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Abstract. In this work, we show that an autonomous dynamical system defined by a non-
vanishing vector field on an orientable three-dimensional manifold is globally bi-Hamiltonian
if and only if the first Chern class of the normal bundle of the given vector field vanishes.
Furthermore, the bi-Hamiltonian structure is globally compatible if and only if the Bott
class of the complex codimension one foliation defined by the given vector field vanishes.
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1 Introduction
An autonomous dynamical system on a manifold M
i(t) = v(a(t)) (L1)

is determined by a vector field v(x) on a manifold up to time reparametrization. Important
geometric quantities related to a dynamical system are functions I which are invariant under
the flow of the vector field

L,I =0.

It is sometimes possible to relate the vector field to an invariant function via a Poisson struc-
ture 7, which is a bivector field on M

J: AN M) — X(M)
satisfying the Jacobi identity condition
[j7 j]SN - 07

where [, Jsn is the Schouten—Nijenhuis bracket. The local structure of such manifolds was first
introduced in [13]. The invariants satisfying the condition

v =J(dI) (1.2)

are called Hamiltonian functions of (1.1). Given a dynamical system on M defined by the vector
field v, the vector field v is called a Hamiltonian vector field if there exists a Poisson bivector J
and a smooth function I such that equation (1.2) holds.
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Given a vector field v on M, finding a Poisson structure according to which the vector field be-
comes Hamiltonian may not be an easy task in general. However, if a given dynamical system can
be put into Hamiltonian form then, there may be more than one Poisson structure which makes
it into a Hamiltonian system. In [9], a bi-Hamiltonian system is introduced for the analysis of
certain infinite-dimensional soliton equations. In such a case, there arises the question of the re-
lation between these Poisson structures, which is called compatibility. Although there are at least
two different approaches to compatibility [11], by following [10] we adapt the definitions below:

Definition 1.1. A dynamical system is called bi-Hamiltonian if it can be written in Hamiltonian
form in two distinct ways:

v = jl(ng) = jz(dHl), (1.3)

such that J; and J5 are nowhere multiples of each other. This bi-Hamiltonian structure is
compatible if J; 4+ Jo is also a Poisson structure.

In this paper we confine ourselves to dynamical systems on three-dimensional orientable
manifolds. For three-dimensional manifolds, where there is no symplectic structure for dimen-
sional reasons, Poisson structures have a simple form. Poisson structures of dynamical systems
on three manifolds are extensively studied first in [4] and then also in [5] and [8]. Following
the definitions in [4], choosing any Riemannian metric g on M, a Poisson bivector field, which

is skew-symmetric, can be associated to a vector field by using the Lie algebra isomorphism
50(3) ~ R?

T =T"emn Ne, = eZkaem A en,
and the vector field
J = Jke,

is called the Poisson vector field on M.
Then, the Jacobi identity has the form

J-(VxJ)=0, (1.4)
and equation (1.3) becomes
U:Jl XVHQZJQ XVHl. (1.5)

Since J; and Jy are not multiples of each other by definition, we have

J1x Jo #£0 (1.6)
and

Ji-v=0 (1.7)
fori=1,2.

This work is focused on the bi-Hamiltonian structure of dynamical systems defined by nonva-
nishing vector fields on orientable three-dimensional manifolds, or equivalently vector fields on
three-dimensional manifolds whose supports are orientable three-dimensional manifolds. Since
all orientable three-dimensional manifolds are parallelizable [12], there is no topological ob-
struction to the global existence of a nonvanishing vector field. Then, by the bi-Hamiltonian
form (1.5)—(1.7), {v, Ji, J2} forms a local frame field. Therefore, whenever the system is globally
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bi-Hamiltonian, {v, J1, Jo} becomes a global frame field on M. For example, for M = R3 and
v = 0,0 we have J; = 0, and {0,0, 0,1, 0,2 } forms such a global frame field. However, the global
existence of the frame field {v, Ji, J2} is by no means guaranteed. The simplest counterexample
is the gradient flow of the S in R3\ {0}. Here, a frame field {v,.J;, Jo} cannot be defined
globally since J1, Jo are sections of the tangent bundle of S? which is not trivial and does not
admit two nonvanishing linearly independent vector fields.

The goal of this paper is to give necessary and sufficient conditions for a nonvanishing
vector field on an orientable three-dimensional manifold to admit a compatible bi-Hamiltonian
structure. The paper is organized as follows: In Section 2, the local existence of bi-Hamiltonian
systems is investigated in a neighbourhood of a point, possibly refined by the existence conditions
of solutions of certain ODE’s related with the problem, and it is shown in Theorem 2.7 that it is
always possible to find a pair of compatible Poisson structures such that the system defined by
the nonvanishing vector field becomes bi-Hamiltonian. In Section 3, obstructions to the global
existence of a pair of Poisson structures are studied. In Section 3.2 the primary obstruction for
the existence of a global pair of Poisson structures is investigated, and it is shown in Theorem 3.6
that such a pair, which is not necessarily compatible, exists if and only if the first Chern class
of the normal bundle vanishes. Finally, the global compatibility of this pair is investigated
in Section 3.3 and it is shown in Theorem 3.8 that under the assumption of global existence,
the vanishing of the Bott class of the complex codimension one foliation is the necessary and
sufficient condition for the global compatibility of the pair of Poisson structures.

Throughout the work, bivectors are denoted by calligraphic and forms are denoted by bold
letters.

2 Local existence of bi-Hamiltonian structure in 3D

For this purpose, we will first analyze the local solutions of the equation (1.4) defining Poisson
vectors, which is also studied in [6]. Let M be an orientable three-dimensional manifold with
an arbitrary Riemannian metric g, and v be a nonvanishing vector field. Let

. v
e1 = —
[[v]]

and extend this vector field to a local orthonormal frame field {€7, €2, €3}. Define the structure
functions (Cf](x)) via the relation

[€i, 2] = Cfj (). (2.1)

Proposition 2.1. A nonvanishing vector field v admits two independent local Poisson structures
on M.

Proof. Adopting the frame defined above and using (1.7), we have the Poisson vector field

J = aey + fes, (2.2)
and its curl is given by

VxJ=Vaxe +aV xée + VS xez+ [V xes. (2.3)

Now the Jacobi identity (1.4) is obtained by taking the dot product of (2.2) with (2.3), and
using triple vector product identities we get

Be1 - Va —aey - VB — a?Csy — aB(C5, + CF,) — B°CH, = 0. (2.4)
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If J = 0 then |[v|| = 0 and hence v = 0, which contradicts with our assumption that the
vector field is nonvanishing. Therefore, we assume

J 40,

which means that a £ 0 or 8 # 0. Now we assume « # 0, while the case § # 0 is similar and
amounts to a rotation of the frame fields. Defining

p=-
0%

and dividing (2.4) by o?, we get
e -V =—C3 — p(C3 + Chy) — pCy, (2.5)

whose characteristic curve is the integral curve of (1.1) in arclength parametrization and

W~ OB n(Ch + Ch) - 12, (2.6)
in the arclength variable s. The Riccati equation (2.6) is equivalent to a linear second order
equation and hence, possesses two linearly independent solutions leading to two Poisson vector
fields. Since the vector field v is assumed to be nonvanishing, for each g € R3 it is possible
to find a neighborhood foliated by the integral curves of v which are nothing but characteristic
curves of (2.5). Therefore, solutions of (2.6) can be extended to a possibly smaller neighborhood
on which the Riccati equation has two independent solutions which we call u; for i = 1, 2. Hence,
we have two Poisson vector fields

Ji = oy (/6\2 + u{e},), (2.7)
where the coefficients «; are arbitrary. |

Note that, (2.5) determines p; alone, but not «;. Taking the advantage of the freedom of
choosing arbitrary scaling factors we may restrict these factors by imposing compatibility on
our Poisson vector fields.

Proposition 2.2. Two Poisson structures obtained in (2.5) are compatible iff

~ Q;
e Vin = Oy — ). (2.8)
Qj
Proof. Let
J=J1+ Js

Using (1.4) for Ji, Jo and J
(VxJ)-J=(VxdJo) - J1+(VxJi) Jo=0. (2.9)

For the Poisson vector fields defined in (2.5), taking the dot product of both sides of (2.3) by Jj,
leads to

(V X Jz) . Jj = aiaj(,ui - ,U/j)(C%Q + 0132/Li —¢e1-Vin ai). (2.10)
Therefore, the compatibility condition (2.9) implies that

Oy + Cui — & - Vina; = Ciy + Cihp; — €1 - Vinay,
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and hence, we get

~ (07}
1 Vin 2 = G — ), (2.11)
J

whose characteristic curve is the solution curve of (1.1) in arclength parametrization

d (673
1 o CPo (i — p15)- (2.12)

By a similar line of reasoning as above, the solutions of (2.12) can also be extended to the whole
neighborhood, and the proposition follows. |

However, having a pair of Poisson structures obtained in (2.5) and even a compatible pair
satisfying (2.11) do not guarantee the existence of Hamiltonian functions even locally.

Proposition 2.3. The dynamical system (1.1) is locally bi-Hamiltonian with the pair of Poisson
structures obtained in (2.7) if and only if

~ Q;
e1-Vin m = C3, + 1;C3,. (2.13)

Proof. For this purpose we first need to write down the equations for the Hamiltonian functions.
The invariance condition of Hamiltonian functions under the flow generated by v implies

e VH; =0, (2.14)

so the gradients of Hamiltonian functions are linear combinations of €; and e3. Then, inser-
ting (2.7) into (1.5) we get another condition

Il

/6\3 . VHJ — ,u[e\g . VH] = (215)

Qv
or by defining
uj = —pi€a + €3
(2.15) can be written as

wi- v, = 12 (2.16)

0%

Equations (2.14) and (2.16) for Hamiltonian functions are subject to the integrability condition
e1(ui(H;)) — ui(e1(Hy)) = [€1,wi] (Hj).

Using the commutation relations given in (2.1) and (2.5), we obtain
[e1,ui] = = (C31 + wiCia)er — (C3y + piCPy) us. (2.17)

Applying H; to both sides of (2.17) and using two equations (2.14) and (2.16) for Hamiltonian
functions, we get

1, ) (1) = —(Chy + ) 1.

(&%)
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Therefore, our integrability condition for Hamiltonian functions becomes

~ v v
v (1) - (g, ety 12

(o7} 67} '
hence,
61-Y7h1<fi]> = ;03 + C3, (2.18)
and the proposition follows. |

Corollary 2.4. The pair of Poisson structures J; = oy (/e\z—i—u{e\g) where a;’s are defined by (2.18)
and u;’s are defined by (2.5) are compatible.

Proof. What we need is to show that (2.8) is satisfied. Indeed, writing (2.18) for o; and «;
and subtracting the second from the first, the corollary follows. |

Note that, for a pair of compatible Poisson structures, J; and Jo, the dilatation symmetry
J — fJ and the additive symmetry Ji 4+ Jo do not imply that J; + fJy is a Poisson structure.
Indeed, if we apply the Jacobi identity condition and using triple vector identity

(J1+ fho) VX (J1+ flo)=-Vf-(J1 xJ2)=0,
which implies that
e -Vf=0

Now we try to describe the relation between the pair of compatible Poisson structures and
Hamiltonian functions. But first, we need the following lemma to describe this relation.

Lemma 2.5. For the bi-Hamiltonian system with a pair of compatible Poisson structures defined
above,

V.-ep=e - VI alazﬁlﬁ’; /171).

Proof. Adding the equations for integrability conditions of Hamiltonian functions (2.18) for
1 =1,2, we get

€1 Vin(aias) =€ - Vin (|[u)|?) + 205, + (u1 + p2)Cy. (2.19)

On the other hand, subtracting the equations (2.5) satisfied by p; and ug, and dividing by
(/1’2 - ul)a

e1-Vin(pue — 1) = —(Cf?l + C'122) —(m + Mz)c%- (2:20)
Adding (2.19) to (2.20) and using

V.-e =Cl,
we get

e1 - Vin(agag(puz — 1)) =€ -Vin (||v||2) +V-ey,

and the lemma follows. [ |
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Proposition 2.6. Given a bi-Hamiltonian system with a pair of compatible Poisson structures,
there exists a canonical pair of compatible Poisson structures K1, Ko with the same Hamiltonian
functions Hy, Ho such that

K; = (-1)""¢VH;,
where

araa(p2 — )
o]l

b=

Proof. Since Poisson vector fields are linearly independent, one could write Hamiltonians in
terms of Poisson vector fields as

VHZ == O'gjj.
By using (1.5), we get

2 1 o]l
0y =—0] = ———.
2 T agan(pe — )

On the other hand, we have
V x VH; = Vo! x J;j + 0}V x J; = 0.

Taking the dot product of both sides with J; and J2, and using the compatibility condition, we
obtain

~ ; Ji - J:
e1-Vino; = M (2.21)
arag(pz — pi1)

Inserting (2.13) into (2.10) and using (2.21),

e1-Vino, = - - Ving,
which leads to

il

¢

where

e -V =0.
Therefore, we have

1 1
VH, = a(\II}Jl + i), VHy= 5(\115111 —UiJs). (2.22)

Inserting (2.22) into (1.5), we get
Uy =1,
and finally,

[ v]]
a1 (pe — p1)

[v]]

VHi =—or———
araz(p2 — )

(Ji = ¥ih),  VHy= (T30 + Jo).
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Note that,
o]

e1. (2.23)

For the Hamiltonians to be functionally independent, r.h.s. of (2.23) must not vanish, i.e.,
14+ Wlw? £0.
Now let us define

_ St v3Ji _ aaag(pg — )
L+ W07 (14 w303) o]

_ A -Pih aoa(ue —m) VH,
1+ wlyg? (1+ wiw?) vl ’

By (1.5), we get
K1XVH1:K2XVH2:0, KQXVH1:K1XVH2:’U.
Choosing K;’s to be our new Poisson vector fields, the proposition follows. |

Consequently, we can write the local existence theorem of bi-Hamiltonian systems in three
dimensions.

Theorem 2.7. Any three-dimensional dynamical system
z(t) = v(z(t)) (2.24)
has a pair of compatible Poisson structures
Ji = o (€2 + pies),
in which p;’s are determined by the equation
- Vi = —C — pi(C3y + Chy) — piChy,
and «;’s are determined by the equation

€1 VIIIm = Cg]_ + MZCfQ

Furthermore, (2.24) is a locally bi-Hamiltonian system with a pair of local Hamiltonian functions
determined by

Ji = (=1)" eV H,;, (2.25)
where

041042(,“2 - Ml)
— = e\me PR 2.26
¢ P (2.26)

3 Global existence of compatible bi-Hamiltonian
structure in 3D

In this section, we investigate the conditions for which the local existence theorem holds globally.
To study the global properties of the vector field v by topological means, we relate the vector
field with its normal bundle. Let E be the one-dimensional subbundle of TM generated by wv.
Let Q@ = TM/E be the normal bundle of v. By using the cross product with €1, we can define
a complex structure A on the fibers of Q@ — M, and ) becomes a complex line bundle over M.
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3.1 Bi-Hamiltonian structure in 3D with differential forms

In order to obtain and express the obstructions to the global existence of bi-Hamiltonian struc-
tures on orientable three manifolds by certain cohomology groups and characteristic classes, we
will reformulate the problem by using differential forms. For this purpose, let €2 be the volume
form associated to the Riemannian metric g of M. Then, there is a local one-form J associated
with a local Poisson bivector field 7,

J = ZJQ,
which is called the local Poisson one-form. The bi-Hamiltonian system (1.5) can be written as
LW =J1 NdHy = Jo9 ANdH;. (3.1)

Note that, although the Lh.s. of this equality is globally defined, r.h.s. is defined only locally,
therefore it holds only locally. Now the Jacobi identity is given by

J;NndJ; =0 for i=1,2, (3.2)
and compatibility amounts to
JiNdTy =Ty ANdJq.

By (2.25), J; and J3 can be chosen to be proportional to dH; and dHa, respectively, and
hence (3.1) takes the form

1,2 = ¢dH1 AN dHos.
The Jacobi identity for Poisson 1-forms (3.2) implies the existence of 1-forms 3; such that
dJ; =B; N J; (3.3)

for each ¢ = 1,2. In the next proposition we are going to show that the compatibility of Poisson
structures allows us to combine 8, and 3, into a single one.

Proposition 3.1. There is a 1-form 3 such that
dJ; =B ANJ;

for eachi=1,2.

Proof. Applying (3.3) to the compatibility condition
JindIy+JaANdJ =0,

we get
(B1 = B2) ANJ1ANT2 =0,

which implies that
B1— By =b1J1+ b2,

and therefore, we define
B =pB1—bJ1=By+baJo.

Hence
BAd;i =B, NJ;=dJd;,

and the proposition follows. |
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Note that 3 is a T'M-valued 1-form. Namely,

eB#0

in general. Now we are going to show that by an appropriate change of Poisson forms, we may
reduce it to a connection 1-form on Q.

Lemma 3.2.

1,3 =tz (dIn¢),
where ¢ is the function defined in (2.26).

Proof. For the proof, we carry out the computation with Poisson vector fields, then transform
the result to differential forms. The Jacobi identity (1.4) implies that V x J; is orthogonal to J;
and therefore, we get

V x Ji = ajer + ager x Jj. (3.4)
By the definition of Poisson vector fields, we have
Jl X J2 = qb”v||€1

We can rewrite (3.4) in the form

a1

¢llvll

Using the compatibility condition (2.9), we obtain

V xJ;, = J1 X Jo 4+ apme; x J;. (3.5)

Y (V X Jl) . Jg
ajp = (V x J;) - ey, ajg = ————-
B|lv]l

Now we define
‘= azJ1 — ai1Ja + ((V x J1) - Jo)er
idl ’

and (3.5) becomes

V xJ;,=&x Jj.
After a bit of computation it is possible to show that

[é\l X J1,€1 X JQ]

vl

52V1n¢+€1><< —€1XVln]]v||>.

Hence, we have
e1-&=e1-Ving
and defining
B = *1¢Q2,

the lemma follows. [ |



Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds 11

Now we define new Poisson 1-forms K;
Ji=oK;.
Taking the exterior derivatives of both sides
dJ; =doNK; + ¢dK; = BN oK;
and dividing both sides by ¢,
dK; = (8 —dln¢) A K.
Let
~vy=06—dln¢.

Now, by the lemma above,

le,Y = tg,8 — tg, (dIng) = 0, (3.6)
therefore,

where 7 is a connection on Q.

3.2 The first obstruction: the Chern class of

Now we try to find conditions for which a nonvanishing vector field v satisfies
w = 1,2 = ¢dH; AN dHo (3.8)

for some globally defined functions ¢, H; and Hs. For a two-form to be decomposed into the
form (3.8), first of all, the two-form must be written as a product of two globally defined, linearly
independent nonvanishing factors. However, such a decomposition may not exist globally. Then,
the question is to decompose w into a product of two globally defined one forms p; and p,

w = py A pa. (3.9)

Since v is a nonvanishing vector field, w is a 2-form of constant rank 2. If we let S, to be
the sub-bundle of T'M on which w is of maximal rank, then we have S,, = @ defined above.
The following theorem states the necessary and sufficient conditions for the decomposition of
a two-form of constant rank 2s in the large.

Theorem 3.3. Let X be an R™-bundle over a connected base space M. Let w be a 2-form on X
of constant rank 2s. Let Sy, be the subbundle of ¥ on which w is of mazimal rank. w decomposes
if and only if

i) Sw is a trivial bundle.

ii) The representation of its normalization as a map wy: M — SO(2s)/U(s) arising from any
trivialization of Sy lifts to SO(2s) [3].
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In our case, when s = 1, since U(1) = SO(2), then SO(2)/U(1) is a point and it lifts to SO(2)
trivially, therefore the second condition in the theorem is satisfied. Hence, the necessary and
sufficient condition of decomposition is the triviality of Sy = Q). Since @) is a complex line
bundle, it is trivial if and only if ¢;(Q) = 0, or equivalently it has a global section. Since the
decomposition of the 2-form w into globally defined 1-forms p; and p, is a necessary condition
for the existence of a global bi-Hamiltonian structure, the vanishing of the first Chern class of @
becomes a necessary condition.

However, this may not be sufficient since the existence of a decomposition in the form (3.9)
may not imply that the factors p; satisfy

p; Ndp; = 0.

In order to determine the effect of vanishing Chern class on the constructions made so far, we
are going to investigate the equation (2.5) defining the Poisson one-forms. Since our Poisson
one-forms and related integrability conditions are determined by the local solutions of (2.5),
they are defined locally on each chart. Let {Jip } and {Jf } be the Poisson vector fields in charts
(Up, zp) and (Uy, z4) around points p € M and q € M, respectively. Around the point p € M,
the Poisson vectors {J?} are determined by i, of and the local frame {€}, e} }. Given the local
frame, we can write (2.5) whose solutions are x!’s, and using p’s we can determine of’s by the
equation (2.13). Now, if ¢;(Q) = 0, which is a necessary condition for the existence of global
bi-Hamiltonian structure, then we have a global section of @), i.e., global vector fields normal
to v. By using the metric on M, normalize this global section of @@ and take it as €5, then
define e3 = €1 x e3. So we have the global orthonormal frame field {€j,ez,e3}. In order to
understand the relation between local Poisson one-forms obtained in two different coordinate
neighborhoods, we first need the following lemmas:

Lemma 3.4. If two solutions p1(s) and pa(s) of the Riccati equation

dpsi
ds

= —C% — (G5 + Chy) — piCy
are known, then the general solution u(s) is given by
M — /*’L]. — K(H — 'LLZ)BIC?Q(;U'Q_;U'l)ds’

where K is an arbitrary constant [7].

Lemma 3.5. If ¢1(Q) = 0, then two pairs of compatible Poisson vector fields {Jf} and {Jf}
on U, and U, respectively, are related on U, N Uy, by
g

)

(T2 I A

Proof. Given the global frame field {e,e3} defined on coordinate neighborhoods U, and Uj,
Riccati equations for p;’s can be written as

é}Vu; = (V X gg) '€2+/L;((V Xé\g) -€3+(V Xé\g) é\g) + (/J,:)2(V X 33) '/é\g

for r = p,q. Therefore, on U, N Uy, puf and pl are four solutions of the same Riccati equation
for i = 1,2. By the lemma above we have

pl = gl = KO = i)l R lu)as (3.10)
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Now, using the compatibility condition (2.8),
p
N Q@
012( /1’1) :el'Vhl%,
q

(3.10) becomes

a
pi = = K = 3) =3, (3.11)
ag
where
€1 - VKM =0. (3.12)

Multiplying both sides by afaf in (3.11), gives
JIx Jp = KPP x Jb. (3.13)
Rearranging (3.13), we obtain
0% (JP— KPIE) =0
Using (3.12) and the compatibility, we can take
T~ KUY
to be our new Poisson vector fields on the neighborhood U, and obtain
JIx JP = 0.
By compatibility these new Poisson vector fields jf produce functionally dependent Hamilto-

nians and therefore, for the simplicity of notation, we will assume without restriction of generality
that

o
and the lemma follows. |
Then, we have the following result:

Theorem 3.6. There exist two linearly independent global sections 3\2 of Q satisfying

G- (Vxj) =0 (3.14)
if and only if ¢1(Q) = 0.
Proof. The forward part is trivial since the existence of a global section of the complex line
bundle @ implies that @ is trivial, and hence ¢;(Q) vanishes. For the converse, we define

wo
B A
and the lemma implies that j” = jf on U, N U, and the theorem follows. |

The lemma above states the reason why one may fail to extend a local pair of compatible
Poisson vector fields into a global one, even if ¢;(Q) = 0. In order to do so one should have
Ji = J? on U, N U,. However, not the Poisson vector fields but their unit vector fields can be
globahzed Slnce

ol 2]
0
Yl
in general, they may not lead to a pair of compatible Poisson structures. Now we take jfl as our
first global Poisson vector field, and check whether we can find another global Poisson vector
field compatible with this one by rescaling js.
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3.3 Second obstruction: Bott class of the complex codimension 1 foliation

Since v is a nonvanishing vector field on M, it defines a real codimension two foliation on M
by orbits of v. Since @ = TM/E is a complex line bundle on M, this foliation has complex
codimension one. Now, by assuming our primary obstruction which is the vanishing of the Chern
class, we compute the Bott class of the complex codimension one foliation as defined in [2], which
is studied in detail in [1], and then show that the system admits two globally defined compatible
Poisson structures if and only if the Bott Class is trivial.

For the rest of our work, we will assume that @ and its dual Q* are trivial bundles. By (3.14),
Q@* has two global sections j, = (*z;iﬂ) satisfying

o~

dj, =T A j; (3.15)

1; g
for globally defined I';’s. These 31"5 are related with the local Poisson one-forms J? by

JV = ||J%||7,- (3.16)
By (3.7), we have

dJ? =~P A JP. (3.17)
Inserting (3.16) and (3.17) into (3.15), we also have

dj; = (v —dIn || J2||) A ;- (3.18)
Redefining I';’s if necessary, comparing (3.15) with (3.18), we get

L, =~ —dn||J?|. (3.19)

Proposition 3.7. Let k be the curvature two-form of Q). There exists a compatible pair of global
Poisson structures if and only if

= = (I‘1 —T)NK
15 exact.

Proof. Since 31 and 32 may not be compatible, we introduce a local Poisson form P defined
on the coordinate neighborhood U, of p € M, which is compatible with j; and parallel to j,
ie.,

3= s (3.20)
and

J1AdGP + P Adj, = 0. (3.21)
Now (3.20) implies that

dj? = (T2 +dIn fP) A 5P, (3.22)
Putting (3.15) and (3.22) into (3.21) and using (3.20), we get

(Ty =Ty —dn fP) Aj AP =0
which implies

(C1 =T9) Ady Ay =dInfP AGy AJa. (3.23)
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Our aim here is to find the obstruction to extending fP to M, or for (3.23) to hold globally.
For this purpose, we consider the connections on @ defined by I';’s. By (3.19), we define the
curvature of these connections to be

k =dI'; = d~P.
Taking the exterior derivative of (3.17) and using (3.16), we get
dyP AJP = dvyP A G, =0,
which leads to
K= dyP = @5y AJa. (3.24)
Now multiplying both sides of (3.23) with ¢,
(T —To)Ak=dlnfPAK = d((lnfp)n)
and the proposition follows. |

Now we are going to show that the cohomology class of & vanishes if and only if the Bott
class of the complex codimension 1 foliation vanishes. Since @) is a complex line bundle we have

and the vanishing of ¢;(Q) is a necessary condition
c1 = dh;.
So we have
1 = [k] = [dy7],
which implies that on U,
h; =~P +dlnh?.
Then, the Bott class [2] becomes
hiAcp = (" +dInkhP) Ady? =dInhP A k + P A dyP.
Now by (3.6) and (3.24) we have
Y AdYP =0,
and therefore,
hiANep = d((h’lhp)/{).
Since hy is globally defined, on U, N U, we have
hi =~4”4+dInh? =474+ dInh?

and
P q h1
Y-t =dhno (3.25)

Now we have the following theorem:
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Theorem 3.8. The cohomology class of 2 vanishes if and only if the Bott class of the complex
codimension one foliation defined by the nonvanishing vector field vanishes.

Proof. If the Bott class vanishes, then we have a globally defined function A such that
d((Inh)k) = 0.

Then, choosing f = h leads to a compatible pair of global Poisson structures. Conversely, if
there is a pair of globally defined compatible Poisson structures, then v becomes a global form,
and by (3.25) we have

ha
dln — =
nh}) 0

on U, NU,. Therefore,
Inh? —Inh?P = %,
where ¢? is a constant on U, N U,. Now, fixing a point z¢ € U, N U,

¢ =1nh¥(zg) — InhP(z9) =Inc? —IncP,

we obtain
hP  hd
—_— = — = h7
cP c4

where h is a globally defined function, and
dlnh =dInh”.

Therefore,
[hi Aer] =[d((Inh)k)] =0

and the theorem follows. [ |
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