DopmanvHi Memoou npozpamysanis

UDC 681.142.2

APS C++ User’s Library

A. Letichevsky, A. Letichevsky Jr., V. Peschanenko

LitSoft, 14 Rileeva Str., ap. 2, Kyiv, Ukraine,
e-mail:vladimirius@gmail.com
The general information about the APS algebraignmming system (terms rewriting system) is briefiyscribed in the present article. It is

justified practical necessity of creation of APS+CWser’s Library, its conception is presented asdmain functions are listed. Also it is
mentioned few words about the translator APLAN-C++.

KopoTko ommcaHs! 001me CBEIeHMs 0 CUCTeMe anrebpandeckoro nporpammupoBanus APSucreme nepenucsiBanust TepMoB). O60CHOBaHO
[paKTHYECKas HeOOXOAUMOCTh B co3ianun 6udnmorekn APS C++ User's LibraryppuseseHa ee KOHUEHIHS ¥ [IEPEYUCICHbl OCHOBHBIC
¢$ynxnun. YoomsiayTo o TpancmiTope APLAN-C++.

Introduction

Algebraic programming — is programming, based umriting. Algebraic programming is an amplificatiof
functional programming and it is applied at compulgebra tasks solution (such as the problem afisvéin finite
definite algebras, augmenter algorithms of Knoutd#x or Buchberger) as well as the tasks relatedperational
semantics of programming languages (performed sdietspecifications of programming software compusge
definition of operational semantics of programmitamguages, development of interpreters and progstypf
programming software components etc).

The APS algebraic programming system was develapé#uk Institute of Cybernetics in V.M. Glushkovriow
of the National Academy of Sciences of Ukraine fid,an instrumental tool for creation of appliedtsyn of algebraic
programming.

In contrast to traditional approach, oriented tagesof canonical rewriting rules systems with tbévious”
strategy of their application, in APS it is possilbhe combination of any rewriting rules systemsva#i as different
strategies of rewriting.

Such approach amplifies considerably the poss#slitof rewriting techniques as their flexibility dn
expressiveness rise. APS integrates four basicdjgema of programming in such a way that the mairt pé the
program can be written in a view of rewriting syste the imperative and functional programming isdugor
determination of strategies, the logic paradignreiglized on the base of rewriting, using a buildsiocedure of
unification [2].

Originally the algebraic programming system wastd by the authors as a system of algorithms {yitay.
However the experience of usage of this systemomescommercial projects has shown that it can leséiould be
used as a commercial system not only for the pypiog of algorithms, but also for their final readtion and
implementation in big commercial products.

Traditions of algebraic programming and usage o§Alystem as in commercial as well as in researgjegis
were always supported by the company LitSoft [BE tnstitute of Cybernetics in V.M.Glushkov honauofr the
National Academy of Sciences of Ukraine [1] as vaslby the Kherson State University [4].

Programming in APS algebraic programming systepeiformed on two levels: the upper level — langueige
APLAN algebraic programming system, the lower levédnguage of realization of the system C++ itsElfe process
of development of programs in system of algebracgmmming passes several steps: step of buildipgatotype at
APLAN language, step of analysis of this prototyel the step of realization of the final versioranguage of the
lower level of C++.

Certainly, APS has a number of imperfections. Oh¢he main ones is the fact the language APLAN is a
scripting language and its procedural part is slasva result of this for realization of final venss mainly the most
critical parts of the algorithms are transferrecCtot. In this connection the questions of autonmatibthis process will
always be actual.

The transfer of prototype in APLAN language to iztion of final version is rather complicated sjpite of the
fact that there were several attempts to speedigptocess. [5]. However they contain a numbemgplerfects, so now
in practice they are not used. As a result of Wwribis process is not automated. From this appegysrtant task: how
to automate the process of transfer from the pyptoin APLAN language to realization of final vensiand what is
needed for it?

In a rather spread analog of APS — in MAUDE systroh process is already automated, but only foy ver
limited part of the language of MAUDE system, besmin our opinion the automation of the procesdeselopment
will lead the APS programming system to a new letieht will give possibility to talk about APS aseothe most
powerful tools in development of complicated altfuriic systems [6].

For automation of this process with the usage o6 Af have decided to mark two steps: step of egadiz of
the User’s Library APLANC and the step of realipatof convector from the language APLAN into thegaage C++.

© A. Letichevsky, A. Letichevsky Jr., V. Peschanenk008
ISSN 1727-4907M1po6semu nporpamyBanus. 2008.Ne 2-3. Cneuiansnuii eunyck 299

DopmanvHi Memoou npozpamysanis

APS
Let us begin with simple problem of functional pragnming — computing Fibonacci numbers. Well known
recursive definition of n-th Fibonacci number is following system of relations.

FO) =1
F@) =1
F()=F(n-)+F(n-2)

This system may be considered as a (recursivejitiefi of a function F or a system of rewritingealwhich
can be used to computenfr(To write this system in APLAN the following stahent must be written first.

INCLUDE < stdap>.

This statement includes some standard definitionisespecially provides the use of arithmetic openat™+”,
=", signs "=",)", and also some other syntactiotions defined in a moduttd.ap Now the name of a system must be
defined

NAMER;

and assigned a value by means of initial assignment
R :=rs(n)(
FO)=1
FO =1,
F(n)=F(n-1) +F(n-2)
)i

The first line of this assignment shows that thie@af a name R is a system of rewriting rules &rgj n is the
only variable used in a system. General definitbryntax of rewriting rule systems is the follogin

<rewriting system> ::= rs(<list of variables segadaby ",">)

(<list of rules separated by "," >)

<rule> ::= <simple rule> | <conditional rule>

<simple rule> ::= <algebraic expression> = <alg&bexpression>
<conditional rule> ::= <condition> -> <simple rule>

<variable> ::= <identifier>

The system R can be applied for instance to theesgpon T = F(10) and this expression will be tfamsed in
the following way:

F(10) = F(10-1)+F(10-2) = F(9)+F(8).

In APS this transformation is performed in a orepdiecause the arithmetical operations are intexgbi@nd are
performed if it is possible at each rewriting st€pe next step of rewriting can be performed in ohtvo ways
dependently of what occurrence ofifthe third rule of a system will be applied tot itebe the first occurrence that is
F(9). Then the new expression will be

T = (F(8)+F(7))+F(8)

If we shall continue in a similar way, that is slthe leftmost (innermost) occurrence each timeskadl obtain
the sequence

T = ((F(7)+F(6))+F(7))+F(8) =
= ((F(6)+F(5)+F(6))+F(7))+F(8) =

= (...((F(1)+F(Q)+F(1))+...)+F(8).

Now the third rule can be applied as well as tlemsd one. Let us use the principle which is onainsll main
strategies of rewriting in APS. This principle it in each case the rule to be applied is therfits which can be
applied in the current state of a computation. &foee the next two steps will give us the followiexpressions:

T = (...((A+F(0)+F(1)+....)+F(8) =
= (..((1+1)+F(1))+...)+F(8).
In a new state there appeared one more possiltditydd 1+1 before the rewriting of F(1). The apetiion of
arithmetic operations to constants can be congidals® as a rewriting with implicitly given rewritj rules (addition

and multiplication tables). Therefore accordinghe leftmost strategy the addition must be perfaffirst. The next
steps of rewriting:

300

DopmanvHi Memoou npozpamysanis

T = (...(2+F(1))+...)+F(8) =
=(...((2+1)+F(2))+...)+F(8) =
= (...(3+F(2))+...)+F(8) = ...= 55+34 = 89.

Those fact that during rewriting only leftmost oo@ce has been chosen for applying rewriting ridemt
essential for this rewriting system. To obtain tieeded result by means of the rule system R uffc®nt to use an
arbitrary rewriting strategy (algorithm of rewritjhwhich satisfy the following conditions.

1. One of the rules of a system is applied or arittic operation is performed at each step of ravgit

2. The choice of a rule is made according to tlyggisace in which rules has been written.

3. Rewriting continue till it is possible, thatti there are occurrences to which rules are

applicable or arithmetic operations over numbershmperformed.

The strategy which satisfy these conditions isecHlhal strategy. In APS one can use built-in strategies of
rewriting or write his own strategies which meet themand of a problem being solved in the best iWag.call of a
built-in strategy is an internal procedure callubldy it has a forns(T,R) wheresis the name of a strategly— the
name of an algebraic data structure to which asys$ appliedR is a name of a system of rewriting rules.

There are two built-in final strategies of rewrgintb (top-bottom iterative application) and nbatfbm-up
iterative application). Any of them may be useddomputingn-th Fibonacci number. It is sufficient to add the
definition of a name T, initial assignment to theme and a task which calls a strategy and ptietsdsult to a file
which contains the definition of R. The correspogdiext can looks like the following.

NAME T;

T:=F(10);

task:=ntb(T,R),prn(T);

The name task is a standard name of a systemdéfiised in the filestd.apand it is not necessary to define it
once more. The statement prn(T) prints the value mdme T to a screen. To execute this task ifffcent to input a
text file fib.ap which contains this task and execute it using camine

aps.exe —i fib.ap

This command interprets a procedure task in thidute

Let us consider now how the strategies ntb andwvalk. First it is useful to understand how the blgéc
expressions are represented as labeled trees.oties nf such a tree corresponds to subexpresdiangiven
expression. Each node is labeled by the main dparaf a subexpression if this subexpression isanmtimary one, as
for instance number or symbol. The nodes correspgrid the primary ones are labeled by these sukssgns. If a
node corresponds to a subexpres§gy . . . , %), wheref is an operation of arity, then this node is connected by
edges numbered [y . . . , nwith the nodes corresponding to the subexpressigns . , x.

A tree corresponding to the expression F(1) + Ff — 2) can be represented by one of two ways deperting
what is the meaning of the symbol F. It can berdefiin APLAN as a unary operation by statement

MARK F(1);

In this case the symboll&bels two nodes of a tree. If the symb@gpears without definition it is considered as
a symbolic atom and the main operation of an egprad-) is the binary operation application which is dieb
simply by concatenation of two expressions. Tha firgument of this operation in the expressio®) i5(an atom F, the
second argument is an expression

Both strategies ntb and nbt are based on thedgfhdirst bypass of a tree. Each node is visitaattimes
during this bypass: first time when the strategywesotop bottom, second time during the move botipnirhe strategy
ntb (apply top-bottom) applies a rule system t@@pression corresponding to the current node nigitiis node from
above. A strategy is applied to this node as mangd as possible. The strategy nbt (apply bottojrdops the same
but only when visiting a current node from belofxduring the complete bypass at least one rulebbkag applied the
bypass is repeated and the strategy works untheorule has been applied. Each strategy perfolsnsadl admissible
simplifications including the execution of arithrieedperations when moving bottom-up. Therefore lsbthtegies are
final and each can be used to transform an exjomes$n) wheren is a natural number. The system R can be applied
also to complex expressions containing the calfsieétion F for instance the expression Kj(But in this case the
strategies operate differently. The strategy nlitasimpute the value of an expression while thatstyy ntb will
perform an infinite rewriting:

F(F(10)) = F(F(10)-1)+F(F(10)-2) =
(F((F(10)-1)-1)+F((F(10)-1)-2))+F(F(10)-2) = ...

One can avoid the infinite rewriting if use the ddional rewriting rules. It is worth while applygrthe third rule
of a system R to an expressiomRgnly if nis a nonnegative integer. The corresponding candit expressed in
APLAN as

isint(n)&(n>0)

and can be added to the third rule. A new systambegpresented in the following way.

301

DopmanvHi Memoou npozpamysanis
R = rs(n)(
FO) =1,
FO) =1,
(isint(n) & (n>0))-> (F(n) = F(n-1) + F(n - 2))
)i

Now when the third rule is protected from undedeapplications the system R can be applied usibigrary
final strategy. If this system is applied to anitadoy expression with occurrences of F then dliesgpressions of a type
F(n) wheren is a nonnegative integer will be computed.

Let us now consider the rules for computing Fib@haambers from another point of view. It is eas\sée that
any final strategy must perform not less than egptial number of steps to computaf-(Really after an application
of the third rule the computation ofri}(is reduced to the computation ohF(Q) and FG—2). These computations will
be performed independently and computation af+() is reduced to the computation ohH 2) and F(— 3).
Therefore R — 2) will be computed two times, i 3) — three times and so on.

To understand how the computations can be imprtatags consider once more the computation of F(10)
allowing the application of arbitrary algebraic giifications other then performing arithmetic op@as over integers.
We have

T = F(10) =
(F(B)*F(7)+F(8) = 2*F(8)+F(7) = 2(F(7)+F(6))}+F(P
3*F(7)+2*F(6) = 3*(F(6)+F(5))+2*F(6) = 5*F(6)+3*F(b= ...
.. =89,

It is easy to write general form of rules which ased here. They are
a*(x+y)+b*x=(a+h*x+y
and special cases of this rule wheenb = 1 and wher = 1:
a*(x+y)+b*x=(a+bh)*x+y,
a* (x+y)+x=(@+)*x+y,
(X+y)+x=2*x+y
If these rules are added to the system R the iiegritf F() can be done on the number of steps proportianal t
n. But only if a proper strategy will be used. Redlie strategies ntb and nbt now do not work. Efdhese strategies
will apply the third rule before the new rules Wik applied and the same waste will be done a®uitithese rules. The
strategy needed for us must work so that at eaghaftrewriting it is applied to the leftmost outerst occurrence of a

term to which a system is applicable. This stratggts among built-in strategies of APS. The naiffrthis strategy is
Imt (leftmost outermost, the famous strategy oy le@amputation). A new system of rewriting rules is

R1:=rs(n)(
a*(x+y)+b*x=(a+b)*x+a*y,
a*(x+y)+x=(at+d) *x+a*y,
(X+y)+x=2*x+y,
FO) =1,
FO =1
(isint(n) & (n>0))- > (F(n) = F(nh-1) + F(n - 2))

and new task is:
task:=Imt(T,R),prn(T);
To write this system in APLAN the following statemienust be written first
INCLUDE < stratap > .

This statement includes some standard definitidraglditional strategies and especially providesus$e of
compile rewriting system, which will be use for &dtthal APLAN language statements.

One small disadvantages of this system is a langaber of rules. This disadvantages can be avaitbie
careful analysis of a general state of computati@pplied. This state can be described by an egjme

a*F@Mn) +b +xFn-1).

302

DopmanvHi Memoou npozpamysanis

which is obtained just after the fourth applicatafra system and is repeated after each two stepsis denote the
function defined by this expressionféas, b, n. It is easy to see that

if n>0 then

F(n) =1 *F(n) + 0 *F(n-1) =1(1 0, n),
f(a,b,p=f@a+b,a, n-1).

Therefore instead of computing oiRe can compute a functiosétting f@, b,0) =b and using the following
rewriting system

R2:=rs(n)(

f(a,b,0) =b,

f(a,b,n) =f(a+b,a,n-1),
F(n) =f(10,n)

);

To control this system more simple strategy is reedhis strategy applies a system only to theesgion itself
without considering its subexpressions. The nanthisfstrategy is appls. The computations wouldalseer if the
symbol fis defined as an operation of arity 3, not as amatr name. It is easy to see that the system R2smonds to
the well known procedure program for computing)Fbut it is represented in algebraic form and heen obtained
exclusively by algebraic methods without using pnycedural reasoning. This is the main peculiaritglgebraic
programming. It allows reducing procedural condiouns to the necessary and simple minimum and ssgies mostly
essential properties of algorithms in mathematfialglebraic) form [2].

APLANC

For automaton of the process of development wednire the notion APLANC of the language. It is anber
of procedures, written in language C++, which sifgghe work with the internal structures of APSswm. This set of
functions exactly will be used for transfer of pragy from the upper level of APLAN language to tbevér level of
realization of system C++.

The structure of the final version of the program.it is important to seehow the program
transferred from APLAN to C++ will look like. Sohé requirements for the future convector of APLAM+Care the
following:

Generated C++ code should depend on the clueyibrar

Generated C++ code should use the functions of ARCAnly;

All necessary canonizators of marks (except thécha®es, determined by the documentation) are sahkby hand
only at the discretion of the Library User;

The convector generates the code in such a wayhbatser is lack only to write the correspondirakefile for the
project and to compel it.

So, the APLANC library includes the following furmts:

Marks and the basic canonizators;
Functions of construction of tree;

Some operators of the upper level;
Functions of work with rewriting machine;
Conception APLAN-C++ of the translator.

We should draw your attention to the fact thatdaheess function to the concrete marks is not pteden the
user, that will considerably simplify the understang of C++ program in our opinion. But all necegséor the
checking of the marks will be realized in tH&igem.

The marks and the main canonizatorsThe total table of marks of the APS algebraic paogning
system is used for initialization of the new pragrelue.

Canonizators of the marks of APS system — is orth@fowerful means at designing of programs in ARL
language. Certainly, the library of APLANC funct®is a minimal set of standard system canonizatarsonizaors of
all arithmetic systems(+,-,*,/,"), logic operatiof&|/,~), function mrg and canonizator. The moegailed information
can be received herein [].

Functions of trees construction. The functions of trees construction include: makemiila,
make_hash_formula.

bool make_fomula(const char* cc,int n,...); — the diimn uses internal parser of APLAN language with a
purpose to build a tree by the line ss, if the trtasn’'t been constructed, false returns, if ni gerformed substitution
n-times instead of each entrance () from the ðé right of the corresponding arguments.

bool make hash_fomula(unsigned long hash_hum,abwst cc,int n,...) — the function checks if the tewith
such hush number hash_hum exists, if it existsjrtlieative tops of trees return. If not, the fuantconstructs a tree
and adds its top to the hash table. FALSE retunhgwhen the tree is not constructed yet and iioisin a hash table.

303

DopmanvHi Memoou npozpamysanis

Example:

node_ptr x = make_formula(*a-b”,0); (1)
node_ptr y = make_formula(“c-d”,0); (2)
node_ptr z = make_formula(“()+2+()",2,*X,*y); 3

1) — we build a tree for expression a-b, 2) — wibdba tree for expression, 3) — we build a treedgpression
(0+2+() (the empty brackets are considered the bk then from left to right we make a substitutiinstead of ()
firstly term x, then term y. As a result in z itlWbe a tree for expression (a-b)+2+(c-d).

These two functions are the main functions at feansf the program to the lower level.

Some operators of the lower levelin somecases it is rather convenient to have some analbgs
APLAN language operators. It is quite difficult ppesent the work with canonizators without mark_€ahe function
of installation of canonizator for correspondingrkiaunction-canonizator should look like int caanre(clew_ptr
& clew,node_ptr &arg). The function returns theoemumber, and 0 — if the function has been workiogmal. From
this very important conclusion can be made — s@$ain the capacity of canonizator the rewritingswsystem can be
used, its headline should look like: int can_nanes{cptr & clew,node_ptr &arg).

For the realization of rewriting machine in APLANeweed the function let and here is its syntaxes:

bool let(node_ptr &nd,const char *cc,nodes_ptr &res

The function returns O if the process of comparig@sn’'t succeeded [], 1 — if not. It is very imfzont for the
library of functions APLANC if the process of com@@n succeeded, to receive immediately the suljtnebich are
necessary for the further work. So, especially disvintroduced the name ac_h (APLANC here), suclresedy that
reply in the line to this name and are copied ® gkructure nodes_ptr []. The size correspondshéoquality of
entrances of fc_h in ss, the order is from leftight.

Example:
node_ptr x = make_formula(“x+y+2+3",0); 1)
nodes_ptr args; (2)
if (let(x,”_+_+ac_h+ac_h",args)){)
prn(args.size()); (4)
prn(args|0]);)
prn(args(1]); (6)

1) — see above, 2) — declaration of tops list- #)the process of comparison succeeded, i.eeitra has three
marks +, the tree is right-side, then in args It beé written two last summands, i.e. 2 and 3.54)6) — screen output.

Working functions with rewriting machine. It is known that one of the imperfects of APS sysié
low interpretation of the procedural part of APLAdguage, so in our opinion the hole rewriting miaeAPS and its
working functions (strategies) move to APLANC [].

However the translator APLANC++ itself can work aut rewriting machine if the rewriting rules systevill
be translated into function of C++ language (thadtiee of such function has been described earlid® realization
of the necessary strategies also doesn't causeutiiés in this case. The process of transfellfifsem the rewriting
rules system to C++ functions is going to be désctiin our further publications.

The rewriting machine of APS algebraic programmiygtem transfers the rewriting rules system prelamj
into special commands language, and then it ingéspr

APLAN-C++ translator’'s conception. The APLAN-C++ translator's conceptida a trade secret for
the moment and it can’t be discussed in the rebgaaper. We would like to note that this translatees the APLAN
library and till the moment of issue of the pregesper we plan to realize it at 70%.

Conclusion

The APLANC User’s library is a powerful tool of amation of transfer process in APLAN to the finatsion
in C++. Its realization will considerably amplifhe spheres of application, it will allow to debug-+Cprograms
quickly and professionally as per the prototypewasd| as per the final version, that will shorteretlkerms of
development of complicated algorithmic systems.

| express my thanks to the company LitSoft for $hpport of symbolic conversions in Ukraine représerby
Mr. A.A. Letichevskiy (jr.), our ideological inspmr Mr. A.A. Letichevskiy as well as to my wife MrMarina Y.
Peschanenko for the professional reading of theeptearticle.

1. Glushkounstitute of Cybernetics NAS Ukraine [http://wwwylzkiev.ua].

2. Letichevsky A.A., Kapitonova J.V., Volkov V.A. daenko A., Chomenko \Algebraic Programming System APS (user's manual).
[http://aps.ksu.ks.ua/files/6.zip].

3. LitSoft[http://alimp.kiev.ua].

4. KhersonState University [http://www.ksu.ks.ua].

5. Iecuanenxo B.C. O6 0gHOM MOAXO/E K MPOCKTUPOBAHUIO anreOpandeckux TUMOB HaHHbIX // IIpobmemu mporpamyBanss. — 2006. -Ne2-3. —
C. 626-634.

6. TheMAUDE System [http://maude.cs.uiuc.edu].

304

