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Abstract. The equations of motion for the rolling and gliding Tippe Top (TT) are noninte-
grable and difficult to analyze. The only existing arguments about T'T inversion are based
on analysis of stability of asymptotic solutions and the LaSalle type theorem. They do not
explain the dynamics of inversion. To approach this problem we review and analyze here
the equations of motion for the rolling and gliding TT in three equivalent forms, each one
providing different bits of information about motion of TT. They lead to the main equation
for the T'T, which describes well the oscillatory character of motion of the symmetry axis 3
during the inversion. We show also that the equations of motion of TT give rise to equations
of motion for two other simpler mechanical systems: the gliding heavy symmetric top and
the gliding eccentric cylinder. These systems can be of aid in understanding the dynamics
of the inverting T'T.
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The Tippe Top (TT) is known for its counterintuitive behaviour; when it is spun, its rotation
axis turns upside down and its center of mass rises. Its behaviour is presently understood
through analysis of stability of its straight and inverted spinning solution. The energy of TT
is a monotonously decreasing function of time and it appears that it is a suitable Lyapunov
function for showing instability of the straight spinning solution and stability of the inverted
spinning solution [1, 7, 10, 11, 19]. The energy is also a suitable LaSalle function to conclude
that for sufficiently large angular momentum L directed close to the vertical Z-direction the
inverted spinning solution is asymptotically attracting [1, 19].

Since the 1950s [9] it is also known how TT has to be built for the inversion to take place,
more precisely that if 0 < o < 1 denotes the eccentricity of the center of mass then the quotient
of moments of inertia v = % has to satisfy the inequality 1 —a < v < 14+a. It is also understood
that the gliding friction is necessary for converting rotational energy to potential energy.

When it comes to describing the actual dynamics of TT, there is very little known. In several
papers [5, 7, 16, 22] numerical results of how the Euler angles (0(t), ¢(t),%(t)) change during
inversion are presented, but an understanding of qualitative features of solutions (as well as
details of physical forces and torques acting during the inversion) remains a rather unexplored
field.

There is also an alternative approach [18, 21] through the main equation of the TT that shows
the source of oscillatory behaviour of 6(¢) and of the remaining variables ¢(t), ¥(¢). The main
difficulty in making further progress lies in the complexity of the TTs equations of motion.

The TT is described, in the simplest setting, by six nonlinear dynamical equations for six
variables (0(t), 0(t), $(t),ws(t), va(t), v, (t)). Analysis is slightly simplified by the fact that these
equations admit one integral of motion, the Jellett integral, and that the energy function is
monotonously decreasing in time. To make further progress in reading off the dynamical content
of the equations it is useful to study equations in all possible forms, to study special solutions and
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certain limiting cases of T'T equations. By special cases we mean reduced forms of T'T equations
obtained by imposing time-preserved constraints and some limiting forms of T'T equations. For
instance in this paper, we show that TT equations reduce, in a suitable limit, to the equations
for a gliding heavy symmetric top. These reduced and limiting equations are usually simpler to
study and the lessons learned from these cases are useful for better understanding of dynamics
of the full TT equations.

In this paper we review the results for the T'T, modelled as an axisymmetric sphere, with the
aim of understanding how a rigorous statement about dynamics of TT can be derived from full
equations for T'T and the role of extra assumptions made in earlier works.

1 Notation and a model for the TT

Inversion of the T'T can be divided into four significant phases. During the first phase the
TT initially spins with the handle pointing vertically up, but then starts to wobble. During
the second phase the wobbling leads to inversion, in which the TT flips so that its handle is
pointing downwards. In the third phase the inversion is completed so the TT is spinning upside
down. In the last phase it is stably spinning on its handle until the energy dissipation, due to
the spinning friction, makes it fall down. Demonstrations shows that the lifespan of the first
three phases are usually short, with the middle inversion phase being the shortest. The fourth
phase lasts significantly longer.

This empirical description of the inversion behaviour of the TT is comprehensible for anyone
who observes the TT closely, but it lacks precision and clarity when it comes to answering the
question of how this inversion occurs, and under which circumstances.

We model the TT as a sphere with radius R and axially symmetric distributed mass m. It
is in instantaneous contact with the supporting plane at the point A. The center of mass CM
is shifted from the geometric center O along the symmetry axis by aR, where 0 < a < 1 (see
Fig. 1). This model has been used in many works, for example by Hugenholtz [9], Cohen [5]
and Karapetyan [11, 12]. An alternative model of the TT could be to consider the TT as two
spherical segments joined by a rigid rod, as proposed in [23].

Figure 1. Diagram of the TT model. Note that a = Ra3 — R2.

We choose a fixed inertial reference frame Ky = ()?,?, 2) with X and Y parallel to the
supporting plane and with vertical 7. Let K = (Z,9,2) be a frame defined through rotation
around Z by an angle ¢, where ¢ is the angle between the plane spanned by X and Z and
the plane spanned by the points CM, O and A. The third reference frame is K = (1,2,3),
with origin at C M, defined through a rotation around ¢ by an angle 6, where 0 is the angle
between Z and the symmetry axis. The frame K is not fully fixed in body since it rotates. We
let 3 be parallel to the symmetry axis.
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The Euler angles of the body relative to Ky are (0, ¢, ). The reference frame K rotates with
the angular velocity ¢z w.r.t. Ko and the angular velocity of the frame K w.r.t. Ky is

Wref = 02 + 0z = —psinfl + 02 + ¢ cos 03.

The total angular velocity of the TT is found by adding the rotation around the symmetry
axis 3:

W = Wit + Y8 = —psin 01 + 62 + (Y + ¢ cos6)3,

and we shall refer to the third component of this vector as w3 = Y + ¢ cosb.
For an arbitrary vector B in the rotating frame K the time-derivative is

. d - N A 0B
B=—(Bi1l1+ B2+ B33) = — r B.
dt( 11+ D22 + 3) <8t)f<+wefx

Here the first term B11 + B2 + B33 is the time-derivative of each component describing the
change of the vector B w.r.t. the frame K and wye X B the change of B due to rotation of K
w.r.t. the frame K.

Let a = R(a8 — %) be the vector from C'M to the point of contact A. Newton’s equations
for the T'T describe the motion of the C'M and rotation around the CM:

m8§ =F —mgz, L=axF. (1.1)

The external friction-reaction force F acts at the point of support A. The angular momentum is
L = lw, where I is the inertia tensor w.r.t. CM and w is the angular velocity. If we denote the
principal moments of inertia by I, Is and I3 and note that Iy = Is due to the axial symmetry,
the inertia tensor has the form I = I;(11? + 22!) + 333! (the superscript ¢ meaning here
the transpose). The motion of the symmetry axis 3 is described by the kinematic equation
3=wx3= TllL x 3.

We shall in our model of the TT assume that the point A is always in contact with the plane,
which can be expressed as the contact criterion z-(s(t)+a(t)) £ 0. Since this is an identity with
respect to time ¢ all its time derivatives have to vanish as well; in particular, 2- (§+w x a) = 0.
So the velocity va(t) = $§ + w x a, which is the velocity of the point in the TT that is in
instantaneous contact with the plane of support at time ¢, will also have zero Z-component.

For the force acting at the point A we assume F = ¢,Z— g, v 4. This force consists of a normal
reaction force and of a friction force Fy of viscous type, where g, and p are non-negative. Other
frictional forces due to spinning and rolling will be ignored. Since we have one scalar constraint
equation Z - (s +a) = 0, the component describing the vertical reaction force g, % is dynamically
determined from the second time-derivative of the constraint. The planar component of F has
to be specified independently to make the equations (1.1) fully determined. In our model we
take Fr = —pgnva = —p(L, 3,5,5,t)gn(t)v4 as the planar component.

This way of writing the friction force indicates that it acts against the gliding velocity v 4 and
that the friction coefficient can in principle depend on all dynamical variables and on time t.
We keep here also the factor g, (t) to indicate that the friction is proportional to the value of
the reaction force and that we are interested only in such motions where g, (t) > 0.

These assumptions about the external force are common in most of the literature about the
TT. Cohen [5] states that a frictional force opposing the motion of the contact point is the only
external force to act in the supporting plane. He used this assumption in a numerical simulation
that demonstrates that inversion of T'T occurs. This showed the effectiveness of the model and
in later works such as [4, 7, 14, 15, 19], the external force defined in this way is used without
comment. Or [16] discusses an inclusion of a nonlinear Coulomb-type friction in the external force
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along with the viscous friction. A Coulomb term would in our notation look like —pcgnva/|val,
where pc is a coefficient. Numerical simulation shows that this Coulomb term can contribute
to inversion, but has weaker effect. Bou-Rabee et al. [1] use this result to argue for only using
an external force with a normal reaction force and a frictional force of viscous type in the model
of the T'T, since the nonlinear Coulomb friction only results in algebraic destabilization of the
initially spinning T'T, whereas the viscous friction gives exponential destabilization.

The above model of the external force becomes significant if we consider the energy function
for the rolling and gliding TT

1 1
E:§mé2+§w-L+mgs-é.

When the energy is differentiated the equations of motion yield E = F - v4 and if the reaction
force is F = gn2 — pugnva, then E = —ugnvi. Thus for this model of a rolling and gliding T'T,
the energy is decreasing monotonically, as expected for a dissipative system.

During the inversion of the TT the C'M is lifted up by 2Ra, which increases the potential
energy by 2mgRa. This increase can only happen at the expense of the kinetic energy T =
%mé2 + %w - L of the TT. Analysis of the inversion must address how this transfer of energy
occurs in the context of the friction model. The following proposition, due to an argument made
by Del Campo [6], gives an idea of how it works.

Proposition 1. The component of the gliding friction that is perpendicular to the (2,3)-plane
is the only force enabling inversion of TT.

Proof. Inversion starts with the T'T spinning in an almost upright position and ends with the
TT spinning upside down, so the process of inversion requires transfer of energy from the kinetic
term %w - L to the potential term mgs - 2. The angular momentum at the initial position Ly
and the final position L; are both almost vertical, and the value has been reduced: |Lp| < |Lg].

We let the reaction force F be split into Fg + Fy + Ff1, where Fgp = g,2 is the vertical
reaction force, Fy is the component of the planar friction force parallel to the (2,3)-plane,
and Fy | is the component of the planar friction force that is perpendicular to this plane. We
thus have

L:aX(FR—i-FfH—I—FfJ_),
which implies that
L-z=[ax(Fr+Fp)| 2+ (@axFp) 2=(axFsp ) 2<0.

We see that without the friction force F s there is no reduction of L- £ and no transfer of energy
to the potential term. The torque a x (Fr + Fy)|) is parallel to the plane of support and causes
only precession of the vector L. |

Fig. 2 illustrates this. The rotational gliding of the TT at the contact point A creates an
opposing force, which gives rise to an external torque 7 that reduces the Z-component of the
angular momentum L and transfers energy from rotational kinetic energy into the potential
energy. As a consequence, the CM of the TT rises.

Indeed, in Fig. 2a we see that L is closely aligned with the Z-axis so the angular velocity is
pointing almost upwards and the contact velocity v 4 is pointing into the plane of the picture. In
Fig. 2b it is clear that ax F; = ax (—ug,va) gives a torque T that has a negative 2-component.
It is - (ax (—pgnva)) = —(ugnRasin@)v 4 -2. This component has larger magnitude in Fig. 2b
when the inclination angle is closer to m/2 and then decreases when the TT approaches the
inverted position (Fig. 2c).

This may help us to understand the observed phenomenon that the inversion of TT is fast
during the middle phase but is slower in the initial and in the final phase, since the Z-component
of the torque responsible for transfer of energy and inversion is larger in the middle phase.
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Fr=—-pgnva

a) b)

Figure 2. The TT at different inclination angles during inversion.

1.1 The vector and the Euler angle forms of equations of TT

We return to the equations of motion for the TT in vector form

. 2 1 A
m8§ =F —mgz, L=axF, 3:I—L><3. (1.2)
1

t
The contact constraint Z - (s +a) = 0 is a scalar equation which further reduces this system.
As previously mentioned, all time derivatives of the contact constraint also have to vanish
identically. The first derivative says that the contact velocity has to be in the plane at all times:

Z-8+wxa)=z2-vy=0.

The second derivative gives that the contact acceleration is also restricted to the plane:

d2
ﬁé(s—&-a):éim:o

The vertical component of F can be determined from

Z2-F=2-(m8+mg2) = —m%(w X a)-z+mg.

The planar components of F have to be defined to specify the equations of motion, and this
makes it impossible to distinguish between the friction force and the planar components of the
reaction force. This is why we need to specify the planar part of the reaction force in our model
to make equations (1.2) complete.

The specifics of the functions in the gliding friction, u(L,s,$,3,t) and g,(L,s, $,3,t), other
than that they are greater than zero are not relevant in the asymptotic analysis, but we can get
the value of g, by taking the second derivative of the contact constraint and using the equations
of motion:

(. d 1 Ra . ,. 4 :
Ozz-<s+dt(wxa)> :E(gn—mg)—f—I—lz:‘(L><3+L><3)7

B mgl? + mRo(3;L? — L;L3)
I? +mI R2a2(1 — 32) + mI1 R2a(a8; — V)uva -3’

gn

where Ly =L -3, L: =L-2,3; =32 and L? = |L|%.
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With g, defined this way, we see that no further derivatives of the contact constraint are

needed since the second derivative z - (§(¢) + %(w x a)) = 0 becomes an identity with respect
to time after substituting solutions for s(t), w(t) and a(t). The contact constraint determines
the vertical component of s: s; = —a-2 = —R(a8; — 1), and its derivative §- 2 = —(w x a) - 3.
Thus the original system can be written as
. : 2 1 A
m¥ = — g, va, L=axF, 3= I—lL X 3, (1.3)

where r = s — s;2. This system has 10 unknown variables (L, r, , 3) Further, if we assume
w=u(L,s, 3) then this system does not depend explicitly on r, so we effectively have a system
of 8 ODEs with 8 unknowns.

A rolling and gliding rigid body with a spherical shape such as the TT admits one integral
of motion, the Jellett integral

A=-L-a= R(L; — aLs).

It is an integral since

. . d A R A
A=-L.a- S(Ra3-R:)-L=—(axF)-a—L-(2(Lx3))=0.
dt I
We can rewrite the reduced equations of motion for the TT with the reaction force in explicit
form

d X .
— (Iw) = a x (gn2 — pgnva), mi = —pugnVva, (1.4)

dt
using the Euler angle notation. The angular velocity has the form w = —¢sin 1 + 02 + ws3.
We write the gliding velocity of the point of support as v4 = v, cos 01 + vy2 + v, sin 03, where
Vz, Vy are components in the 2 x %2 and 2 direction (note here that 2-v4 = 0 as expected). The
equations (1.4) have the following form in Euler angles:

—I1$sin @ — 21140 cos O + 3wzl = R(a — cos ) jugnry,
16 — I1¢? sin 0 cos 6 + Izws@sin @ = —Rag, sin @ + Rugnv, (1 — acosf),

m (i — vy + R(O(1 — acosh) + ab?sin + ¢ sinO(¢(a — cos0) + ws))) = —pgnva,

(1.5)
(1.6)
I3ws = —Rpgnvy sin 6, (1.7)
(1.8)
m(iy + vy — R(sin 0(3(a — cosb) + ws) + 0 cos 0(2¢(a — cos 0) + w3))) = —pgnry. (1.9)

By solving this linear system for the highest derivative of each variable (6, y,ws, vy, vy), we
obtain the system

. né@ nVx
0 = Sl;l (1% cos — Iswsp — Ragy) + Ruli(l —acosf), (1.10)
1 1
b= I30ws — 21160 cos 6 - pgnvyR(a — cos 0)7 (1.11)
I1sin@
n ind
g = Pty ltsing (1.12)
I3
Rsinf , 12 ) 22 2
Uy = — (¢ws (I3(1 — acos ) — I1) + gnRa(l — acosb) — [1a(6” + $*sin”0))
1

HGnVx .
— Th(jl +mR*(1 — acos0)?) + vy, (1.13)



Tippe Top Equations and Equations for the Related Mechanical Systems 7

Uy = _557[712 (I I3 + mR*I3(a — cos 0)® + mR*I; sin? 0)
w?ﬁR (I3(a — cos0) + I cos 0) — puy, (1.14)
with
mgly + mRa( cos O(I1¢? sin? 0 + I192) — I3¢pws sin? 0)
"7 I + mR2a? sin? — mR2asinO(1 — acosO)uv, (1.15)
Above we have equations in an explicit form, which (if we add the equation § = 4(9)) can

be written as (6?, 0,5, w3, Uy, Vy)= f(H,é,(p, G, 0,0, Vz,Vy). We see directly that the right hand
sides of the equations are independent of ¢ and ¢, which shows that we only need to consider
equations for 6, 6, ¢, ws, vy and vy. So effectively the system (1.3) has 6 unknowns. Further,
since we have the Jellett integral A = —L-a = RI;(sin?0 — R(« — cos#)I3ws, the number of
unknowns can be reduced to 5 on each surface of constant value of .

1.2 Equations in Euler angles with respect to the rotating reference system K

The equations of motion derived above were formulated and calculated with respect to the
(1,2,3)-system. We can arrive at an equivalent set of equations by formulating them in the
(%, 9, 2)-system. This is the approach used in [15] and [22]. We first use the relations

& = cos 01 + sin 63, j=2 and 2= —sinf1 + cos 63
to get the angular velocity
w = (w3 — pcosh)sin B2 + 07 + (p + cos O(ws — ¢ cos h))Z,
and
L = (Isws — [1pcos0) sin 0z + 11 oy + (1 + cos O(Isws — I1p cosh))Z.

We need also note that the frame K = (2,9, 2) rotates with the angular velocity ¢Z. Thus
starting from the equations of motion in the form (1.4)

L =ax (gu2 — pgnva),  mi=—pgnva,

(where r = s;24s;y) and taking into account that the time-derivative is taken with respect to the
rotating frame K (which means for an arbitrary vector B in this frame that B = (%—?)K—Hbé xB),
and that the gliding velocity in the (Z, 7, £)-system is v4 = 1,2 + 1,y. We obtain in the Euler
angles the following equations:
d
o (sinf(Izws — I1pcosl)) = —R(1 — asin§)pgnvy,
16 + ¢sin O(Izws — I1¢ cos §) = —Rag, sinf + R(1 — o cos 0) ugn v,

d
Lo+ pr (cosO(I3ws — I1pcosl)) = —Rapgnry sin b,
m8z = mPsy — [ignVa,

méy = —mds — pguvy,

The advantage of rederiving the equations of motion in this frame is that it becomes easier to
use a version of the gyroscopic balance condition. This condition, as formulated by Moffatt and
Shimomura [14], says that for a rapidly precessing axisymmetric rigid body we will have

&= Isws — [1pcosh =~ 0.
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This approximation, while somewhat applicable to such rigid bodies as a spinning egg, fails for
the TT initially as Ueda et al. have pointed out [22]. This is since the TT starts with initial
angle 0(0) ~ 0 and the spin velocity 1/1 about the symmetry axis is large, while a spinning egg
(axisymmetric spheroid) is thought to start lying on the side, which corresponds to initial angle
0(0) ~ 5 and small 1/1 Experiments have suggested that the condition £ = 0 is approximately
satisfied during some phase of the inversion, and if we use the new variable ¢ = Isws — 1 cos6

instead of ¢, then the equations of motion take a simpler form:

sin O€ + € cos = —R(1 — asin@)ug,vy,
10 + p€sin = —Ragy, sin 6 + R(1 — acos 0) pugn vy,
LG+ Ecosf — fEsinh = —Roypgnvy sin 6,

msz = MPSg — fGnVe,

m8g = —Mpsz — [Ugnly.

The challenge is to show that & ~ 0 is true in a certain phase of the inversion of TT. We may
note that in the special case of I} = I3, then & = I31, so then the gyroscopic balance condition
says that the spin about the symmetry axis becomes small during inversion.

In [14] it has been argued that if we assume the condition & ~ 0 for a spheroid, then
it is possible to obtain a simple equation for G(t) that can be integrated. Experimental re-
sults (e.g. [0, 22]) show that 6 nutates as it increases, which means that 6 does not increase
monotonously. Thus for the TT an interesting problem is if we can define a mean value for the
angle 6(t), (6(t)), which increases monotonously for the initial conditions such that TT inverts.

An estimate in [22] claims that a suitably defined mean value of 6(t) increases during some
time-interval early in the inversion phase. This is claimed under such assumptions that the av-
erage of 5 sin @ may be neglected and the average of —R(1 —« cos 0)ugnvy is negative. Numerical
simulations shows that there exist choices for parameters and initial conditions so that these
assumptions lead to behaviour of solutions that is in agreement with the results of simulations.
After this phase the authors assume that the TT is in a phase where £ is close to zero, so the
equation for 6(t) shows that () increases on average during the rest of inversion.

1.3 The main equation for the TT

An alternative form of the T'T equations is inspired by the integrability of an axially symmetric
sphere, rolling (without gliding) in the plane [2, 3, 20]. The point A is always in contact with
the plane, and an algebraic constraint characterizing this motion is that the velocity of the point

of contact vanishes, i.e. vy =§+w xa = 0. Thus we have § = —w X a, and F can be eliminated
from (1.1):

d (Tw) X d (wx a)+ g2 3 x 3

— (Iw) =ma ——(wxa z =w .

dt dt 9= )

Notice that these equations differ from (1.4) where assumptions about the reaction force F =
gnZ — gnVva are necessary to make the system defined, while here the whole force F = m§ =
m%(a X w) is dynamically determined and does not enter into the equations. In terms of the

Euler angles we obtain three equations of motion for g, @ and ws:
é' . sin 6

I + mR2((a — cos )2 4 sin? §)

— pw3(mR2(1 — accos 0) + I3) — 0*°mR%a — mgRa], (1.16)

[gbZ(Il cos ) — mR?*(a — cos ) (1 — acosh))



Tippe Top Equations and Equations for the Related Mechanical Systems 9

; w3B(I2 + mR2I5(1 — acos ) 20¢ cos 0
¥~ sin (I 15+ mR2I, sin? 0 + mR2I5(a — cos 0)2)  sinf (1.17)
) s
This system admits three integrals of motion; the Jellett integral
A\ = RI;¢sin’® 6 — RIzws(o — cos ),
the energy
E = %mR2 [(a — cos 0)%(6? + $? sin? 0) + sin? 0(6% + w2 + 2wsp(ar — cos 9))]
+ﬁh&g&9+h¢+gﬁywwRﬂ—amw% (1.19)

2
and the Routh integral [20], which can be found by integrating (1.18):

D = ws [11[3 + mR213(a — cos6)? + mR?I, sin? 9] /2. Isws+/d(cos0),
where d(cosf) = v + o(a — cos0)? + oy(1 — cos?0), o = ml—]f and v = % If we are given the
expressions for A, D and E above then the equations

A=0, D=0, E =0,

are (obviously) equivalent to the equations of motion (1.16)—(1.18).

Since the equations of motion (1.16)—(1.18) do not depend on ¢ and 1, they constitute
effectively a system of three equations for four unknowns (6, 0, ¢, ws3), where the equation for ¢
is of second order. This is a fourth order dynamical system and the three integrals of motion
(A, D, E) reduce the system to one equation. This is done by expressing ¢ and ws as functions
of A\, D and 6:

D . Ad(cosO) + R(a — cos0)D
I3\/d(cos )’ v RI; sin?0+/d(cos 0) .

and by eliminating ¢ and ws from the energy (1.19). We obtain a separable differential equation
in 0:

w3 =

E = g(cos 0)0% + V(cos 6, D, \), (1.20)

where g(cos6) = I3(o((o — cos0)% + 1 — cos? 0) + ),

1 ((/\\/d(z) + R(a— 2)D)%(o(a — 2)% + )
213d(z) R2~42(1 — 22)

V(z=rcosf,D,\) =mgR(1l —az) +

+ D*(0(1—2%)+1) + R%yDa(a —2)(A/d(2) + R(o — z)D)),

with d(2) = v + o(a — 2)? + oy(1 — 22) > 0.
The function V(z, D, \) is the effective potential in the energy expression. This potential is
well defined and convex for 6 in the interval (0, 7). We have that V' (cosf, D,\) — co as § — 0,7

if £ %&i)l). Between these values, V has one minimum, and the solution () stays between

the two turning angles 6y and 6; determined from the equation E = V(cosf, D, \) (i.e. when
6 =0).
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The effective potential for a rolling axisymmetric sphere was derived as early as [3]. In
Karapetyan and Kuleshov [12] the same potential is found as a special case of a general method
for calculating the potential of a conservative system with n degrees of freedom and k& < n
integrals of motion. The potential for the rolling TT in the above form was derived and analysed
in [8].

The dynamical states of the rolling TT, as described by the triple (A, D, E), are bounded be-

low by the minimal value of the energy F, that is the surface given by F'(D, \) = r(ni{ll)V(z, D, )).
ze(—1,

Varying the values for A and D, the minimal surface defined by this equation can be generated.
In Fig. 3 we have taken the values of the parameters m = 0.02, R = 0.02, « = 0.3, I} = %m}?2
and I3 = %mRQ. A similar surface showing the stationary points Opyin (A, D) for values of A
and D has also been discussed in [12]. Points on and above this surface correspond to solutions
to equation (1.20) for the rolling TT. In particular, points on the surface define precessional
motions, and along the marked lines we have singled out the degenerate cases of precessional

motion, the spinning motion where § = 0 and 6 = 7.

F(D, M)

6=0 (initial)

Figure 3. Diagram for the minimal surface F(D, \).

An inverting TT starts from a state close to a spinning, upright position and ends at a state
close to a spinning, inverted position. If we consider a trajectory giving the motion of an
inverting T'T, then in Fig. 3 it has to stay in a vertical plane of A = const. It starts close above
the line given by 6 = 0 at the minimal surface and ends close above the line given by 6 = .

For better understanding of dynamics of the TT we can study time dependence of functions
that are integrals for when the gliding velocity is zero. For very small v4 one may expect that
these functions are changing slowly and are approximate integrals of motion.

We already know that A\ satisfies A=0for a rolling and gliding TT. For the total energy
of TT, we know that E=F.-v 4 < 0. However we shall consider the expression for the rolling
energy of the TT

1 1
E(L,3,s) = §m(w x a)? + QW L+ mgs - 2.
This is not the full energy, but the part not involving the quantity v4. Differentiation yields:

iE(L,ﬁ,s) - (E - %va (va = 2(w x a))>
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=F-vg—va-(m8)+mVy-(wxa)=mvy-(wxa). (1.21)

For the rolling and gliding TT the Routh function D(6,ws) = Iswsy/d(cosf), also changes in
time:

d _ ymRsing . ym

—D(t) = ———= (Vs + 1) = —F—=
dt ®) d(cos@)((p ) ar/d(z - 3)

We find from the expressions of A and D(t) that

D(t) . Ad(cosf) + R(a — cos0)D(t)
I3+/d(cos6)’ v I1\/d(cos ) sin? 0

(2xa) va. (1.22)

w3 =

: (1.23)

and eliminate ¢ and w3 in the modified energy (same as equation (1.19)) to get the Main
Equation for the Tippe Top (METT):

E(t) = g(cos0)8% + V(cos 8, D(t), \). (1.24)

It ostensibly has the same form as equation (1.20), but now it depends explicitly on time through
the functions D(t) and E(t). This means that separation of variables is not possible, but it is
a first order time dependent ODE easier to analyze than (1.21) and (1.22), provided that we
have some quantitative knowledge about the functions D(t) and E(t).

For generic values of A and D the effective potential V(cos@, D(t), \) has a single minimum.
Similarly, as in the pure rolling case, equation (1.24) describes an oscillatory motion of the
angle 6(t) in the continuously deforming potential. For inverting solutions of TT, A = LoR(1 —
a) = L1 R(14+«) (where Lo and L; are the values of L for § = 0 and 6 = , respectively), so L; =

LO% and D changes from the value Dy = Lo\/v + o(1 — «)? to D1 = —Loﬁ—z\/'y +o(1+ a)

-

D D002 7

[UU T
T

—0.002,. !

Figure 4. Evolution of V(cos@,D(t),\), 6 € (0,7), for D between Dy and D;. The evolution of the
minimum value of V(cos@, D(t), \) is also marked.

Fig. 4 shows how V(cos#, D(t), \) deforms for § € (0,7), D € (D1,Dg). We take here the
same physical parameters m = 0.02, R = 0.02, « = 0.3, [ = %mR2 and I3 = %mR2 as has
been used for Fig. 3. We let the value of A be 10 times a threshold value (more on this in the
next section). It is apparent here that the minimum value of the potential goes from being close

to # = 0 when D is close to D and close to § = m when D is close to D;.
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The TT satisfying the contact criterion is still a system of 6 equations with 6 unknowns, but
for these equations we have defined three functions of time A, D(t) and E(t), and have shown
that the equations of motion (1.5)—(1.9) are equivalent to the system

d )

LNO.6, . w3) =0

dt < 9 7907w3) 9

d ino
ZD(6,w3) = TN (sxa)-va= ymitsin (pve + 1),

ay/d(z - 3) d(cos 0)

d - .
—FE(0,0,,w3) =m(w xa)- vy

dt
= mR(sinO(p(a — cosb) + ws) (¢ + o) + 0(1 — acos 0) (v, — ¢vy)),
%mi‘ = —UGnVA. (1.25)

If we consider the motion of the TT as being determined by the three functions (A, D(¢), E(t))
satisfying these equations and connected by the METT, a useful method to investigate the
inversion of T'T crystallizes.

This system shows that the functions (D(t), E(t)) allows us to analyze the equations of
motion. If we have D(t) and E(t) given, then integrating the METT gives us A(t). With this
information we can find the functions ¢(t) and ws(t) from (1.23). The equations containing
derivatives of D(t) and E(t) in (1.25) are two linear differential equations for the velocities v, (t)
and vy (t).

Thus the METT enables us to qualitatively study properties of a class of solutions that
describes inverting solutions of the TT.

2 Special solutions of TT equations

We have already considered one class of special solutions, the pure rolling solutions satisfying
the nongliding condition vq = § + w x a = 0. They are given by quadratures by solving the
separable equation (1.20).

A special subclass of rolling solutions to T'T are solutions of the T'T where an explicit assump-
tion about the reaction force is taken (F = ¢,z — pug,v4). This means for rolling TT that we
have now two conditions, v4 = 0 and F = g, 2. Note that the dynamically determined reaction
force for the rolling TT, F = mgZz — m%(w X a), is not vertical in general, so the condition
F = g,,2 is a further restriction for rolling solutions of the TT equations.

These solutions play a central role in understanding the inversion of T'T because they belong
to the asymptotic LaSalle set {(L,3,3) : E(L,3,8) = 0}, which attracts solutions of the TT
equations.

Under the pure rolling condition the external force, as given by our model, is purely vertical:
F = g,,2. The system of equations becomes

mi = 0, L = Rogn3 x 2, 3:i

5L

where the third coordinate of the first equation is determined by m$§; = ¢, — mg. Further

reduction using the pure rolling condition & 4 (w x a); 4 = 0 restricted to the plane of support
yields the autonomous system

L x 3, (2.1)

. N 2 1 ~
L = Rag,3 X Z, 3= I—L x 3, (2.2)
1

along with the constraint %(w X a); 5 = 0 (the subscripts 2, g indicate that the vector is

restricted to the supporting plane). But as shown in [7] and [19], we have:
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Proposition 2. For the solutions to (2.2) the constraint %(w xa)z g =0 can be written as
- (Lx3)=0, w xa=0.

These conditions define an invariant manifold of solutions to equations (2.2). Thus for the
solutions of the rolling TT under the assumptions of our model we have that: the vectors L, 2
and 3 lie in the same plane and the angular velocity w is parallel to the vector a. This in turn
implies that the C'M remains stationary (§ = 0). These are the situations where the TT is either
spinning in the upright position, spinning in the inverted position or the TT is rolling around
the 3-axis in such a way that the CM is fixed (tumbling solutions).

In terms of the Euler angles, (2.1) gives rise to three equations of motion and two constraints:

—Lpsinf — 2[@9’ cos 0 + Iswsf = 0,
16+ I3pwssin® — I1p? cos @sin@ = —Rag,, sin 6,

Isws =0,
mR(é(l — acos ) 4+ ab?sin 6 + p? sin (o — cos §) + pws sin 9) =0,
mR (w3 sin§ + w3 cos O + @sinf(a — cos B) + 200 cos f(a — cos 9)) =0, (2.3)

and the quantity g, is determined by (1.15) with v, = 0.
After substituting the equations of motion into the constraint equations, we end up with the
following conditions:

sin@(a[1(92 + ¢?sin® 0) + pws(I1 — I3 + a3 cos ) — Rag, (1 — acosf)) = 0,

w3b(ads + (I — I3) cos f) = 0. (2.4)
Using these conditions, we can determine admissible types of solutions to (2.1). As shown in [21],
these constraints imply #sinf = 0, or that 6 is constant for these solutions to the rolling TT.
Note that this is the condition 2 - (L x 3) = 0 from Proposition 2 when expressed in terms of
Euler angles.

We see that for § = 0 or = 7 we have the upright or inverted spinning T'T, and for constant
6 € (0,m) the first constraint equation (2.4) gives

alyp?sin? 0 + pws(I; — I + alz cos§) — Ragn(1 — acosf) = 0. (2.5)

The first equation of (2.3) implies that ¢ = 0 (i.e. ¢ is constant) and the second equation
of (2.3) gives

I3pws — I1¢? cos @ = —Ragy,. (2.6)

By eliminating g, between (2.5) and (2.6) we obtain I1¢?(a — cos ) + I1¢ws = 0. Here ¢ # 0.
The opposite would lead to g, sinf = 0 in (2.3) (thus contradicting the assumption sin 6 # 0)
and so

ws = p(cosh — ).
Using again (2.6) with the expression for g, we get a second equation for 6 and ws:

—mgRaly; — mR?*a?sin? (1192 cos 6 — I3w3)

<~
I, + mR2a2sin? 0

I3pws — 192 cosf =
I3pws — 112 cos® = —mRayg.

From this relation we easily deduce that g, = mg for rolling solutions to TT with vertical
reaction force (this is obvious if sinf = 0). We summarize these results in a proposition.
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Proposition 3. The solutions to the system (2.2) under the constraint %(w xa)zy =0 are
either spinning solutions 0 = 0, 7w, or tumbling solutions characterized by 8 = 0, 6 € (0,7),
where ¢ and w3 are determined by the system

w3 + ¢(a — cosh) =0, Ispws — I1p% cos@ = —mRag. (2.7)

Note that if we go back to the angular velocity 1, the first equation above becomes ¢+a¢> =0.
This is the condition found by Pliskin [17] where it came up by considering a precessing TT
with stationary CM. These are the tumbling solutions.

We can formally solve (2.7) to obtain equations for the angular velocities as functions of the
inclination angle:

. mRag mRayg
=+ = — 0 . 2.8
4 \/Ig(a—cosﬁ)+11 cosf’ ws = Flor = cos )\/Ig(a—cosﬁ)—l-llcos@ (28)

These equations together with the value of the Jellett integral A = R(I1¢ sin? 6 — I3wz(a—cos 0)),
determine signs in equations (2.8). The values of the parameters «, I1 and I3 give restrictions
whether these equations are defined for all values of cos# in the range (—1,1).

The right hand side of equations (2.8) are real for a full range of cos @ if Isa+ (11 —13) cos6 > 0
for all cosf € (—1,1). If I; > I3 we see by setting cos§ = —1 that I < I3(1 + «). If on the
other hand I; < I3 then by setting cosf = 1 we have the condition I; > I3(1 — ). So if the
parameters satisfy:

l-a<vy<l+a, (2.9)

where v = I /I3, then ¢ and ws in (2.8) are defined and real for all cos§ € (—1,1). For ~
outside this interval, ¢ and w3 will be real for cos § belonging to a subinterval of (—1,1), which is
characterized by the parameters v and a. Given a value of Jellett’s integral A, we can investigate
these intervals for when tumbling solutions exist and the number of tumbling trajectories for
that value (see [19]).

In [7], the relative stability (in the sense of Lyapunov) of a given spinning and tumbling
solution is derived as a relation between the integral A (specifying initial conditions for the TT
in terms of the angular momentum) and physical characteristics of the TT.

Such a solution is stable if, given a value for A, E(#) has a minimum, where Ey(#) is (1.20)
under the conditions § = 0 and ws 4 ¢(a — cosf) = 0 (which is equivalent to Ay/d(cos 8) (o —
cos ) + DR(ysin? 0 + (a — cos6)?) = 0):

E\0)=V (cos 0,D = —()\\/d(cos 0)(cv — cos 9))/(R(Vsin2 0 4+ (a — cos 9)2)), A)
)\2
- 2R%(I;1(1 — cos? 0) + I3(a — cos 0)?)

+ mgR(1 — acos ),

which is the form for the potential for steady motions of an axisymmetric sphere, derived

in [10, 11].

\/mgR3Iz0(1+a)?
VIita—y
position cos@ = —1 is stable [7, 18]. This analysis thus specifies how fast a given TT should be

spun to make solutions to (2.1) stable.

We have characterized the solutions to (1.3) such that v4 = 0 and F = g,,2. Clearly solutions
to (2.2) are also solutions to the system (1.2). To be precise, they are part of the precessional
solutions, for which the angle 6 is constant. The question is whether these are also asymptotic
solutions to the system (1.3).

In particular, if |A| is above the threshold value , only the inverted spinning
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In [19] a theorem of LaSalle type [13] has been formulated to confirm this fact. It is shown
that each solution to (1.3) satisfying the contact criterion - (a + s) = 0 and such that g, (t) > 0
for t > 0 approaches exactly one solution to (2.1) as t — oo. This is because the trajectories
drawn by the solutions to (2.1) constitute an invariant submanifold to the system (1.3) and
belong to the largest invariant set in the LaSalle set {(L,3,8) : E(L,3,5) = 0}. Thus the
solution set to (2.1) can be seen as an asymptotic set for the solutions of the TT equations.

Analysis of special solutions of the TT when v4 = 0 thus leads to the most important
conclusion about TT behaviour. The application of LaSalle’s theorem says that trajectories of
the system (1.3) approach the asymptotic set, which consists of spinning and tumbling solutions.
From the analysis of the equations of motion in the Euler angle form it follows that tumbling
solutions exist for all cosf € (—1,1) if (2.9) is satisfied. If moreover A is above the threshold

\/mgR3Iza(1+a)?
Vita—y
inverted spinning solution is the only attractive asymptotic state in the asymptotic LaSalle set.

Therefore a TT satisfying these condition has to invert. But analysis of dynamics of inversion
is still in its infancy.

value , only the inverted position is stable. Thus we have conditions for when an

3 Reductions of TT equations to equations
for related rigid bodies

In this section we present two reductions of the TT equations that, remarkably, describe motion
of simpler rigid bodies. They are given by differential equations that are simpler but nevertheless
retain certain essential features of the T'T equations. They are interesting in their own right
and may also work as a testing ground for ideas of how to analyse equations of TT.

3.1 The gliding HST

The gliding heavy symmetric top (HST) equations represent an axially symmetric top that is
allowed to glide in the supporting plane.

The movements of the gliding HST are described using the same reference systems as before.
In Fig. 5 we have placed K = (Z, 3, 2) with origin at the contact point A, but this is not essential
in our calculations. We let s be the position vector for the C'M in the inertial system Kj
and a = —I3 is the vector from CM to A. We shall assume the contact criterion, i.e. that

2. (s(t) +a(t)) = 0.

Figure 5. Diagram of the gliding HST. Note that & is in the plane spanned by % and 3.
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We consider equations of motion for the gliding HST with respect to the C'M, and the only
force creating a torque on C'M is the external force F acting at A and having the moment
arm a. For the force applied at A we have F = —ug,va + ¢gn,2. The equations of motion (1.4)
specialize to:

L= (—13) x (gn% — pgnva),  mi=—pg,va, 3=wx3, (3.1)

This is a system of 11 equations for the variables (L, r, T, 3) and for the value of the normal
force g,. The constraint 0 = 2- (s+a) and its time derivatives %(s+a)-2 =0, j—;(s +a)-2=0
determine sz, $; and

_ mgl — mi(cos 0(I;$?sin® 6 + 1,0%) — Izpws sin® 0)

n =

I + mi2sin? @ + mi2uv, cos @ sin 6

System (3.1) rewritten in Euler angles and solved w.r.t. (0, $, ws, ¥y, 1):

0 = A (Ilgb2 sin @ cos 0 — Isws¢sin @ + lpgn v, cos 0 + lgy, sin 9) ) (32)
G = m([g&)g@ — 2116 cos 0 + lpugnry), (3.3)
ws =0, (3.4)
[sin@ :
Dy = o (Tgwsep cos 0+ Iy (62 + % sin? ) — Ig,, cos 0)
HGnVe 2 .2 :
s (I1 + ml® cos® 0) + vy, (3.5)
lfgwgé I + le .
_ B e — Vlp. 3.6
Vy I, mly HnVy — Vg @ (3.6)

We see that Ls = I3ws is an integral of motion, due to rotational symmetry about the 3-axis.
The HST with fixed supporting point A also admits

L: =Ly 2= (L+max (wxa))-2=Ifpsin® 6 4 I3ws cosh
as an integral of motion (where I{ = I; +ml? is the moment of inertia w.r.t. A). For the gliding
HST however, this quantity is not an integral of motion since:

LQ:LA-;C*:;lt(L—i—max(wxa))-éz(axF)-é—l—m(ax (i(wxa)))-é

_ (a x (m& +mg2)) - £ +ma x <jt(w><a)) —m(axva)-2

_ 13 Sinamﬂwgé n I} sin®
1 1

(according to (3.5) and (3.6)).

Due to the presence of the frictional force, the gliding HST is not a conservative system. So
the differentiation of the energy function £ = %mé2 + %w - L 4+ mgs - Z gives the same result
as for the TT: E = F - v4. The derivative of the modified energy function, i.e. the part of the
energy not involving v 4, satisfies %E(t) =mvy, - (w x a), as for TT (see (1.21)).

With the properties of the three functions Lg, L3(t) and E(t) established, we see that the
equations of motion (3.2)—(3.6) are equivalent to the system of differential equations

4
dt

Lpgnvy

Ly =0,
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d I3sinf . Ifsin@

—L:(t)=m(zZ xa) vy = Ll mi*wzf + - = Lpgnvy,

dt I

d - :

@E(t) =m(w xa) - vag=—ml((Py — @ry)fcost + @sin (v, + o)),
4=

dtmr - NgnVAv

in the same way as the system (1.25) is equivalent to equations (1.5)—(1.9). If we substitute the
L;(t)—Lgcos®
Irsin?6

we get, analogously to (1.24), the Main Equation for the gliding HST (MEgHST):

expressions for ws = 5 P = , into the expression for the modified energy function

B 1762 L% (Ls(t) — Lz cosf)?
2 203 215 sin? 0

. 1 ..
E(t) +mglcost = 5];92 + V(cosf,Lg, L;). (3.7)

3.2 Transformation from TT to gliding HST

The gliding HST equations have been introduced here because they appear as a limit of the T'T
equations when Ra = —[ and R — 0. This also transforms integrals of T'T into the integrals of
the gliding HST as well as METT (1.24) into MEgHST (3.7).

The vector a connecting the center of mass to the point of contact is R(a3 — 2) for the TT
system, and is —I3 for the gliding HST. To describe the transformation from TT to gliding
HST we think of the body of TT being stretched (still maintaining its axial symmetry and
the spherical bottom), and the spherical part being shrunk to a point. So it looks like a ball-
point pen during this transformation. The center of mass thus moves up along the 3-axis and
the radius of the sphere becomes small. We take the limit R — 0 subjected to the condition
Ra = —I (see Fig. 6). For the vector equations, the thing that changes is the vector a. We

Figure 6. Transformation from TT to gliding HST: Ra = —I, R — 0.
directly see that the equations of motion for the TT,
m§=F —mg2, L=R3-2xF, 3=wx3,
become the equations of motion for the gliding HST:
m§=F —mgs, L=-I13xF, 3=wxS3,
sincea= Ra3 — Rz =—-13—-R2— —183as R— 0.

The difference between these dynamical systems is that the TT is allowed to glide and roll
in the plane, whereas the gliding HST glides and rotates. In both cases the body in question
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satisfies the contact constraint. We can also see the effects of the transformation applied to the
equations of motion for TT (1.10)—(1.14) expressed in the Euler angles. If we substitute aR
with —[ everywhere in the equations and then let R — 0, we arrive at equations (3.2)—(3.6).

The limiting form of Jellett’s integral A and of Routh’s function is more tricky and does not
immediately lead to Ls and L; for the gliding HST. This is not surprising since A and D are
derived for a spherical body.

For the Jellett integral we get
A = 3wy + R(I1¢sin® 0 + Isws cos§) = ILz + O(R) — IL3.

This transformation is also obvious in vector notation, since A = —L-a = R(L; — aLz) — lL3
as Ra = —I, R — 0. For the Routh function we expand with respect to small R:

I 12 2miIR R2 [T
D = I3ws+/d(cos0) = I3ws —1+m—+ m 0089+m— L sin20 + cos?2 6
I3 I3 I3 I3 I3

2ml cos 0 mR? . 9 9 12
= ws/ I3(I1 +mli?) [1+RI1 T2 + T iz (11 sin® 6 + I3 cos” )

= wy\/Is1} (1 1 pmleost O(R2)> .

I

Combining this with A,

IA—-I/BED 1

LR " IR

[l[f[gwg + RIF (Lo sin? 0 + Isws cos 0)

I cos 0
— lwslsl} (1 + R O(R2)> }
1

= TR [R(Iikflgbsin2 0+ (I7 — mi*) Isws cos ) + O(R2)}
1

= (I{psin® 0 + Iyws cos ) + O(R) = Lz + O(R),

we see that it tends to Lz as R — 0. We have thus retrieved from A and D both functions Lz
and Lg.
Slightly more elaborate is the calculation that the METT (1.24) is transformed to

MEgHST (3.7). It requires careful expansion of the effective potential V(cos@, D(t),\) with
respect to the small variable R (see [21]).

Proposition 4. The METT equation E(t) = g(cos0)8% 4+ V(cos, D(t), \) becomes, under the
transformation Ra = —l, R — 0, the MEgHST:

_ L6 N L3 (Ls(t) — Lgcosf)?

E(t
B=-3 215 215 sin?

+ mgl cos 6.

The MEgHST has simpler effective potential

L3 | (Ls(t) — Lgcos6)?

V(cos®, L:(t), Lg) = 215 217 sin §
1

+ mgl cos 8

than METT, but retains the same structure.
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3.3 The gliding eccentric cylinder

It is also possible to reduce the TT equations so they describe an eccentric rolling and gliding
cylinder (glC). These equations are a special case of the TT equations when A\ = D = 0.

We think of an eccentric cylinder, homogeneous in the g-direction, rolling and gliding on
a supporting plane in the direction of the Z-axis (the cylinder is considered to be long). We
could also see it as a model for an eccentric wheel rolling along the Z-axis in the (z, §)-plane. It
has mass m and radius R. The center of mass C'M is shifted with respect to the symmetry axis
of the cylinder by @R, 0 < a < 1. We let the system K = (1,2, 3) have its origin in CM, where
the 3-axis points along the line determined by C'M and the center of the cross-section circle in
the direction from C'M toward this center. 1 is orthogonal to 3 and 2 = 3 x 1 is parallel to the
y-axis (see Fig. 7).

Figure 7. Diagram of an eccentric cylinder.

We let @ be the angle between the 2-axis and the 3-axis. This will be the single Euler angle
since the cylinder is only rolling in one direction, so that w = 2. Further, we let A denote the
point of contact of the cylinder with the supporting line, so that the vector from CM to A is
a= R(a3 — %) as for the TT.

As we have done previously, we consider the external force acting on the cylinder to be
F = g,Z2 — ugnva, where v4 = v, is the velocity of the point A. The equations of motion for
the glC have the familiar form: m§ = F — mg2 and L =axF.

Observe that there is no third equation (for 3) since the axis 2 has constant direction parallel

t
to §. As the contact criterion 2 - (s + a) = 0 determines the vertical component of s, we reduce
these equations to

m¥ = —pugnva, L=axF, (3.8)

where r = s — 532 is the planar component of the position vector for the C'M.

This is a system of only two equations: one for 8 and one for v,. We thus proceed directly
to the coordinate form of the equations of motion. Note that L = lw =T 62, where I = I is
the moment of inertia with respect to the axis 2 going through CM. We get

162 = Ryugnv,(1 — acos0)2 — Rag, sin 62,
mirg@ +mRA(1 — a cos 0)Z + mRab? sin 0 = —jug, vy . (3.9)

The equations of motion in the form solved w.r.t. highest derivative are then

0= M(l —acosf) — HRagn sin 6,
2 .
Up = i (;gn sinf(1 — acos ) — % (I +mR*(1 — acosf)?) — Rabh?sind.
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The function g, is determined in the same way as (1.15):

_ mgl + mRal6? cos b
I+ mR2a2sin® 0 — mR2asin (1 — acos O) v,

gn

We directly see that we can get these equations from the equations of motion for TT (1.10)—
(1.14) in the special case ¢ = wg = 1, = 0.This corresponds to A = 0, D = 0 for this system,
and the constraint § - § = 0 is satisfied (since the cylinder does not move in the g-direction).
These constraints are consistent with the equations (1.10)—(1.14).

When we consider the gliding eccentric cylinder, we have three natural special cases that can
be integrated by quadratures:

a) the noneccentric case a =0, v4 # 0;
b) the nongliding case v4 = 0, a # 0;
c¢) the nongliding noneccentric case « = 0 and v4 = 0.
For these cases we examine the limits v4 — 0 and/or e — 0 in this model and notice that the

limit v4 — 0 leads only to the static solution 6(¢) = const.
We consider first the case of the axially symmetric cylinder, a = 0. The center of mass and

the geometric center of the cylinder coincides and the vector from C'M to A reduces to a = —RZ.
We use this in (3.8), so the equations of motion become 10 = Rug,v,, mv, + mRO = —pugnv,,
and in the solved form: 0 = %ugnum, Uy = —%Mgnym. These two equations imply that

mRy, + (I + mR2)§ = 0, i.e. mRy, + (I + mR?)0 is constant. We can also obtain these
equations by letting o — 0 in (3.9). If we assume that u is constant (note here that g, = mg),
the system can be solved explicitly for v,(t) and 6(¢):

m 2
va(t) = vp(0)e™ T HOt,
i) = —— "B, (0)e= S nat | (MR (0) + (T + mR2)6(0))
I+mR2 " I +mR2 v '

If we now let v4 — 0 in these equations we get the single equation 6 = 0, saying that the
cylinder is turning with constant speed. This describes the motion of a non-eccentric cylinder
rolling without friction.

In the second case we consider equations for a rolling eccentric cylinder. This means we let
v4 = 0 in the equations of motion:

m8 =F —mgZ, L =axF.
We eliminate F in the second equation to get

d .. o d .
7 (Iw) = a x (m8 + mgz) = a x <—mdt(w X a) +mgz> .

So for the Euler angle # we get the nonlinear equation:

_ —mgaRsing — mR2a6?sin 6
I +mR2((a — cos6)2 +sin?6)’

but this equation is also found through the energy formula, since

0=E=m8-§+w-L+mgs-2
= 00 (I +mR?(sin? 6 + (a — cos0)?)) + 0*mR%a sin 6 + mgRaf sin 6.
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So it admits energy as an integral of motion
1.
E = 592(1 +mR*(sin® 0 + (o — cos 0)?)) +mgR(1 — acos ).

This is a first order autonomous ODE that can be separated and has a solution expressed by
quadratures. The equation for 6 reduces to the special case of the rolling noneccentric cylinder
6 = 0 if we let o« — 0 in this equation.

When we take the limit v4 — 0 in equations (3.9) we get an additional constraint that
F = g,2 is vertical so the result has to differ from the previous. The system becomes one
equation of motion with one constraint:

I6 = —Rag, sin b, (3.10)
mRO(1 — acos0) + mRab?sinh = 0.

%(9(1 —acosh)) =0, i.e. B(1 — acosh) is equal to a con-

The constraint can be rewritten as
stant C.
The value of g, is deduced from the contact criterion as before: g, =

s C
the constraint 0 = [E——

equation in cosf and sin8:

mg[+mRo¢[92 cos 0
I+mR2a2sin? 0
and the expression for g, in equation (3.10) we get a polynomial

. Using

sin0(102 + mR2C%a(a — cos ) — mgR(1 — o cos 9)3) = 0.

Thus with the external force F = g,2 — ugnva we get only solutions with constant # when we
let v, — 0 in the equations of motion (3.9).

4 Conclusions

In this paper we have discussed several different forms of the T'T equations: the vector form, the
Euler angle form, the form leading to METT and the form suitable for discussing the gyroscopic
balance condition. Each form gives different insight into the character of motion of TT and
helps to unveil complicated features of T'T dynamics.

The vector form helps to explain in simple terms why the gliding friction is necessary for
inversion of TT. It also is the most suitable for asymptotic analysis of TT equations and leads
to formulation of conditions for when the inverted spinning state is the only admissible stable
solution. The conditions for the physical parameters of TT and for the initial conditions seem
to agree remarkably well with the experimentally observed features of TT motion.

Analysis of the Euler angle form of TT equations confirms the picture obtained from the vec-
tor equations. It also shows that the functions (A, D, E), being integrals of motion of the rolling
TT, play a special role in understanding the motion of rolling and gliding TT. By eliminating ¢
and ws from the energy E we obtain the METT equation having similar form as the separation
equation for the rolling T'T. From this we can see that during inversion the symmetry axis is
performing fast nutational motion within a nutational band that is moving from the north pole
to the south pole of the unit sphere S2.

Since the Euler equations of TT constitute a nonlinear dynamical system of 6 degrees of
freedom we have studied ways of simplifying these equations by taking dynamically invariant
constraints and certain limits of the physical parameters. Remarkably we have found two such
simplifications that even have mechanical interpretation. The limit «R = —I, R — 0 leads to
the gliding HST equations, which is an interesting system in itself, but the equations are also
interesting in the context of the TT equations because they retain all main features of TT but
are simpler for analytical treatment. We have shown also the constraints §- g = 0, A = 0 and
D = 0 reduces the TT equations to equations for a rolling and gliding eccentric cylinder.
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