РАСS numbers: 73.21.La, 73.63.Kv, 71.18+у СПЕКТР ЭЛЕКТРОННО-ДЫРОЧНОЙ ПАРЫ В ПОЛУПРОВОДНИКОВЫХ КВАНТОВЫХ ТОЧКАХ

С.И. Покутний, П.П. Горбик, Н.В. Борисенко, Л.И. Борисенко, К.А. Черный

Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины, ул. Генерала Наумова, 17, Киев, 03164, Украина, <u>Pokutnyi_Sergey@inbox.ru</u>

В рамках модифицированного метода эффективной массы вариационным методом получен энергетический спектр основного состояния электронно-дырочной пары, находящейся в объеме квантовой точки оксида меди, помещенной в матрицу кварцевого стекла, как функция радиуса квантовой точки. Показано, что коротковолновый сдвиг пика спектра поглощения такой наноситемы обусловлен размерным квантованием энергетического спектра основного состояния электронно-дырочной пары, находящейся в объеме квантовой точки.

Введение

Оптические и электрооптические свойства квазинульмерных наноструктур, предстающих собой полупроводниковые квантовые точки (КТ) сферической формы с радиусом $a \approx 1 - 10$ нм, выращенные в прозрачных диэлектрических (или полупроводниковых) матрицах, в значительной мере определяются энергетическим спектром пространственно-ограниченной электронно-дырочной пары (экситона) [1-8]. Энергетический спектр носителей заряда в КТ, начиная с размеров а порядка боровского радиуса электрона a_{e} или дырки a_{h} и менее, будет полностью дискретным [9-14]. Поэтому такие КТ называют «сверхатомами» [15-18]. В этих условиях влияние сферической поверхности раздела (КТ – диэлектрическая матрица) может вызвать размерное квантование энергетического спектра электрона и дырки в КТ, связанное как чисто пространственным ограничением области квантования, так И с с поляризационным взаимодействием носителей заряда с поверхностью КТ [1-7].

Поскольку энергетическая щель полупроводникового материала, который содержит в своем объеме КТ, существенно меньше, чем в диэлектрических (полупроводниковых) матрицах, то движение носителей заряда в сферической КТ ограничено во всех трех направлениях объемом КТ (т.е. носители заряда двигаются в трехмерной сферической потенциальной яме КТ). Последнее обстоятельство приводит к тому, что квазичастицы (электрон, дырка и экситон) в КТ не обладают квазиимпульсом. Поэтому можно говорить только о состояниях квазичастиц в КТ. В дальнейшем под экситоном в КТ будем понимать такое экситонное состояние в КТ, которое не имеет квазиимпульса [10–13].

В большинстве теоретических моделей, в которых рассчитывались энергетические спектры квазичастиц в КТ, авторами использовалось приближение эффективной массы, которому приписывалась применимость к КТ по аналогии с массивными монокристаллами [9,10]. Вопрос о применимости приближения эффективной массы к описанию полупроводниковых КТ до сих пор является нерешенным [13].

В работе [13] предложен новый модифицированный метод эффективной массы, с помощью которого описывался энергетический спектр экситона в полупроводниковых КТ с радиусами $a \approx a_{ex}^0$ (a_{ex}^0 – боровский радиус экситона в полупроводниковом материале, который содержится в объеме КТ). Показано, что в рамках модели КТ, в которой КТ моделировалась бесконечно глубокой потенциальной ямой, приближение эффективной массы можно применять к описанию экситона в КТ с

радиусами *a*, сравнимыми с боровским радиусом экситона a_{ex}^0 , считая, что приведенная эффективная масса экситона $\mu = \mu(a)$ является функцией радиуса *a* KT.

В экспериментальной работе [19] исследовались оптические свойства образцов кварцевого стекла, содержащих КТ окиси меди (CuO). Средние радиусы \bar{a} таких КТ находились в диапазоне $\bar{a} \approx 2,0-12,0$ нм и были соизмеримы с боровским радиусом экситона $a_{ex}^0 \approx 1,13$ нм в монокристалле CuO. При малых концентрациях КТ, когда оптические свойства образцов в основном определялись оптическими свойствами одиночных КТ в матрице кварцевого стекла, в образцах были обнаружены сдвиги максимумов (пиков) спектров поглощения в коротковолновую область (по отношению к ширине запрещенной зоны $E_g = 1,5$ эВ монокристалла CuO).

В настоящей работе вариационным методом в рамках модифицированного метода эффективной массы [13] получен энергетический спектр основного состояния электронно-дырочной пары, находящейся в объеме КТ окиси меди, как функция радиуса *а* КТ. Путем сравнения энергетического спектра основного состояния электронно-дырочной пары в КТ со значением пика спектра поглощения образцов получены средние радиусы КТ окиси меди, которые находились в диапазоне средних радиусов КТ исследованных в условиях экспериментов [19]. Показано, что коротковолновый сдвиг пика спектра поглощения образцов обусловлен размерным квантованием энергетического спектра основного состояния находящейся в объеме КТ окиси меди.

Энергия основного состояния электронно-дырочной пары в квантовой точке

Рассмотрим модель квазинульмерной системы – нейтральную полупроводниковую сферическую КТ радиуса a, которая содержит в своем объеме полупроводниковый материал с диэлектрической проницаемостью ε_2 в среде с диэлектрической проницаемостью ε_1 . В объеме такой КТ движется электрон e и дырка h с эффективными массами m_e и m_h (r_e и r_h – расстояние электрона и дырки от центра КТ) (рис. 1).

Рис. 1. Схематическое изображение экситона в сферической полупроводниковой квантовой точке. Радиус-векторы r_e и r_h определяют расстояние электрона e и дырки h от центра КТ радиуса a. Заряды изображений $e' = (a/r_e)e$ и $h' = (a/r_h)h$ расположены на расстояниях $r_e = (a^2/r_e)$ и $r_h = (a^2/r_h)$ от центра КТ θ и представляют собой точечные заряды изображения электрона и дырки соответственно.

Предполагалось также, что зоны электронов и дырок имели параболическую форму. Характерными размерами задачи являются величины: a, a_e, a_h, a_{ex}^0 , где

$$a_e = \frac{\varepsilon_2 \hbar^2}{m_e e^2}, \qquad a_h = \frac{\varepsilon_2 \hbar^2}{m_h e^2}, \qquad a_{ex}^0 = \frac{\varepsilon_2 \hbar^2}{\mu_0 e^2}$$
(1)

боровские радиусы электрона, дырки и экситона соответственно в полупроводнике с диэлектрической проницаемостью ε_2 (*e* – заряд электрона, $\mu_0 = m_e m_h / (m_e + m_h)$ – приведенная эффективная масса экситона).

Энергию поляризационного взаимодействия $U(r_e, r_h, a)$ электрона и дырки со сферической поверхностью раздела КТ – диэлектрическая матрица при относительной диэлектрической проницаемости $\varepsilon = (\varepsilon_2 / \varepsilon_1) >> 1$ можно представить в виде алгебраической суммы энергий взаимодействия дырки и электрона со своими $V_{hh'}(r_h, a)$, $V_{ee'}(r_e, a)$ и «чужими» $V_{eh}(r_e, r_h, a) = V_{he'}(r_e, r_h, a)$ изображениями соответственно [9,10,13] (рис. 1):

$$U(r_{e}, r_{h}, a) = V_{hh'}(r_{h}, a) + V_{ee'}(r_{e}, a) + V_{eh}(r_{e}, r_{h}, a) + V_{he'}(r_{e}, r_{h}, a)$$
(2)

где

$$V_{hh'}(r_h,a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{a^2}{a^2 - r_h^2} + \frac{\varepsilon_2}{\varepsilon_1} \right),\tag{3}$$

$$V_{ee'}(r_e,a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{e^2}{a^2 - r_e^2} + \frac{\varepsilon_2}{\varepsilon_1} \right),\tag{4}$$

$$V_{eh}(r_{e}, r_{h}, a) = V_{he}(r_{e}, r_{h}, a) = -\frac{e^{2}\beta}{2\varepsilon_{2}} \cdot \frac{a}{\left[\left(r_{e}r_{h} / a\right)^{2} - 2r_{e}r_{h}\cos\Theta + a^{2}\right]^{1/2}}$$
(5)

В изучаемой модели квазинульмерной структуры в рамках вышеизложенных приближений, а также в приближении эффективной массы с использованием системы триангулярных координат $r_e = |r_e|, r_h = |r_h|, r = |r_e - r_h|$ с началом в центре КТ гамильтониан электронно-дырочной пары, движущейся в объеме КТ, принимает вид [13]:

$$H(r_{e}, r_{h}, a) = -\frac{\hbar^{2}}{2m_{e}} \left(\frac{\partial^{2}}{\partial r_{e}^{2}} + \frac{2}{r_{e}} \cdot \frac{\partial}{\partial r_{e}} + \frac{r_{e}^{2} - r_{h}^{2} + r^{2}}{r_{e}r} \cdot \frac{\partial^{2}}{\partial r_{e}\partial r} \right) - \frac{\hbar^{2}}{2m_{h}} \cdot \left(\frac{\partial^{2}}{\partial r_{h}^{2}} + \frac{2}{r_{h}} \cdot \frac{\partial}{\partial r_{h}} + \frac{r_{h}^{2} - r_{e}^{2} + r^{2}}{r_{h}r} \cdot \frac{\partial^{2}}{\partial r_{h}\partial r} \right) - \frac{\hbar^{2}}{2\mu_{0}} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \cdot \frac{\partial}{\partial r} \right) + V(r_{e}, r_{h}, a) + V(r_{e}, r_{h}) + E_{g}^{o},$$
(6)

где первые три члена являются операторами кинетической энергии электрона, дырки и экситона, E_g^o – ширина запрещенной зоны в неограниченном полупроводнике с диэлектрической проницаемостью ε_2 . В гамильтониане $H(r_e, r_h, a)$ (6) энергия поляризационного взаимодействия $U(r_e, r_h, a)$ определяется с помощью формул (2) – (5), а энергия кулоновского взаимодействия между электроном и дыркой $V_{eh}(r)$ описывается формулой

$$V_{eh}(r) = -\frac{e^2}{\varepsilon_2 r}.$$
(7)

В гамильтониане (6) электронно-дырочной пары потенциал

$$V(r_{e}, r_{h}) = \begin{cases} 0, & r_{e}, r_{h} \le a \\ \infty, & r_{e}, r_{h} > a \end{cases}$$
(8)

описывает движение квазичастиц в объеме КТ с помощью модели бесконечно глубокой потенциальной ямы.

Вариационную радиальную волновую функцию основного состояния электронно-дырочной пары (1 *s* -состояния электрона и 1 *s* -состояния дырки) в КТ радиуса *а* запишем в таком виде [14]:

$$\Psi_{0}(r_{e},r_{h},r) = a \exp\left(-\frac{\mu(a)}{\mu_{0}} \cdot \frac{r}{a_{ex}^{0}}\right) \frac{\sin(\pi r_{e}/a)}{r_{e}} \cdot \frac{\sin(\pi r_{h}/a)}{r_{h}} \cdot \frac{\sin(\pi r_{h}/a)}{r_{h}} \cdot \frac{(a^{2}-r_{e}^{2})}{a^{2}} \cdot \frac{(a^{2}-r_{h}^{2})}{a^{2}} \cdot \frac{r}{a} \cdot \frac{\left|r_{e}-(a/r_{h})^{2}r_{h}\right|}{a}.$$
(9)

Здесь коэффициент А определяется из условия нормировки волновой функции (9)

$$\int_{0}^{a} dr_{e} \int_{0}^{a} dr_{h} \int_{r}^{r_{e}+r_{h}} \Psi_{0}(r_{e}, r_{h}, r) r dr = 1,$$

а эффективная приведенная масса экситона $\mu(a)$ является вариационным параметром.

Для определения вариационным методом энергии основного состояния электронно-дырочной пары $E_{1,0,0;1,0,0}(a)$ в КТ радиуса *а* запишем среднее значение гамильтониана (7) на волновых функциях (10) в следующем виде:

$$E_{1,0,0;1,0,0}\left(a,\mu(a)\right) = \left\langle \Psi_{0}(r_{e},r_{h},r) \left| H(r_{e},r_{h},a) \right| \Psi_{0}(r_{e},r_{h},r) \right\rangle =$$

$$= \int_{0}^{a} dr_{e} \int_{0}^{a} dr_{h} \int_{r}^{r_{e}+r_{h}} dr r_{e}r_{h}r\Psi_{0}(r_{e},r_{h},r)H(r_{e},r_{h},a)\Psi_{0}(r_{e},r_{h},r)$$
(10)

Расчет зависимости энергетического спектра $E_{1,0,0;1,0,0}(a)$ основного состояния электронно-дырочной пары $(n_e = 1, l_e = m_e = 0; n_h = 1, l_h = m_h = 0$ (где n_e, l_e, m_e и n_h, l_h, m_h – главное, орбитальное и магнитное квантовые числа электрона и дырки соответственно) от радиуса КТ a, получим путем минимизации функционала $E_{1,0,0;1,0,0}(a, \mu(a))$ (10)

$$\frac{E_{1,0,0;1,0,0}(a,\mu(a))}{\partial\mu(a)} \equiv F(\mu(a),a) = 0$$

Результаты вариационного расчета энергетического спектра основного состояния электронно-дырочной пары $E_{1,0,0;1,0,0}(a)$ (10) в КТ, радиус *а* которой лежит в диапазоне $2,0 \le a \le 11,0$ нм, получены с использованием условий экспериментов [19] (см. рис. 2).

Рис. 2. Энергетический спектр основного состояния электронно-дырочной пары $E_{1,0,0;1,0,0}(a)$ (10) как функция радиуса *а* квантовой точки окиси меди.

Спектр $E_{1,0,0;1,0,0}(a)$ (10) применим только для основного состояния электроннодырочной пары ($n_e = 1, l_e = m_e = 0; n_h = 1, l_h = m_h = 0$, для которого выполняется неравенство

$$\left(E_{1,0,0;1,0,0}(a)-E_{g}^{0}\right) << \Delta V(a),$$

где $\Delta V(a)$ глубина потенциальной ямы для электрона в КТ. Для широкого класса полупроводниковых A_2B_6 КТ в области размеров $a \ge a_{ex}^0$, величина $\Delta V(a) = (2,3-2,5)$ эВ [1].

Из результатов вариационного расчета энергетического спектра основного состояния электронно-дырочной пары $E_{1,0,0;1,0,0}(a)$ (10) следует, что в наносистеме связанное состояние электронно-дырочной пары (которое является аналогом донорно-акцепторной пары) возникает, начиная с радиуса *a* КТ, превышающего значение *a*_c (1) =10,84 нм (см. рис. 2).

В экспериментальной работе [19] исследовались образцы кварцевых стекол, легированных CuO с концентрациями от x = 0,003% до 1%, полученные золь-гель методом. Средние радиусы \overline{a} КТ окиси меди, которые возникали в образцах, находились в диапазоне $\bar{a} \approx 2.0 - 11$ нм. При малых концентрациях КТ (x = 0.003% и x = 0,03%) расстояния между КТ были гораздо большими, чем боровские радиусы электрона и дырки в монокристалле окиси меди. Поэтому взаимодействием носителей зарядов, локализованных вблизи поверхностей КТ, можно пренебречь. Последнее обстоятельство приводит к тому, что оптические свойства таких наносистем в энергетическими основном определяются спектрами электрона И дырки локализованных вблизи сферической поверхности одиночных КТ в матрице кварцевого стекла. В [20] был обнаружен сдвиг максимума спектра поглощения на величину $\Delta E_1 \approx 800$ мэВ по отношению к ширине запрещенной зоны монокристалла окиси меди $(E_g^0 = 1,50 \ B)$ в коротковолновую область при комнатной температуре T = 300 K в образцах с x = 0.03%.

Сравнивая энергию основного состояния электронно-дырочной пары $E_{1,0,0;1,0,0}(a)$ (10), находящейся в объеме КТ, со значением пика поглощения $\Delta E_1 \approx 800$ мэВ, получим средний радиус $\bar{a}_1 \cong 2,2$ нм КТ окиси меди (см. рис. 2). При этом значение радиуса КТ \bar{a}_1 может быть несколько завышенным, поскольку вариационный расчет спектра электронно-дырочной пары дает завышенные значения энергии [10]. Найденное значение среднего радиуса \bar{a}_1 КТ окиси меди находится в диапазоне средних радиусов ($\bar{a} \approx 2,0-11,0$ нм) КТ, исследованных в условиях экспериментов [19].

Таким образом, коротковолновый сдвиг пика спектра поглощения образцов вызван размерным квантованием энергетического спектра основного состояния электронно-дырочной пары, находящейся в объеме КТ окиси меди.

Выводы

Путем сравнения зависимости энергетического спектра основного состояния электронно-дырочной пары (10) от радиуса *а* КТ, полученной вариационным методом в рамках модифицированного метода эффективной массы [13], с экспериментальными значениями пиков спектров поглощения [19], найдены средние радиусы КТ окиси меди. Показано, что коротковолновые сдвиги пиков спектров поглощения образцов обусловлены размерным квантованием энергетического спектра основного состояния электронно-дырочной пары, находящейся в объеме КТ окиси меди. По-видимому,

применение такого нового оптического метода позволит также определять характерные размеры, а также оптические параметры квазиодномерных и квазидвумерных наносистем.

Литература

- 1. Grabovskis V., Dzenis Y., Ekimov A. Nonlinear- optical of semiconductor-doped glasses // Solid State Phys. -1989. V.31, N. 1. P. 272-274.
- 2. Bondar N. V., Brodyn M.S. Optical properties of semiconductor nanostructures // Physics E. 2010. V.4, N. 10. P. 1549-1555.
- Dzyuba V. P., Krasnok A.E., Kulchin J. N. Nonlinear- optical properties of the dielectric nanoparticles inserted into a dielectric matrix // Techn. Physics Letters. 2010. V.36, N. 21. P. 1-9.
- 4. Kulchin J. N., Dzyuba V. P. Optical properties of the dielectric nanoparticles inserted into a dielectric matrix // Pacific Science Rev. 2010. V.12, N. 1. P. 102-105.
- Malyukin Y.V. Activation nanocrystals dielectric // Radiation Measurem. 2010. V. 4, N. 3. – P. 589-594.
- 6. Суворова Т.И., Латышев А.Н., Овчинников О.В., Смирнов М.С. Усиление люминесценции молекул красителей в присутствии серебряных наночастиц // Оптический журнал. 2012. Т. 79, № 1. С. 79-82.
- Borysenko M.V., Bogatyrev V.M., Poddenezhny et al. Application of chromiumcontaining silica for synthesising functional glasslike materials by the sol-gel method // J. Sol-Gel Sci. Technol. – 2004. – V. 32, N. 3. – P. 327-331.
- 8. Борисенко Н.В., Сулим И.Я., Борисенко Л.И. Модифицирование высокодисперсного кремнезема ацетилацетонаном циркония // Теорет. эксперим. химия. 2008.- Т. 44, № 3. С. 191 195.
- 9. Pokutnyi S.I. Optical nanolaser on the heavy hole transition in semiconductor nanocrystals // Physics Letters A. 2005. V.342, N. 5. P. 347-352.
- Pokutnyi S.I. Exciton in quasi-zero-dimensional nanostructures // Physics Letters A. 1995. – V. 203, N. 5,6. – P. 388-394.
- Pokutnyi S.I. Binding energy of the exciton of a spatially separated electron and hole in quasi-zero-dimensional nanosystems // Techn. Physics Letters. - 2013. - V. 39, N. 3. - P. 233-235.
- 12. Pokutnyi S.I. On an exciton with a spatially separated electron and hole in quasi-zerodimensional nanostructures // Semiconductors. – 2013. – V.47, N 6. – P. 791-798.
- Pokutnyi S.I. Exciton states in semiconductor quantum dots in framework of the modified effective mass method // Semiconductors. – 2007. – V.41, N 11. – P. 1323-1400.
- 14. Pokutnyi S.I., Gorbyk P.P. Absorption of light in electron states in quasi-zerodimensional nanostructures // Optics. – 2013. – V. 2, N. 4. – P. 47-50.
- 15. Андрюшин Е.А., Быков А.А. Сверхатомы в полупроводниковых структурах // Успехи физ. наук. – 1998 – Т. 154, № 1. – С. 123 – 131.
- 16. Watanabe H., Inoshita T. Optical properties semiconductors heterostructures // Optoelectron. Device Technol. 1996. V. 1, N 1. P. 33-39.
- 17. Покутний С.И., Горбик П.П. Электронные свойства наноразмерных квазиатомных структур // Успехи физ. мет. 2013. Т. 14, № 4. С.1-25.
- Pokutnyi S.I., Gorbyk P.P. Superatoms in quasi-zero-dimensional nanostructures // J. Applied Chem. – 2013. – V. 1, N. 1. – P. 44-47.
- 19. Борисенко Н.В., Кулик К.С., Дяченко А.Г., Чернявская Т.В., Борисенко Л.И. Термические превращения ацетилацетоната меди на поверхности

високодисперсного кремнезема // Химия, физика и технология поверхности. – 2013. - Т. 4, № 3. – С. 320 – 326.

СПЕКТР ЕЛЕКТРОННО-ДІРКОВОЇ ПАРИ В НАПІВПРОВІДНИКОВИХ КВАНТОВИХ ТОЧКАХ

С.І. Покутній, П.П. Горбик, М.В. Борисенко, Л.І. Борисенко, К.А. Чорний

Інститут хімії поверхні ім.О.О. Чуйка Національної академії наук України вул. Генерала Наумова, 17, Київ, 03164, Україна, pokutnyi sergey@inbox.ru

В рамках модифікаційного методу ефективної маси варіаційним методом отримано енергетичний спектр основного стану електронно-діркової пари, яка знаходиться в об'ємі квантової точки (КТ), в матриці боросилікатного скла, як функція радіуса КТ. Показано, що короткохвильові зсуви максимумів спектрів поглинання та низькотемпературної люмінесценції такої наносистеми зумовлені розмірним квантуванням енергетичного спектра основного стану електроннодіркової пари, яка знаходиться в об'ємі КТ.

SPECTRUM ELECTRON - HOLE PAIR IN SEMICONDUCTOR QUANTUM DOTS

S.I. Pokutnyi, P.P. Gorbyk, N.V. Borysenko, L.I. Borysenko, K.A. Chornyi

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine, pokutnyi_sergey@inbox.ru

The modified method of the effective mass, energy spectrum is obtained by executed ground state exciton, the moving of quantum dot (QD), placed in a matrix of borosilicate glass as a function of radius QD. Shown that the short-wave absorption spectra peaks shifts and low-temperature luminescence such nanosystems arise from the dimensional quantization energy spectrum of the exciton ground state, moving to QD.