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Maladaptive	 neuropathic	 pain	 results	 from	 injury	 or	 disease	 of	 the	 nervous	 system.	 It	 is	
typically	chronic	and	frequently	intractable.	Standard	analgesics,	such	as	opioids,	are	of	little	
use,	while	 the	 gabapentinoids,	 pregabalin	 and	 gabapentin,	 are	 not	 universally	 effective.	 In	
peripherally	generated	neuropathic	pain,	an	initial	inflammatory	response	releases	a	variety	
of	 mediators,	 including	 cytokines	 and	 prostaglandins	 that	 alter	 ion	 channel	 expression	 in	
primary	afferent	neurons.	This	initiates	ectopic	activity	in	sensory	nerves	and	results	in	the	
release	of	ATP	and	a	second	group	of	mediators	from	primary	afferent	 terminals.	The	level	
of	spinal	microglial	activation	is	altered	such	that	microglia	releases	a	third	set	of	mediators,	
notably	brainderived	neurotrophic	factor	(BDNF),	in	the	spinal	dorsal	horn.	Through	various	
mechanisms,	BDNF	increases	excitatory	synaptic	 transmission	whilst	decreasing	inhibitory	
transmission.	The	resulting	“central	sensitization”	contributes	to	the	hyperalgesia,	causalgia,	
and	 allodynia	 that	 are	 associated	 with	 neuropathic	 pain.	 It	 is	 suggested	 that	 targeting	 ion	
channels	 in	 the	 sensory	 nerves	 and	 excitatory	 transmission	 in	 the	 dorsal	 horn	may	 lead	 to	
urgently	needed	new	treatments	for	neuropathic	pain.	It	is	also	suggested	that	the	effectiveness	
of	 gabapentinoids	 may	 be	 increased	 by	 combining	 these	 agents	 with	 the	 TRPV1	 agonist	
capsaicin.	
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INTRODUCTION

Pain	is	an	unpleasant,	yet	vital,	physiological	process	
that	signals	on	actual	or	potential	tissue	damage.	By	so	
doing,	it	ensures	the	survival	of	the	species.	In	contrast,	
injury	 to	 the	 somatosensory	 system	 can	 produce	
“neuropathic”	 pain	 that	 lasts	 for	 months	 or	 years	
after	 any	 injury	 has	 healed	 [1,	 2].	 This	 maladaptive	
“disease	of	pain”	has	a	1.53%	prevalence	within	 the	
general	 population	 [3,	 4]	 and	 imposes	 a	 significant	
financial	burden	on	healthcare	systems.	Neuropathic	
pain	 can	 be	 associated	 with	 diabetic,	 postherpetic,	
or	 HIVrelated	 neuropathies,	 with	 fibromyalgia	 and	
osteoarthritis,	 and	with	 traumatic	 nerve,	 spinal	 cord,	
or	brain	injuries	(including	stroke).	It	is	characterized	
by	 allodynia	 (generation	 of	 a	 painful	 sensation	 in	
response	 to	 an	 innocuous	 stimulus),	 hyperalgesia	
(a	 heightened	 response	 to	 a	 noxious	 stimulus),	 and		
causalgia	 (an	 ongoing	 burning	 pain	 experienced	 by	
many	neuropathic	pain	patients),	as	well	as	shooting	or	

“electric	 shocklike”	 spontaneous	 pain.	 It	 is	 difficult	
to	treat	as	it	is	characteristically	resistant	to	the	action	
of	 opioids	 and	 other	 “standard”	 analgesics.	 	 “Anti
allodynic”	 drugs,	 such	 as	 canabinoids,	 amitriptyline,	
gabapentinoids,	 and	 other	 anticonvulsants,	 are	
effective	 only	 in	 about	 30%	 of	 patients	 [47].	 There	
is	 a	 clear	 need	 therefore	 for	 improved	understanding	
of	the	aberrations	of	sensory	processing	that	underlie	
the	 emergence	 and	 persistence	 of	 neuropathic	 pain.	
This	 review	 will	 outline	 the	 current	 status	 of	 our	
understanding	of	 the	etiology	of	neuropathic	pain,	as	
might	result	from	peripheral	nerve	trauma	or	disease
associated	 peripheral	 neuropathy.	 We	 will	 seek	 to	
identify	aspects	of	the	pathophysiological	process	that	
may	represent	targets	for	therapeutic	intervention.

GENERAL MECHANISMS OF NEUROPATHIC 
PAIN: THE CCI MODEL

Peripheral	 nerve	 damage,	 such	 as	 that	 generated	
by	 chronic	 constriction	 injury	 (CCI)	 of	 the	 sciatic	
nerve,	 induces	 painrelated	 behaviors	 in	 rodents	 that	
are	 ethically	 and	 scientifically	 accepted	 as	 a	 model	
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for	 many	 forms	 of	 human	 neuropathic	 pain.	 Seven	
or	 more	 daylong	 CCI	 promotes	 release	 of	 pro
inflammatory	 cytokines,	 growth	 factors,	 and	 other	
mediators	 from	 damaged	 and	 inflamed	 tissue	 at	 the	
site	of	the	injury	[2,	7,	10,	11]	(Fig.	1).	These	factors	
act	directly	on	firstorder	primary	afferent	neurons	to	
produce	an	enduring	increase	in	their	excitability	[12
14].	This	promotes	release	of	a	second	set	of	mediators	
(cytokines,	 chemokines,	 neuropeptides,	 ATP,	 and	
growth	 factors)	 from	 glutamatergic	 primary	 afferent	
terminals	 in	 the	 spinal	 dorsal	 horn.	 These	 alter	 the	
state	of	activation	of	spinal	microglial	cells	 [15,	16],	
which,	 in	 turn,	 release	 yet	 another	 set	 of	 mediators,	
including	 brainderived	 neurotrophic	 factor	 (BDNF).	
This	 set	 promotes	 a	 slowly	 developing	 increase	 in	
the	excitability	of	secondorder	neurons	 in	 the	dorsal	
horn	 of	 the	 spinal	 cord	 [1619].	 This	 change,	 which	
develops	 progressively	 during	 CCI,	 is	 known	 as	
central	 sensitization	 [2024].	 Whereas	 alterations	 in	
spinal	microglial	signaling	trigger	pain	onset,	enduring	
activation	 of	 astrocytes	 is	 thought	 to	 be	 responsible	
for	 the	 maintenance	 of	 central	 sensitization	 [7,	 17,	
25,	 26].	 The	 persistence	 of	 neuropathic	 pain	 also	
involves	 enduring	 changes	 in	 thalamic	 and	 cortical	
physiology	[27,	28],	changes	in	descending	inhibition	
from	the	rostral	ventromedial	medulla	[7,	2933],	and	
longterm	 sensitization	 of	 peripheral	 nociceptors	 [7,	
33,	 34].	 Although	 neuropathic	 pain	 can	 result	 from	
a	 variety	 of	 insults	 to	 peripheral	 nerves,	 including	

diabetic	 or	 HIVAIDS	 neuropathy	 [35,	 36],	 axotomy	
[12,	13,	37],	nerve	crush	 [38],	or	compression	 injury	
[39],	 the	 appearance	 of	 ectopic	 action	 potentials	 and	
spontaneous	activity	in	primary	afferent	fibres	seems	to	
be	the	initial	trigger	that	initiates	central	sensitization	
in	 many,	 if	 not	 all,	 types	 of	 peripherally	 generated	
neuropathic	 pain	 [13,	 24,	 3946],	 including	 that	
associated	with	herpes zoster	[47]	and	HIV	infection.	
More	 importantly,	 these	 changes	 in	 sensory	 nerve	
activity	 are maintained	 as	 long	 as	 the	 pain	 persists	
[13].	Persistent	ectopic	afferent	activity	 is	 thought	 to	
provide	 increased	 excitatory	 drive	 to	 neurons	 in	 the	
already	sensitized	dorsal	horn	[48,	49].	

TARGETS FOR THERAPEUTIC 
INTERVENTION

As	was	mentioned	above,	neuropathic	pain	is	relatively	
resistant	 to	 the	 action	of	opioids.	This	 likely	 reflects	
downregulation	of	mopioid	 receptors	at	a	variety	of	
points	in	nociceptive	transmission	pathways	[50,	51].	
Figure	2	illustrates	high	voltageactivated	(HVA)	Ca2+ 
channel	 currents	 (ICa)	 recorded	 from	 small	 neurons	
of	 the	 rat	 dorsal	 root	 ganglia	 (DRGs).	 In	 animals	
subjected	 to	 axotomyinduced	 nerve	 injury,	 	 the	
ability	of	the	mopioid	DAMGO	to	reduce	Ntype	ICa	is	
decreased	[51].	 In	control	animals,	DAMGO	reduced	
this	 current	 by	 34.8	 ±	 2.3%	 (n	 =	 15)	 compared	 to	 a	

F i g. 1. Scheme	to	show	interactions	between	primary	afferents,	dorsal	horn	neurons,	microglia,	and	astrocytes	in	the	context	of	chronic	
pain	(modified	from	Biggs	et	al.	[77]	and	reproduced	here	under	a	Creative	Commons	Attribution	License;	http://creativecommons.org/
licenses/by/2.0).

Р и с. 1.	Схема,	яка	ілюструє	взаємодію	первинних	аферентів,	нейронів	дорсального	рога,	мікроглії	та	астроцитів	у	разі	хронічного	
болю.
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22.6	±	2.3%	(n	=	12)	reduction	in	depression	in	nerve
injured	 (axotomized)	animals	 (P <	0.03,	Fig.	2C);	an	
effect	is	likely	attributable	to	decreased	expression	of	
functional	opioid	receptors.	
Nonopioid	 drugs	 with	 established	 clinical	

efficacy	 in	 neuropathic	 pain	 include	 cannabinoids,	
gabapentinoids	 (pregabalin	 and	 gabapentin),	 and	
noradrenaline/serotonin	uptake	blockers	(amitriptyline	
and	venlafaxine)	[5].	The	efficacy	of	drugs	is	related	to	
etiology	of	the	pain,	with	HIVAIDS	neuropathy	being	
particularly	 resistant.	As	was	mentioned,	 therapeutic	
management	of	all	types	of	neuropathic	pain	combined	
is	effective	only	in	30%	of	the	patients.	For	this	reason,	
new	therapeutic	approaches	are	urgently	required.	We	
will	 consider	 four	 possible	 points	 of	 intervention	 in	
the	scheme	shown	in	Fig.	1.	These	are:	(i)	blocking	the	
action	of	inflammatory	mediators	at	the	site	of	injury,	
(ii)	 blocking	 consequences	 of	mediator	 action	 at	 the	
site	 of	 injury,	 (iii)	 targeting	 synaptic	 transmission	
in	 the	 spinal	 dorsal	 horn,	 and	 (iv)	 augmenting	 the	
effectiveness	of	currently	available	therapies.

Blocking the Action of Inflammatory Mediators at 
the Site of Injury. Although	it	has	been	demonstrated	
repeatedly	 that	 interference	 with	 the	 actions	 of	
cytokines	 or	 growth	 factors	 can	 delay	 or	 prevent	 the	
onset	 of	 neuropathic	 pain	 in	 animal	models	 [5254],	
this	 may	 not	 be	 relevant	 to	 pain	 management	 in	 the	
clinical	 situation.	 Patients	 experiencing	 neuropathic	
pain	 are	 typically	 examined	 several	 months	 after	
an	 initial	 trauma.	 In	 the	 case	 of	 pain	 associated	

with	 diseaserelated	 neuropathies,	 it	 is	 impossible	
to	 determine	 when	 pathophysiological	 changes	
underlying	 the	 pain	 were	 actually	 initiated.	 Thus,	
therapies	 must	 be	 directed	 against	 chronic	 changes	
initiated	by	inflammatory	mediators	rather	than	toward	
blocking	their	action	per se.	This	idea	is	underlined	by	
data	 shown	 in	 Fig.	 3.	 The	 latter	 illustrates	 the	 time	
course	 of	 changes	 in	 the	 withdrawal	 threshold	 for	
a	 pressure	 stimulus	 in	 rats	 subjected	 	 to	 CCI	 of	 the	
sciatic	nerve.	As	the	animals	develop	signs	of	allodynia	
and	 hyperalgesia,	 the	 withdrawal	 threshold	 drops	
from	 an	 initial	 value	 of	 about	 15	 g	 to	 2.41	 ±	 0.49	 g	 
(n	 =	 12)	 over	 a	 6daylong	 period	 but	 then	 remains	
practically	constant	for	further	9	days	(2.98	±	0.58	g	at	
day	15).	Open	circles	on	the	graph	are	replotted	values	
from	the	communication	of	Nadeau et al.	[54]	showing	
relative	 levels	 of	 IL1b	 in	 the	 rat	 sciatic	 nerve	 after	
injury.	The	cytokine	concentration	peaks	after	about	7	
days	and	 then	declines.	At	 the	14th	day,	 the	cytokine	
concentration	 is	 starting	 to	 revert	 to	 control	 values,	
yet	 the	 reduced	 withdrawal	 threshold	 (indicative	 of	
allodynia)	persists.	Thus,	blocking	cytokine	action	(at	
least	 IL1b	 action)	 is	 unlikely	 to	 be	 effective	 in	 the	
clinical	situation.	It	 is	analogous	to	“closing	the	barn	
door	after	the	horse	has	bolted.”	It	is	also	possible	that	
preventing	all	actions	of	cytokines	may	be	deleterious,	
as	this	may	compromise	functional	recovery	of	injured	
nerves	[54].

Blocking Consequences of Mediator Action at 
the Site of Injury.	 Since,	 as	 was	 mentioned	 above,	

F i g. 2.	Ten	days	of	sciatic	nerve	injury	(induced	by	axotomy)	reduces	μopioid	effectiveness	in	small	dorsal	root	ganglia	(DRG)	neurons.	
A	and	B)	Examples	of	HVA	Ca2+	channel	currents	recorded	in	response	to	voltage	steps	to	–10	mV	from	–90	mV.	Ba2+	was	used	as	the	
charge	carrier	(for	further	details,	see	Abdulla	and	Smith	[51]).	The	μopioid	agonist	DAMGO	(1	mM)	produces	robust	suppression	of	the	
current	in	a	control	DRG	neuron	(A),	but	a	much	weaker	effect	on	a	small	DRG	neuron	derived	from	an	animal	10	days	after	sciatic	nerve	
section	(axotomy,	B).	C)	Summary	of	the	effects	of	a	μopioid	on	Ca2+	channel	currents	in	small	L4L6	DRG	neurons	from	control	animals	
and	those	10	days	after	sciatic	nerve	axotomy.	Under	control	conditions	(1),	1	mM	DAMGO	reduced	the	current	by	34.8	±	2.3%	(n	=	15)	
compared	to	22.6	±	2.3%	(n	=	12)	depression	in	nerveinjured	(axotomized,	2)	animals	(P	<	0.03).	Vertical	scale)	Suppression	of	HVA	ICa,	%.

Р и с. 2.	Послаблення	дії	μопіоїду	на	дрібні	нейрони	гангліїв	дорсальних	корінців	через	10	днів	після	ушкодження	сідничного	
нерва	(аксотомії).
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the	 appearance	 of	 ectopic	 action	 potentials	 and	
spontaneous	 spike	 activity	 in	 primary	 afferent	 fibres	
seems	 to	 be	 the	 initial	 trigger	 that	 initiates	 central	
sensitization	in	many,	if	not	all,	types	of	peripherally	
generated	 neuropathic	 pain	 [13,	 24,	 3946];	 ion	
channels	 in	 primary	 afferent	 neurons	 represent	 an	
attractive	 target	 for	 therapeutic	 intervention.	 It	
is	 relevant	 to	 mention	 in	 this	 context	 that	 several	
standard	 therapeutic	 approaches	 to	 treat	 neuropathic	
pain	[5]	are	directly	or	indirectly	targeted	toward	ion	
channels.	 For	 example,	 gabapentinoids	 affect	 Ca2+ 
channel	 expression	 [5559],	 and	 some	drugs,	 such	as	
carbamazepine	 and	 ziconotide,	 target	 ion	 channels	
directly	[60].
In	 the	 context	 of	 the	 scheme	 illustrated	 in	 Fig.	 1,	

recent	work	in	our	laboratory	was	focused	on	studying	
the	 longterm	 actions	 of	 IL1b on	 dissociated	 DRG
defined	 medium	 culture	 [14,	 61,	 62].	 Since,	 as	 is	
illustrated	in	Fig.	3,	nerve	injury	causes	a	peak	increase	
in	the	IL1b	concentrations	after	7daylong	CCI,	and	
this	is	returning	to	control	values	after	14	days	[54],	we	
exposed	DRG	neurons	to	IL1b	(100	pM)	for	periods	
of	 5	 to	 6	 days.	 Recordings	 were	 made	 from	 large	

neurons	defined	by	brief	sharp	action	potentials,	from		
mediumsized	neurons	with	somewhat	broader	spikes,	
which	are	believed	to	be	the	cell	bodies	of	nociceptive	
Ad	fibers,	and	from	two	categories	of	small	cells	with	
broad	spikes	(Fig.	4).	The	latter	represent	cell	bodies	
of	Cfibers,	but	those	binding	the	plant	lectin	IB4	are	
thought	 to	 be	 nonpeptidergic,	 whereas	 those	 failing	
to	 bind	 the	 lectin	 may	 be	 peptidergic	 and	 are	 more	
likely	 to	 be	 nociceptive.	 The	 effects	 of	 IL1b	 were	
cell	typespecific.	Whereas	the	excitability	of	medium	
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F i g. 3.	Comparison	of	changes	in	the	withdrawal	threshold	(1,	g)	
and	relative	levels	of	IL1β	(2)	in	the	sciatic	nerve	following	chronic	
constriction	 injury	 (CCI)	 of	 the	 rat	 sciatic	 nerve. Open	 circles	
represent	 the	 time	course	of	 the	 effects	 of	 relative	 concentrations	
of	 IL1β	 replotted	 from	 the	published	data	 of	Nadeau	 et	 al.	 [54].	
Filled	 circles	 represent	 the	withdrawal	 thresholds	 of	 the	 operated	
limb	determined	with	Von	Frey	filaments	(s.e.m.	are	also	shown	for	
results	on	12	animals).

Р и с. 3.	 Порівняння	 змін	 порога	 відсмикування	 кінцівки	 (1,	
ліва	шкала,	г)	і	відносного	рівня	IL1β	(2,	права	шкала,	ум.	од.)	
у	 сідничному	 нерві	 після	 хронічного	 передавлювання	 (ССІ,	
позначено	пунктирною	лінією)	цього	нерва.	

F i g. 4.	Illustration	of	neuron	types	in	the	rat	dorsal	root	ganglion	
(DRG). A)	 Phasecontrast	 photomicrograph	 of	 cultured	 DRG	
neurons	 to	 show	 that	 large	 and	 small	 neurons	 can	 be	 readily	
distinguished	in	such	cultures.	B	and	C)	After	incubation	of	neurons	
with	 fluorescently	 labeled	 IB4;	 some	 small	 cells	 exhibit	 IB4	
binding,	whereas	 others	 do	 not	 (marked	with	 open	 arrows).	DF)	
Action	 potentials	 recorded	 from	 large,	 medium,	 and	 small	 DRG	
neurons,	respectively.

Р и с. 4.	Типи	нейронів	у	дорсальнокорінцевому	ганглії	щура.	
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units	and	small	IB4+	cells	was	increased,	that	of	small	 
IB4–	 neurons	 was	 unchanged,	 and	 that	 of	 large	
neurons	was	decreased.	Data	demonstrating	increased	
excitability	 of	 medium	 cells	 from	 our	 original	
work	 [61]	 has	 been	 transformed	 as	 an	 “allpoint	
histogram”	in	Fig.	5.	The	original	digital	points	used	
to	describe	action	potential	discharges	 in	 response	 to	
a	 standard	 depolarizing	 current	 ramp	 were	 assigned	
to	 10	 mV	 bins	 starting	 at	 –20	 mV	 (A).	 Data	 points	
were	 collected	 from	 19	 control	medium	 neurons	 and	
25	medium	 neurons	 exposed	 to	 IL1b. The	 presence	
of	 more	 points	 in	 all	 10	 mV	 bins	 positive	 with	
respect	 to	 –20	 mV	 is	 indicative	 of	 increased	 action	
potential	 discharges	 in	 the	 continued	 presence	 of	
the	 cytokine. 	Although	 excitability	 of	 both	medium	
and	 small	 IB4+	 neurons	 was	 increased,	 dissimilar	
underlying	 ion	 mechanisms	 operated	 in	 the	 two	 cell	
types	 [62].	 Thus,	 IL1b	 significantly	 increased	 rates	
of	 hyperpolarizationactivated	 cyclic	 nucleotide
gated	 current	 (IH) activation	 in	 medium	 neurons	 and	
produced	 a	 leftward	 shift	 in	 the	 voltage	 dependence	
of	 activation	 of	 tetrodotoxinsensitive	 sodium	
current	 (TTXS	 INa).	 There	 were	 also	 reductions	 in	
the	densities	of	various	potassium	currents	 (IK),	 such	
as	 Ca2+dependent	 (IK,Ca)	 and	Atype	 components.	 In	
small	 IB4+	DRG	neurons,	 IL1b	 significantly	 slowed	
the	rate	of	TTXS INa inactivation	and	reduced	the	IK,Ca 
density	without	affecting	Atype	components	of	IK.
The	general	implication	from	these	findings	is	that	

reduction	 of	 voltagegated	 sodium	 channel	 currents,	
enhancing	 of	 increasing	K+	 currents,	 or	 reduction	 of	
IH	 may	 represent	 prospective	 therapeutic	 approaches	

to	neuropathic	pain.	Decreases	in	K+	channel	currents	
can	be	attenuated	by	the	use	of	K+	channel	activators	
[63].	These	include	retigabine	[64,	65]	for	Kv7.2	and	
7.3	 channels	 and	 SKA31,	 DCEBIO,	 and	 CyPPA	 for	
intermediate	 and	 smallconductance	 IK,Ca	 	 channels	
[6668] .	A	wide	 variety	 of	Na

+	 channel	 blockers	 are	
available;	 some	 local	 anesthetics,	 newer	 compounds,	
such	 as	 ranolazine	 [69],	 the	 tarantula	 venom	peptide	
ProTxII	 [70],	 and	 certain	 sea	 anemone	 toxins	 [71],	
target	NaV	1.7,	a	channel	subtype	strongly	implicated	
in	neuropathic	pain	[72,	73].	Recently,	the	IH channel 
blocker	ivabradine	was	approved	for	the	management	
of	 certain	 cardiac	 dysrhythmias	 and	 angina,	 but	 its	
ability	 to	 block	 IH	 in	 DRG	 neurons	 remains	 to	 be	
demonstrated	 with	 respect	 to	 its	 ability	 to	 attenuate	
signs	of	neuropathic	pain.

Targeting Synaptic Transmission in the Spinal 
Dorsal Horn. We	 have	 shown	 that	 CCI	 increases	
excitatory	synaptic	drive	to	putative	excitatory	neurons	
in	 the	 rat	 substantia gelatinosa	 whilst	 decreasing	
excitatory	 synaptic	 drive	 to	 putative	 inhibitory	
neurons	 [74,	 75].	 Both	 effects	 are	 mediated,	 at	 least	
in	 part,	 by	 the	 release	 of	 BDNF	 from	microglia	 [19,	
76,	77].	Although	the	use	of	various	types	of	glutamate	
antagonists	has	been	suggested	for	use	 in	neuropathic	
pain,	 results	 have	 been	 quite	 disappointing.	This	was	
perhaps	 because	 consideration	 was	 not	 given	 to	 the	
possibility	 that	 different	 glutamate	 (AMPA)	 receptor	
subtypes	may	exist	on	excitatory	and	inhibitory	spinal	
cord	 neurons.	 In	 order	 to	 alleviate	 pain,	 it	 would	
seem	 desirable	 to	 selectively	 target	 AMPA	 receptors	
(AMPARs)	 on	 excitatory	 neurons.	 We,	 therefore,	

A B

F i g. 5.	 Use	 of	 allpoint	 histograms	 to	 illustrate	 an	
IL1βinduced	 increase	 in	 the	 excitability	 of	 medium	
DRG	neurons.	A)	Action	potentials	(APs)	evoked	using	
a	 standard	 currentclamp	 command	 (0	 to	 2	 nA	 in	 500	
msec).	Resting	potential	was	standardized	to	–60	mV	by	
steadystate	current	injection.	Digital	points	describing	
AP	 trajectories	 have	 been	 assigned	 to	 10	 mV	 bins	
starting	from	–20	mV.	Abscissa)	Time,	msec;	ordinate)	
voltage,	mV.	B)	Resultant	 histograms	 using	 all	 digital	
points	 collected	 from	 22	 control	 neurons	 (1)	 and	 23	
neurons	maintained	in	the	presence	of	100	pM	IL1β	(2)	
for	56	days.	Note	increased	points	per	bin	for	neurons	
maintained	 in	 the	 presence	 of	 the	 cytokine,	 indicating	
that	 more	 AP	 were	 generated	 in	 this	 population.	
Abscissa)	Voltage,	mV	(voltage	bins	10	mV);	ordinate)	
number	of	digital	points.

Р и с. 5.	 Використання	 “всеточкових”	 гістограм	
для	 ілюстрації	 підвищення	 збудливості	 середніх	 за	
розмірами	нейронів	дорсальнокорінцевих	гангліїв.
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used	 the	 selective	 polyamine	 blocker	 IEM1460	 [78] 
to	 examine	 the	 distribution	 of	 Ca2+permeable	AMPA	
receptors	 (CPAMPARs)	 on	 tonicfiring	 (putative	
inhibitory)	 and	 delayfiring	 (putative	 excitatory)	
neurons	 in	 the	 rat	 substantia gelatinosa [79].	 Figure	
6A	 illustrates	 superimposed	 evoked	 EPSCs	 (eEPSCs)	
in a substantia gelatinosa	neuron	by	stimulation	of	the	
dorsal	root	entry	zone.	IEM	1460	(50	mM)	reduced	the	
amplitude	 of	 the	 response	 by	 35%,	 and	 the	 response	
was	 almost	 completely	 eliminated	 by	 the	 subsequent	
addition	of	5	mM	CNQX	(data	not	shown).	IEM	reduced	
the	 eEPSC	 amplitude	 in	 delay	 neurons	 by	 14.9	 ±	 
±	0.04%	(n	=	14)	and	 that	 in	 tonic	neurons	by	16.8	±	
±	0.65%	(n	=	18).	Because	the	intensity	of	suppression	
in	the	two	cell	types	is	not	significantly	dissimilar	(P > 
>	0.15;	B),	primary	afferent	synapses	activate	at	 least	
nearly	 similar	 populations	 of	AMPARs	 on	 tonic	 and	

delay	 neurons.	 It	 has	 been	 suggested,	 however,	 that	
Ca2+permeable	 AMPARs	 that	 lack	 GluA2	 subunits	
play	 a	 major	 role	 in	 the	 etiology	 of	 inflammatory	
pain	[80].	If	a	similar	situation	is	true	for	neuropathic	
pain,	this	would	suggest	that	drugs,	such	as	IEM1460,	
would	exert	therapeutic	benefit.	In	putative	excitatory	
delay	 neurons,	 IEM	 reduces	 the	 eEPSC	 amplitude	 to	
a	 comparable	 extent	 in	 neurons	 from	 shamoperated	
and	 CCI	 animals.	 There	 is	 no	 obvious	 increase	 in	
IEM	sensitivity	(C).	In	contrast,	there	is	a	loss	of	IEM	
sensitivity	 in	 tonic	 neurons	 (D).	 It	 could	 be	 argued,	
therefore,	 that	 IEM1460	 would	 continue	 to	 impede	
excitatory	 drive	 to	 excitatory	 neurons	without	 that	 in	
CCI	animals,	while	affecting	that	to	inhibitory	neurons.	
To	 the	 best	 of	 our	 knowledge,	 however,	 IEM	has	 not	
yet	 been	 tested	 in vivo	 in	 chronic	 pain	 models.	 One	
issue	 that	may	 impair	 the	 effectiveness	of	 IEM	 is	 the	

F i g. 6.	Actions	of	IEM	1460	on	excitatory	synaptic	transmission	in	substantia gelatinosa	neurons.	A)	Superimposed	recordings	of	evoked	
field	EPSCs	from	the	dorsal	root	entry	zone	before	and	after	application	of	50	mM	IEM	1460	(IEM).	B)	Diagram	illustrating	nearly	similar	
effectiveness	of	IEM	1460	on	tonic	(n	=	14)	and	delay	(n	=	18)	neurons	(P	>	0.15).	In	C,	1)	Characteristic	firing	pattern	of	a	delay	neuron	
to	a	depolarizing	current	command;	2)	lack	of the	effect	of	CCI	on	the	pharmacological	properties	of	delay	neurons.	IEM	1460	(50	mM)	
produces	nearly	similar	amounts	of	depression	of	evoked	EPSCs	in	neurons	(n	=	14)	from	shamoperated	(control)	animals	and	in	those	
from	animals	subjected	to	CCI	(n	=	10;	P	>	0.3).	In	D,	1)	Characteristic	firing	pattern	of	a	tonic	neuron	in	response	to	a	depolarizing	current	
stimulus;	2)	CCI	alters	 the	pharmacological	properties	of	 tonic	neurons.	 IEM	1460	(50	mM)	produces	noticeable	depression	of	evoked	
EPSCs	in	neurons	from	shamoperated	animals	(n	=	18)	but	not	in	neurons	from	animals	subjected	to	CCI	(n	=	14;	P	<	0.01).	Vertical	scales	
in	C2	and	D2)	Normalized	amplitudes	of	field	eEPSCs;	control	values	are	taken	as	1.0.

Р и с. 6.	Впливи	ІЕМ	1460	на	збуджуючу	синаптичну	передачу	в	нейронах	желатинозної	субстанції.
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possibility	that	not	all	tonic	neurons	are	inhibitory	[81].
Augmenting the Effectiveness of Currently 

Available Therapies. As	 was	 mentioned	 above,	 the	
gabapentinoid	 drugs	 gabapentin	 and	 pregabalin	 are	
firstline	 treatments	 for	various	 forms	of	neuropathic	
pain	 in	 Western	 Europe	 and	 North	 America	 [47].	
The	 effectiveness	 of	 these	 drugs	 is	 ascribed	 to	 the	
appearance	 of	 dosedependant	 side	 effects,	 which	
preclude	 the	 use	 of	 higher	 and,	 potentially,	 more	
effective	 doses.	 It	 may	 be	 suggested	 that	 targeting	
gabapentinoids	to	nociceptive	neurons	and	increasing	
their	 antiallodynic	 effectiveness	 might	 lessen	 the	
dizziness,	 drowiness,	 fatigue,	 and	 peripheral	 edema	
seen	with	these	substances.

Gabapentinoids	 are	 transported	 into	 neurons	 via	
the	Lneutral	amino	acid	 transporter	system	[82,	83].	
Once	inside,	they	bind	with	the	b2d	accessory	subunit	
of	voltagegated	Ca2+	channels	[5557,	84].	Since	this	
subunit	 is	 involved	 in	 trafficking	 and	 insertion	 of	
Ca2+	channels	into	the	cell	membrane	[85],	prolonged	
exposure	 to	 gabapentinoids	 reduces	 the	 surface	
expression	of	Ca2+	channels. This	is	thought	to	impair	

voltagegated	Ca2+	 influx	 into	nerve	 terminals	 and	 to	
reduce	 neurotransmitter	 release.	 Such	 an	 action	 at	
primary	 afferent	 terminals	 is	 assumed	 to	 attenuate	
transfer	of	nociceptive	information	[55].
We	suggest	that	TRPV1	channels	may	be	used	to	load	

neurons	with	gabapentinoids.	This	idea	was	developed	
from	observations	with	local	anesthetics.	Because	local	
anesthetics	must	 reach	 an	 intracellular	 site	 of	 action	
to	 exert	 their	 effect	 [86],	 quaternary	 (permanently	
positively	charged)	local	anesthetics,	such	as	QX	314+,	
are	 ineffective	 when	 applied	 extracellularly,	 as	 they	
fail	 to	cross	 the	plasma	membrane.	Yet	when	TRPV1	
channels	are	opened	by	capsaicin,	a	potent	anesthetic	
effect	of	QX	314+	is	observed	both	in vitro and in vivo 
[87,	 88].	This	 effect	 is	 ascribed	 to	 the	permeation	of	
open	TRPV1	channels	by	QX	314+.
We	have	preliminary	data	to	show	that	gabapentinoids	

can	also	enter	neurons	through	open	pores	of	the	TRPV1	
channels	 [89].	 We	 synthesized	 a	 positively	 charged	
quaternary	analog	of	gabapentin	(Fig.	7A	and	B)	[90]	
and	 used	 it	 to	 replace	 all	 cations	 in	 the	 extracellular	
fluid	 (Na+,	 K+,	 and	 Ca2+).	 Wholecell	 recordings	
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F i g. 7.	 Augmentation	 of	 the	 effectiveness	 of	
gabapentinoid	by	their	permeation	through	TRPV1	
channels.	A)	Structure	of	gabapentin.	B)	Structure	
of	 its	 quaternary	 analog	 [90].	CF)	Monitoring	 of	
the	 dorsal	 horn	 excitability	 by	means	 of	 confocal	
Ca2+	 imaging.	 Sample	 35	 mM	 K+induced	 Ca2+ 
signals.	 While	 signals	 are	 unaffected	 by	 acute	
exposure	 to	 100	 mM	 gabapentin	 (C	 and	 D),	 a	
pronounced	 attenuation	 of	 Ca2+	 signals	 is	 seen	
in	 a	 culture	 exposed	 to	 gabapentin	 for	 5	 days	 (E	
and	 F).	 Abscissa)	 Time,	 sec;	 ordinate)	 arbitrary	
fluorescence	units.

Р и с. 7.	 Підвищення	 ефективності	 габапенти
ноїдів	 внаслідок	 їх	 проникнення	 через	 канали	
TRPV1.
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were	 made	 from	 small	 DRG	 neurons	 that	 express	
TRPV1	 channels	 [91,	 92].	 When	 TRPV1	 channels	
were	 opened	 by	 capsaicin,	 an	 inward	 current	 carried	
exclusively	 by	 the	 quarternary	 analog	 of	 gabapentin	
was	noted.	Since	it	was	attached	to	the	only	available	
charge	carrier,	gabapentin	must	have	entered	neurons	
through	TRPV1	 channels.	We	 then	 used	 organotypic	
cultures	 of	 the	 rat	 spinal	 cord	 and	 monitored	 their	
excitability	 by	 exposing	 them	 to	 highpotassium	 (35	
mM)	challenge	and	recording	changes	in	intracellular	
calcium	by	means	of	confocal	imaging	and	fluo4	AM	
[93].	After	5daylong	exposure	to	100	mM	gabapentin,	
Ca2+	 responses	 were	 significantly	 reduced,	 whereas	
acutely	 applied	 gabapentin	 was	 ineffective	 (CF)	
[89].	Chronic	exposure	to	gabapentin	at	a	 lower	dose	
(10	mM)	 failed	 to	 reduce	 the	 dorsal	 horn	 excitability	
when	 applied	 alone.	 	 However,	 when	 the	 cultures	
were	 transiently	exposed	to	capsaicin	(three	1hlong	
applications)	 in	 the	 continued	 presence	 of	 this	 low	
(subeffective)	 concentration	 of	 gabapentin	 (10	 mM),	
a	 clear	 suppression	 of	 excitability,	 as	 monitored	 by	
evoked	Ca2+	response,	was	seen	(data	not	shown)	[89].	
Thus,	capsaicin	augments	gabapentinoid	effectiveness	
in vitro,	but	we	have	yet	 to	demonstrate	whether	 this	
combination	 is	 superior	 to	 gabapentinoids	 alone	 in	
relief	of	allodynia	in vivo.

DISCUSSION

We	have	considered	four	possible	targets	for	therapeutic	
intervention	in	neuropathic	pain.	These	were	blocking	
the	 action	 of	 inflammatory	 mediators	 at	 the	 site	 of	
injury,	 blocking	 consequences	 of	 mediator	 action	 at	
the	site	of	injury,	targeting	synaptic	transmission	in	the	
spinal	 dorsal	 horn,	 and	 augmenting	 the	 effectiveness	
of	currently	available	therapies.
As	was	discussed	above,	it	is	unlikely	that	blocking	

the	 actions	 of	 peripheral	 inflammatory	 mediators	
will	 be	 effective,	 as	 the	 persistence	 of	 neuropathic	
pain	 results	 from	 chronic	 changes	 initiated	 by	 initial	
exposure	 to	 cytokines,	 such	 as	 IL1b.	 It	 is	 likely	
that	 these	 chronic	 downstream	 changes	 are	 already	
wellestablished	 in	 most	 clinical	 presentations	 of	
neuropathic	pain.
Targeting	ion	channels	in	DRG	neurons	is,	however,	

a	 more	 attractive	 influence.	 We	 were	 among	 the	
first	 laboratories	 to	 characterize	 the	 changes	 in	 ion	
channels	 and	 excitability	 of	 DRG	 neurons	 that	 were	
induced	 by	 peripheral	 nerve	 injury	 [12,	 9496].	 We	
demonstrated	 upregulation	 of	 TTXsensitive	 and	

TTXresistant	Na+	channels	[96]	and	downregulation	
of Ca2+	 channels	 and	 various	 types	 of	 K+	 channels	
[95];	 these	 findings	 have	 been	 replicated,	 refined,	
and	greatly	extended	over	 the	 last	13	years	 [97104].	
Increases	 in	 the	 hyperpolarizationactivated	 cation	
current	(IH)	[105,	106],	as	well	as	increased	expression	
of Nav1.7	sodium	channels	and	Cav3.2	Ttype	calcium	
channels	 have	 also	 been	 observed	 during	 various	
pain	 states	 [35,	 107109].	Although	 all	 such	 changes	
are	 capable	 of	 increasing	 the	 neuronal	 excitability, 
it	 is	 likely	 that	 dissimilar	 ion	 channels	 are	 affected	
in	 different	 types	 of	 neuropathic	 pain. For	 example,	
axotomy,	 chronic	 DRG	 compression,	 and	 chronic	
exposure	 to	 the	 proinflammatory	 cytokine	 IL1b all 
increase	the	DRG	neuron	excitability	[12,	14,	37,	40,	
42,	43,	61,110].	Axotomy	affects	Ca2+,		K+,and	TTX
sensitive	and	resistant	Na+	channels	[95,	96],	whereas	
longterm	 IL1b	 application	 and	 DRG	 compression	
affects	Hcurrents	 (carried	by	HCN	channels;	Fig.	5)	
[14,	 61,	 110,	 111].	 The	Ttype	 Ca2+	 channel	 currents	
are	 increased	by	CCI	and	in	diabetic	neuropathy	[35,	
107]	but	not	by	axotomy [95].	
This	 raises	 an	 important	 point.	 Because	 increases	

in	the	DRG	excitability	are	brought	about	by	different	
ion	 channel	 mechanisms	 in	 different	 nerve	 injury	
situations	 and/or	 disease	 states,	 it	 is	 likely	 that	
drugs	 that	 target	 injuryspecific	 or	 diseasespecific	
changes	 in	 ion	 channels	will	 be	 effective	 in	 specific	
clinical	situations.	This	may	be	the	key	to	developing	
therapeutic	approaches	to	some	of	the	most	intractable	
forms	of	neuropathic	pain,	such	as	that	associated	with	
HIVAIDS	 neuropathy.	The	 appropriate	 ion	 channels	
have	to	be	identified.
We	 have	 also	 considered	 interfering	with	 synaptic	

transmission	 in	 the	 dorsal	 horn,	 and	 our	 in vitro 
results	 suggest	 that	blockers	of	CPAMPARs	may	be	
effective,	but	this	has	yet	to	be	demonstrated	in	animal	
models	of	neuropathic	pain	in vivo.
Lastly,	we	 considered	 the	possibility	 of	 improving	

the	 gabapentinoid	 effectiveness	 by	 combining	 of	
these	 drugs	 with	 capsaicin.	 Since	 TRPV1	 channels	
are	 often	 associated	 with	 nociceptive	 fibers	 and	 are	
upregulated	in	certain	pain	states,	TRPV1facilitated	
entry	 of	 gabapentinoids	 will	 preferentially	 target	
pain	 transmission.	 Since	 topical	 capsaicin	 is	 already	
in	 use	 in	 pain	 management	 [112116],	 its	 use	 in	 the	
combination	 may	 permit	 the	 use	 of	 lower	 doses	 of	
gabapentinoids,	 thereby	 reducing	 their	 tendency	 to	
promote	drowsiness,	peripheral	edema,	and	dizziness.	
The	 combination	 may	 also	 allow	 one	 to	 use	 lower	
doses	of	capsaicin,	which	is	currently	applied	topically	
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in	 quite	 high	 concentrations	 [114116].	 Although	
this	 causes	 acute	 pain,	 which	 can	 last	 for	 days,	 it	
can	 relieve	 chronic	 pain	 for	 a	 month	 or	 more.	 The	
acute	allogenic	actions	of	capsaicin	do,	nevertheless,	
decrease	the	patient	compliance.	Thus,	the	possibility	
of	using	 lower	doses	of	 topical	 capsaicin	 to	augment	
the	 gabapentinoid	 effectiveness	 would	 also	 have	
potential	therapeutic	advantages.	
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Р	е	з	ю	м	е

Нейропатичний	 біль,	 який	 майже	 не	 підлягає	 адаптації	
до	 якого	 є	 відсутньою,	 виникає	 внаслідок	 ушкоджень	
або	 захворювань	 нервової	 системи.	 Він,	 як	 правило,	 має	
хронічний	характер	і	часто	є	неусувним.		Звичайні	аналгетики,	
такі	 як	 опіоїди,	 в	 цих	 ситуаціях	 є	 малопридатними,	 а	
габапентиноїди	 (прегабалін	 і	 габапентин)	 ефективні	 не	 в	
усіх	 випадках.	 При	 нейропатичному	 болю,	 що	 виникає	 в	
периферичних	 структурах,	 початкова	 запальна	 відповідь	
викликає	вивільнення	різноманітних	медіаторів,	включно	з	
цитокінами	 та	 простагландинами,	 які	 змінюють	 експресію	
іонних	 каналів	 у	 первинних	 аферентних	 нейронах.	
Це	 призводить	 до	 ініціації	 ектотопічної	 активності	 в	
сенсорних	 нервах	 і	 вивільнення	 АТФ	 і	 другої	 групи	
медіаторів	 із	 терміналей	 первинних	 аферентів.	 Рівень	
активації	 спінальної	 мікроглії	 змінюється	 таким	 чином,	
що	 остання	 вивільнює	 третій	 набір	 медіаторів,	 зокрема	
мозковий	 нейротрофічний	 фактор	 (BDNF),	 у	 дорсальний	
ріг	 спинного	 мозку.	 Через	 низку	 механізмів	 BDNF 
посилює	 збуджуючу	 синаптичну	 передачу	 та	 послаблює	
гальмівну.	 „Центральна	 сенситизація”,	 що	 розвивається	 в	
результаті,	зумовлює	гіпералгезію,	каузалгію	та	алодинію	–	
феномени,	 асоційовані	 з	 нейропатичним	 болем.	 Наявність	
змін	 в	 іонних	 каналах	 сенсорних	 нервових	 структур	
і	 модуляції	 збуджуючої	 передачі	 в	 дорсальному	 розі	
визначає	 високу	 необхідність	 вишукувань	 нових	 підходів	
у	 лікуванні	 нейропатичного	 болю.	 Робиться	 припущення,	
що	 ефективність	 габапентиноїдів	 може	 бути	 збільшена	 за	
рахунок	 сполучення	 цих	 агентів	 з	 агоністом	 рецепторів	
TRPV1	капсаїцином.	
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