

) (
(1− q)r4

0 + 2qr2
0

)
+
q2[3]`

1 + q2
+

(−1)`

1 + q2
,

where θi’s do not appear. Thus we find

0 < q < 1 : r•0 = 1, |d|2 =
[3]`

1 + q2
+
q2(−1)`

1 + q2
,

q = 1 : |d|2 =
3`

2
+

(−1)`

2
,

q > 1 : r•0 = 0, |d|2 =
q2[3]`

1 + q2
+

(−1)`

1 + q2
, (26)

where |d|2 = 〈Aux |G`|Aux 〉 is independent of {xi} at the isotropic point q = 1 [25], and the
choice of r•0 changes discontinuously at this point. (We will see that this kind of “degeneracy”
occurs for the higher spin case.) Inserting these forms and 〈Ψ|Ψ〉 = [3]L + 3(−1)L into (24), we
finally achieve the geometric entanglement

0 < q < 1 : E(`) = Log
(
1 + q2

)
− Log

(
1 + q2(−[3])−`

)
,

q = 1 : E(`) = Log 2− Log
(
1 + (−[3])−`

)
,

q > 1 : E(`) = Log
(
1 + q2

)
− Log

(
q2 + (−[3])−`

)
,

which generalizes [25]. The entanglement entropy takes its maximum at the isotropic point,
decreases with the decrease of the anisotropy parameter q and finally becomes E(`) = 0 at
q = 0, see Fig. 5. This behavior of the geometric entanglement is similar to the entanglement
entropies. In the limit `→∞, we have

E = Log
(
1 + q2

)
.
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Figure 6. Numerical calculations of the sets {r•i } which maximize |d|2 for S = 2 and ` = 1 (left) and 2

(right). The markers ©, 4 and × correspond to r•0 , r•1 and r•2 , respectively.

4.2 Spin-2

Let us consider first the isotropic case, where we have

〈Aux |G`|Aux 〉

=
1

3
λ`0 +

1

2
λ`1 +

1

6
λ`2 −

(1− (r0 − r2)2)2 − 4r0r
2
1r2(cos(θ0 − 2θ1 + θ2) + 1)

2

(
λ`1 − λ`2

)
=

1

3
λ`0 +

1

2
λ`1 +

1

6
λ`2 −

(r2
1 − 2r0r2)2 − 4r0r

2
1r2(cos(θ0 − 2θ1 + θ2)− 1)

2

(
λ`1 − λ`2

)
with λ0 = 40, λ1 = −20 and λ2 = 4. When ` is odd (resp. even), λ`1 < λ`2 (resp. λ`1 > λ`2).
Using the first (resp. second) form, we find

` odd : r•0 − r•2 = 0, cos(θ•0 − 2θ•1 + θ•2) = −1, |d|2 =
1

3
λ`0 +

2

3
λ`2,

` even : r•21 − 2r•0r
•
2 = 0, cos(θ•0 − 2θ•1 + θ•2) = 1, |d|2 =

1

3
λ`0 +

1

2
λ`1 +

1

6
λ`2.

In the anisotropic case, thanks to the form

〈Aux |G`|Aux〉 =
4q2r0r

2
1r2

1 + q4

(
λ`1 − λ`2

)
cos(θ0 − 2θ1 + θ2) + (independent of {θi}),

we have

` odd : cos(θ•0 − 2θ•1 + θ•2) = −1,

` even : cos(θ•0 − 2θ•1 + θ•2) = 1,

which is the same as for the isotropic case. We use help of numerical calculations (see Fig. 6 for
` = 1 and 2), which indicates that

` odd : r•i = δi0 for q ≤ ∃ q•; r•0 > 0, r•1 = 0, r•2 > 0 for q• < q < 1,

` even : r•i = δi0 always maximizes 〈Aux |G`|Aux〉.

One observes that the geometric entanglement with ` odd is not completely monotonic while
0 < q < 1, see Fig. 5. The set {r•0, r•2} is obtained by

d

dr0

(
〈Aux |G`|Aux〉

∣∣
r1=0,r2=

√
1−r20 ,cos(θ0−2θ1+θ2)=1

)
= 0
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in the case where ` is odd and q• < q < 1

r•0 = q

√
−(1− q2)(1 + q4)λ`0 + 2[3]λ`1 − (1 + 3q2 + q4 + q6)λ`2

(1− q2)2(1 + q4)λ`0 + 4q2[3]λ`1 − (1 + 2q2 + 6q4 + 2q6 + q8)λ`2
. (27)

The transition point q• is obtained by solving (27) = 1, which approaches 1 as ` → ∞. The
set {r•i } for q > 1 is obtained by replacing r0 ↔ r1 and q → 1/q. Under the assumption r•i = δi0,
we have

E(`) = −Log
|d|2

λ`0
= −Log〈Aux |G`|Aux〉|ri=δi0

= Log(1 + q2 + q4)− Log

(
1 +

q2(1 + q2 + q4)κ`1
1 + q4

+
q8κ`2

1 + q4

)
,

for 0 < q < 1 and sufficiently large `.

4.3 Spin-3

For the isotropic case, we have

〈Aux |G`|Aux 〉 =
1

4
λ`0 +

9

20
λ`1 +

1

4
λ`2 +

1

20
λ`3 −

A

5
(λ`1 − λ`3),

A =
[
(r1r2 − 3r0r3)2 + 2

(
r2

2 −
√

3r1r3

)2
+ 2
(
r2

1 −
√

3r0r2

)2
− 2r1r2

{
3r0r3(cos(α+ β)− 1) + 2

√
3r0r1(cosα− 1) + 2

√
3r2r3(cosβ − 1)

}]
,

where α = θ0 − 2θ1 + θ2 and β = θ1 − 2θ2 + θ3. When ` is even, λ`1 > λ`3. Thus 〈Aux |G`|Aux 〉
is maximized by

r•22 −
√

3r•1r
•
3 = r•21 −

√
3r•0r

•
2 = 0, cosα• = cosβ• = 1,

|d|2 =
1

4
λ`0 +

9

20
λ`1 +

1

4
λ`2 +

1

20
λ`3.

When ` is odd, the candidates of {θi} that maximize 〈Aux |G`|Aux 〉 for given {ri} are

cosα =
3r2

2r
2
3 − 4r2

1r
2
2 − 3r2

0r
2
1

4
√

3r0r2
1r2

, cosβ =
3r2

0r
2
1 − 4r2

1r
2
2 − 3r2

2r
2
3

4
√

3r1r2
2r3

,

cos(α+ β) = −3r2
0r

2
1 − 4r2

1r
2
2 + 3r2

2r
2
3

6r0r1r2
2r3

, (28)

or cosα = −1, cosβ = −1, cos(α+ β) = 1, (29)

or cosα = 1, cosβ = −1, cos(α+ β) = −1, (30)

or cosα = −1, cosβ = 1, cos(α+ β) = −1. (31)

Inserting (28), we get

A =
9

4
−
(

3r2
0 + 2r2

1 + r2
2 −

3

2

)2

,

and thus we find

3r•20 + 2r•21 + r•22 =
3

2
, |d|2 =

1

4
λ`0 +

1

4
λ`2 +

1

2
λ`3. (32)
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Figure 7. Numerical calculations of the sets {r•i } which maximize |d|2 for S = 3 and ` = 1 (left) and 2

(right). The markers ©, 4, × and � correspond to r•0 , r•1 , r•2 and r•3 , respectively.

We end up achieving the same value |d|2 (32) for (29)–(31). For example, inserting (29), we get

A =
9

4
−
(

3r2
0 + 2r2

1 + r2
2 −

3

2

)2

−
(√

3r0r1 − r1r2 +
√

3r2r3

)2
.

The maximization for the anisotropic case with ` odd is more complicated than S = 2, see
the numerical result in Fig. 7. We expect that

` odd : there exist q•, q••, q••• and q•••• such that

r•i = δi0, 0 < q ≤ q•,
r•1 = r•3 = 0, r•0 > 0, r•2 > 0, q• < q ≤ q••,
r•i > 0, i = 0, 1, 2, 3, q•• < q < q•••,

r•i = δi1, q••• ≤ q < q••••,

r•0 = r•2 = 0, r•1 > 0, r•3 > 0, q•••• ≤ q < 1,

` even : r•i = δi0 always maximizes 〈Aux |G`|Aux〉.

We also expect that these transition points q•, . . . , q•••• approach 1 as ` → ∞. Under the
assumption r•i = δi0, we have

E(`) = −Log
|d|2

λ`0
= −Log〈Aux |G`|Aux〉|ri=δi0

= Log q3[4]− Log

(
1 +

q2[3]2κ`1
[5]

+
q8κ`2

1− q2 + q4
+

q14κ`3
(1− q2 + q4)[5]

)
,

for 0 < q < 1 and sufficiently large `.

4.4 General case

We consider the maximization of 〈Aux |G`|Aux〉 for general S. As we observed in the previous
subsections, we expect that, for given q < 1,

` odd: there exists `• such that the set {r•i = δi0} maximizes 〈Aux |G`|Aux〉 when ` > `•,

` even: the set {r•i = δi0} always maximizes 〈Aux |G`|Aux〉.
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Figure 8. The geometric entanglement in the limit `→∞.

Since the term
λ`0

0〈〈λ0|λ0〉〉0

∣∣∣∣ S∑
a=0

qar2
a

∣∣∣∣2 dominates in 〈Aux |G`|Aux〉 for ` → ∞, we have r•i → δi0,

which supports the above assumption. Inserting {ri = δi0}, we have

|d|2 = 〈Aux |G`|Aux 〉
∣∣∣
ri=δi0

=

S∑
k=0

λ`k
0〈〈λk|λk〉〉0

,

and find

E(`) = −Log

(
S∑
k=0

κ`k
0〈〈λk|λk〉〉0

)

= Log(qS [S + 1])− Log

(
S∑
k=0

qk(k+1) [2k + 1][S]![S + 1]!

[S + k + 1]![S − k]!
κ`k

)

= Log(qS [S + 1])− q2[3][S]

[S + 2]
κ`1 + o

(
κ`1
)
, `→∞. (33)

Here we used the norm (4) of the q-deformed VBS state |Ψ〉 and the norm of the eigenvectors
of the transfer matrix [3]. In the limit ` → ∞, we have the geometric entanglement E =
Log(qS [S + 1]), which takes the maximum Log(S + 1) at q = 1 and approaches 0 as q → 0, see
Fig. 8. The monotonic behavior while 0 < q < 1 is similar to the entanglement entropies.

The isotropic point is a special case where the choice ri = δ0i or ri = δSi does not always
maximize |d|2 for S ≥ 2 even if ` is large, as we saw for S = 2 and S = 3. Thus the asymptotic
form (33) is no longer valid at the isotropic point.

5 Summary and discussion

In this article, we studied some entanglement properties of the higher spin q-AKLT model with
the periodic boundary condition from the matrix product representation of the q-VBS ground
state. We exactly calculated the finite-size correction terms of the entanglement entropies
by the perturbative calculation for the spectrum of the reduced density matrix. We found
that the first-order correction term of the Rényi entropy vanishes by taking the limit α → 1.
This requires the second-order perturbation of the entanglement spectrum for calculation of the
finite-size correction of the von Neumann entropy. It would be interesting to extend the study
of entanglement properties to various generalizations, the entanglement entropies with multiple
blocks (see [31] for the isotropic spin-1 case), for example. We also investigated the geometric
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entanglement. The geometric entanglement in the limit ` → ∞ decreases with the decrease of
the anisotropy parameter q while 0 < q < 1. This property is the same as the entanglement
entropies. Under an assumption which is based on numerical results, we calculated the finite-size
correction of the geometric entanglement.
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[20] Klümper A., Schadschneider A., Zittartz J., Groundstate properties of a generalized VBS-model, Z. Phys. B
87 (1992), 281–287.
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[25] Orús R., Geometric entanglement in a one-dimensional valence bond solid state, Phys. Rev. A 78 (2008),
062332, 4 pages, arXiv:0808.0938.
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