СУПРАМОЛЕКУЛЯРНЫЕ ЭФФЕКТЫ В ГИДРАТИРОВАННОЙ МУКЕ

В.И. Зарко¹, Г.Е. Полищук², О.Н. Рыбак², Е.В. Гончарук¹, В.А. Михайлик³, В.Ф. Гриценко¹, В.М. Гунько¹

¹Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова 17, Киев-164, Украина, vlad_gunko@ukr.net ²Национальный университет пищевых технологий, Киев ³Институт технической теплофизики НАН Украины, Киев

Исследованы особенности поведения супрамолекулярных структур в гидратированной овсяной и пшеничной муке до и после клейстеризации.

Введение

Загустители и стабилизаторы дисперсий играют важную роль во многих технологических процессах, увеличивая вязкость дисперсионной среды, препятствуя слипанию частиц дисперсной фазы и обеспечивая однородность дисперсной системы. Для водных сред наиболее подходящими на эту роль являются водорастворимые полимеры, например, полисахариды: крахмалы, пектины, камеди, гумми и т.п., производимые из зерновых и других сельскохозяйственных культур. Для однотипных природных биополимеров характерны определенные различия в составе и структуре в зависимости от их происхождения, что обусловливает некоторые различия и в их свойствах [1 – 10]. Известно, что крахмал (молекулярный вес $10^5 - 10^7$ Да) в основном является смесью линейной амилозы (15 – 30 %) и разветвленного амилопектина (70 – 85 %) [1]. Амилоза хорошо растворяется в воде, образуя растворы с малой вязкостью, а амилопектин растворяется в воде только при нагревании, образуя растворы со значительной вязкостью, и они не образуют в воде истинных растворов, а формируют гидратированные мицеллы, строение которых определяется многими факторами [1 – 10].

В зависимости от технологических задач имеет значение и загущающая способность, и механизм загущающего действия полисахаридов, обусловленные особенностями супрамолекулярных взаимодействий в системе и количеством воды, непосредственно связанной макромолекулами и удерживаемой внутри ячеек супрамолекулярной сетки [1]. Так, например, при производстве мороженого существенное значение имеет соотношение концентраций свободной и связанной воды и размеры кристаллитов льда, которые можно регулировать добавками полисахаридов и других соединений. При этом важно не только загустить смесь, но и обеспечить ее однородность и необходимую микрокристаллическую структуру льда, которая зависит как от соотношения свободная/связанная вода, так и от пространственных ограничений для доменов воды (т.е. для роста кристаллитов льда) в ячейках (полостях) супрамолекулярных структур [1, 10]. Однако до конца не ясно, каким образом молекулы воды удерживаются в супрамолекулярной системе и какие особенности характерны для связанной воды в такой сложной системе, как, например, мороженое. Поэтому цель данной работы – выяснить особенности состояния воды и полимеров в сильно гидратированной (h = 5...7 грамм воды на грамм сухой муки) пшеничной и овсяной муке до и после фазового перехода при клейстеризации, поскольку их использование в качестве добавок сильно влияет на свойства указанного продукта.

Экспериментальная часть

Пшеничная мука и овсяная мука были выбраны для исследований, поскольку они широко используются, а также содержат максимальное (пшеничная мука) и минимальное (овсяная мука) количество крахмала из всех зерновых культур, используемых при производстве мороженого, и существенно влияют на его вкусовые качества и структуру кристаллитов льда. Состав пшеничной и овсяной муки приведен в табл. 1.

Культура	Вода	Белки	Углеводы	Жиры	Зола
Пшеница	6,0	15,7	71,8	2,5	4,0
Овес	6,0	14,8	65,0	10,7	3,5

Таблица 1. Состав пшеничной и овсяной муки (мас.%)

Для сравнительных исследований был выбран картофельный крахмал, имеющий достаточно близкое к пшеничной и овсяной муке содержание амилозы и амилопектина. Выбор температур (40 и 85 °C) подготовки водных дисперсий муки обусловлен тем, что они находятся примерно на 20 °C ниже и выше температуры клейстеризации крахмалов ($T_{\kappa \pi} = 60...66$ °C), которые являются основными компонентами углеводов, входящих в состав муки, т.е. эти температуры обеспечивали состояние дисперсий до и после фазового перехода.

Реологические исследования водных дисперсий муки проводили на ротационном вискозиметре «REOTEST II» с измерительной системой цилиндр-цилиндр (S/S1) путем измерения кривых кинетики деформации.

Исследования состояния воды в дисперсиях муки проводили методом дифференциально-сканирующей калориметрии (ДСК) на микрокалориметре ДСК-2М при постоянной скорости нагрева 4 °С/мин. Содержание свободной воды (замерзающей при T < 0 °С) рассчитывали по эндотермам плавления льда и калиброванной зависимости массы воды (эталона) – по площади пика. Точность определения количества воды составляла ± 0,0005 г/г. Содержание связанной (незамерзающей T < 0 °С) воды рассчитывали как разность между общим содержанием воды в образце и количеством свободной воды [11, 12]. Расчеты распределения кластеров (< 1 нм) и доменов (> 1 нм) связанной воды по размерам проводили согласно работе [13].

Термостимулированная деполяризация (ТСД) замороженных водных систем, содержащих различные вещества (органической или неорганической природы), обычно характеризуются несколькими релаксационными процессами, которые проявляются в виде максимумов на зависимостях тока деполяризации от температуры. ТСД-спектры измеряли в диапазоне температур 90 – 270 К при напряжении поляризации 200 В, скорости нагрева 3 град/мин и температуре поляризации 265 К [14]. Расчеты распределений кластеров (< 1 нм) и доменов (> 1 нм) связанной воды по размерам проводили, используя метод ТСД-криопорометрии [15].

Строение кластеров (< 1 нм) и нанодоменов (1 – 100 нм) воды в дисперсиях зависит от многих факторов: концентрации дисперсной фазы, ее дисперсности, природы поверхности частиц, их растворимости, характера взаимодействия частиц друг с другом и с водой, pH, T и концентрации растворенных солей [14 – 16]. Эти факторы влияют на соотношение свободной и связанной воды, структуру системы в целом и распределение кластеров и доменов воды по размерам. К связанной следует относить воду, которая замерзает при T < 273 К вследствие взаимодействия с дисперсной фазой или растворенными веществами. Энергия активации деполяризации (E_a) связанной воды может быть ниже, чем свободной воды, вследствие уменьшения среднего числа H-связей на одну молекулу вблизи границ раздела фаз [14 – 16].

Распределение частиц по размерам в водных дисперсиях муки определяли методом фотон-корреляционной спектроскопии [17].

Результаты и их обсуждение

На рис. 1 представлены результаты измерений дисперсности частиц пшеничной и овсяной муки в водной дисперсии и данные по набуханию частиц муки в зависимости от температуры при 20 < T < 80 °C. Для овсяной муки наблюдаются частицы большего размера, чем для пшеничной муки, и их распределение характеризуется большей полидисперсностью (рис. 1, *a*). Однако степень набухания выше для пшеничной муки во всем температурном диапазоне наблюдений (рис. 1, *б*), по-видимому, вследствие большего содержания крахмала в ее составе (табл. 1).

Рис. 1. Распределение частиц по размеру пшеничной (1) и овсяной (2) муки в водной дисперсии при 20 °C (*a*) и зависимость набухания пшеничной (1) и овсяной (2) муки от температуры дисперсионной среды (*б*).

Концентрация воды в системах, содержащих муку, при температуре подготовки (T_n) ниже и выше температуры клейстеризации изменялась незначительно: 82,2 – 87,5 % мас. (табл. 2). Относительный вклад связанной воды увеличился примерно на 10 % после клейстеризации вследствие набухания (рис. 1, δ) и разворачивания макромолекул [1, 10]. В пересчете на грамм содержащегося в муке крахмала эти изменения более существенны и составляют +1,7 г/г для пшеничной муки и +1,2 г/г для овсяной. В последней содержание крахмала меньше (табл. 1), что может быть основной причиной различий в связывании воды в исследованных системах. Эти данные согласуются с результатами ЯМР ¹Н измерений, показывающими, что содержание связанной воды в крахмале после клейстеризации может быть более 2 г/г [10].

Вязкость системы вода-мука растет практически экспоненциально с концентрацией последней (рис. 2) и она выше для овсяной муки вследствие наличия в ее составе гумми. Однако зависимость вязкости от температуры при $T < T_{\kappa_n}$ и постоянной концентрации муки существенно слабее, поскольку полного разворачивания молекул крахмала не происходит при $T < T_{\kappa_n}$, хотя частицы крахмала набухают (рис. 1, δ). Расчеты распределений доменов воды по размерам (рис. 3, δ) на основании калориметрических измерений (рис. 3, *a*) также указывают на увеличение содержания связанной воды после клейстеризации при росте вкладов широких мезопор (ячеек при 10 < R < 25 нм в супрамолекулярных сетках гидрофильных линейных (амилоза) и разветвленных (амилопектин) макромолекул) и макропор (полости между соседними макромолекулами при R > 25 нм), что соответствует набуханию микрочастиц и разворачиванию макромолекул. Более детальную информацию о температурно-зависимом поведении исследуемых супрамолекулярных систем можно получить на основании ТСД данных.

Таблица 2. Содержание свободной и связанной воды до ($T_{\pi} = 40$ °C) и после ($T_{\pi} = 85$ °C) клейстеризации муки

Por Pourovo	Пшенич	ная мука	Овсяная мука		
вода в системе	40°C	85°C	40°C	85°C	
Гидратация, г/г	4,8	7,0	6,2	6,8	
Содержание свободной воды от	7/3	66,0	70.1	62 /	
общего количества воды, % мас.	74,5		70,1	02,4	
Содержание связанной воды от	25.7	34.0	29.9	37.6	
общего количества воды, % мас.	23,7	54,0	29,9	57,0	
Удельное содержание связанной	1 49	2 72	2 1 5	2 94	
воды, г _{воды} /г _{муки}	1,47	2,12	2,13	2,74	
Удельное содержание связанной	2.07	3 79	3 31	4 52	
ВОДЫ, Г _{воды} /Г _{полисахаридов}	2,07	5,17	5,51	7,52	

Рис. 2. Зависимость эффективной вязкости систем: пшеничная (1) и овсяная (2) мука - вода от концентрации и температуры.

Рис. 3. Кривые ДСК, смещенные по оси Y для нагляднояти, (*a*) для гидратированной овсяной (1 и 2) пшеничной (3 и 4) муки, подготовленной при 40 (1, 3) и 85 (2, 4) ^оС; и распределения доменов связанной воды в этих системах (б).

Для гидратированной пшеничной муки при $T_n > T_{\kappa n}$ наблюдаются сдвиги пиков дипольной релаксации в сторону больших температур в низкотемпературной (LT) области (100 < T < 170 K) и в сторону меньших температур – в высокотемпературной (HT) области (170 < T < 260 K) (рис. 4, *a*). Эффекты в HT области обусловлены снижением энергии активации дипольной релаксации фрагментов макромолекул, пластифицированных водой и дополнительной кластеризацией воды при разворачивании макромолекул. А эффекты в LT области обусловлены увеличением среднего числа сильных H-связей на одну молекулу воды, что приводит к росту энергетических барьеров для вращательных движений молекул H₂O и полярных групп макромолекул, ответственных за дипольную релаксацию [14].

Рис. 4. ТСД-спектры замороженных водных дисперсий пшеничной (*a*) и овсяной (б) муки, подготовленных при 40 (1) и 85 (2) °С.

Кроме того, температура начала сквозной проводимости (в основном протонной) [14] смещается в сторону более низких температур на 20 К, а для дисперсии овсяной муки эта температура изменяется меньше, но в противоположную сторону (рис. 4, δ). Для дисперсии овсяной муки, подготовленной при 40 °C (< $T_{\kappa n}$), в НТ области наблюдается два релаксационных максимума, а после клейстеризации при $T_n = 85$ °C (> $T_{\kappa n}$) – один (рис. 4, δ), интенсивность которого изменяется незначительно. Этот эффект может быть результатом значительной гомогенизации системы при клейстеризации. Данные деконволюции ТСД спектров дипольной релаксации водных дисперсий пшеничной и овсяной муки, подготовленных при температуре ниже и выше температуры клейстеризации, приведены на рис. 5 и 6, а их характеристики – в табл. 3 и 4.

Таблица 3. Тег	мпературы максимумов T _{max} (К) и интегральные интенсивности I (нА×К)								
ТСД-пиков замороженных водных дисперсий в LT области									
Образец	Релаксационный максимум								

Образец	Релаксационный максимум											
	1		2		3		4		5		6	
	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι
Пшеничная*	104	0,39	112	2,7	121	3,8	134	1,8	148	0,42	163	2,9
Пшеничная**	-	-	-	-	122	4,6	136	2,0	151	0,53	-	-
Овсяная*	-	-	111	2,1	120	2,3	134	0,72	147	0,22	157	0,19
Овсяная **	-	-	114	2,9	120	1,5	133	0,28	153	0,27	166	0,19
Крахмал **	104	0,057	112	0,044	122	0,49	135	0,27	150	0,06	165	0,089

Примечание. $T_{\Pi} = {}^{*}40$ и ${}^{**}85$ °С.

Рис. 5. ТСД-спектры замороженных водных дисперсий пшеничной (*a*, *б*) и овсяной муки (*в*, *г*), подготовленных при 40 °С, в LT (*a* и *в*) и HT (*б* и *г*) диапазонах.

Поскольку основную роль в изменениях супрамолекулярных структур и соответствующих взаимодействий с водой при клейстеризации муки играют полисахариды, были исследованы релаксационные процессы, происходящие в чистом крахмале после клейстеризации при $T_{\rm n} > T_{\rm kn}$ (рис. 6, ∂ и *e*). Как следует из полученных результатов (рис. 5 и 6 и табл. 3 и 4) в LT области релаксационный пик при 104 К наблюдается только для чистого крахмала и пшеничной муки при $T_{\rm n} < T_{\rm kn}$, а третий, четвертый и пятый пики наблюдаются как при $T_{\rm n} < T_{\rm kn}$, так и при $T_{\rm n} > T_{\rm kn}$ для всех исследованных образцов.

Образец	Релаксационный максимум										
		7		8		9		10		11	
	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	$T_{\rm max}$	Ι	
Пшеничная мука, 40 °С	-	-	191	6,8	203	5,2	214	18	229	39	
Пшеничная мука, 85 °С	-	-	191	5,5	201	3,4	211	22	-	-	
Овсяная мука, 40 °С	-	-	191	7,5	-	-	208	16	-	-	
Овсяная мука, 85 °С	-	-	195	7,7	202	1,4	-	-	-	-	
Крахмал 85 °С	184	0,049	193	0,11	199	0,37	-	-	-	-	

Таблица 4. Температуры максимумов *T*_{max}(К) и интегральные интенсивности *I* (нА×К) ТСД-пиков замороженных водных дисперсий в НТ области

Интегральная интенсивность пика при $T_{\rm max} = 111...114$ К для дисперсии овсяной муки остается неизменной, а для пшеничной муки он не наблюдается при $T_{\rm m} > T_{\rm kn}$.

Интегральная интенсивность пика при $T_{\text{max}} = 120...122$ К для дисперсии пшеничной муки растет при $T_{\text{п}} > T_{\text{кл}}$, а для овсяной – падает. Интегральная интенсивность пика при $T_{\text{max}} = 133...136$ К для пшеничной муки остается неизменной, а для овсяной – значительно падает при $T_{\text{п}} = 85$ °C. Интегральная интенсивность пика при $T_{\text{max}} = 147...153$ К как для пшеничной, так и для овсяной муки остается неизменной, как и для пика при $T_{\text{max}} = 157...165$ К, но этот пик исчезает для пшеничной муки при $T_{\text{п}} = 85^{\circ}$ C.

Рис. 6. ТСД-спектры замороженных водных дисперсий пшеничной (*a*, *б*) и овсяной (*в*, *г*) муки и крахмала (*d*, *e*), подготовленных при 85 °С, в LT (*a*, *в*, *d*) и HT (*б*, *г*, *e*) областях.

Клейстеризация слабо влияет на релаксационный пик в НТ области при $T_{\rm max}$ = 191...195 К. Наличие и положения последующих пиков зависят от температуры подготовки и типа муки, поскольку они в большей степени, чем пики в LT области, зависят от

релаксации дипольных групп макромолекул [10, 14]. ТСД-пики дипольной релаксации замороженного желированного крахмала согласуются (по температурам максимумов) с наблюдаемыми пиками для водных дисперсий овсяной и пшеничной муки (рис. 6). Это подтверждает предположение о том, что изменения поведения системы в процессе фазового перехода при клейстеризации муки обусловлены в основном перестройкой супрамолекулярных структур в крахмале.

Расчет функций распределения ($f_V(R)$) кластеров и доменов воды по размерам относительно их объема (рис. 7) с помощью метода ТСД-криопорометрии [14, 15] дает более детальную информацию, чем упрощенный подход (рис. 3, δ), основанный на ДСК данных [13]. Интегрирование $f_V(R)$ функций показывает, что вклад малых кластеров воды, локализованных в микропорах (микрополостях в макромолекулах) при R < 1 нм, снижается при клейстеризации более чем на порядок для овсяной муки и примерно в шесть раз – для пшеничной. Падает вклад и узких мезопор при R < 3, а превалирующими являются вклады широких мезо- и макропор (рис. 7). Это согласуется с данными о набухании микрочастиц и разворачивании макромолекул крахмала при клейстеризации и данными, полученными ранее методом ЯМР-криопорометрии [10].

Рис. 7. Распределение по размерам кластеров и доменов связанной воды в замороженных водных дисперсиях овсяной (1, 2) и пшеничной (3, 4) муки, подготовленных при 40 (1, 3) и 85 (2, 4) °C.

Расчет функций распределения энергии активации дипольной релаксации (рис. 8) для дисперсий овсяной и пшеничной муки показывает, что клейстеризация ($T_{\pi} = 85^{\circ}$ C) приводит к значительному уменьшению величин E_a по сравнению с системами, подготовленными при 40 °C. Этот результат обусловлен эффектом пластификации полимеров водой при набухании микрочастиц и разворачивании макромолекул в процессе фазового перехода при клейстеризации, поскольку в компактном состоянии межмолекулярные взаимодействия соседних гликозидных циклов соседних макромолекул крахмала обусловливают достаточно высокие энергетические барьеры дипольной релаксации (β-релаксации) этих фрагментов. Барьеры дипольной релаксации существенно снижаются (на 20 – 100 кДж/моль) при разрыве Н-связей между соседними гликозидными структурами при увеличении толщины слоя воды между ними, поскольку молекулы воды оказывают меньшее сопротивление при дипольной релаксации фрагментов полимеров (которая обусловлена в основном поворотными движениями полярных функциональных групп) [14]. Следует отметить, что энергия активации В-релаксации при T < 220 К в системе желированный крахмал/вода/нанокремнезем по расчетам на основании данных диэлектрической релаксационной спектроскопии лежит в области 10 – 100 кДж/моль [10]. Для чистой воды величины E_a лежат в области 10 – 45 кДж/моль [14] и после клейстеризации муки дипольная релаксация функциональных групп макромолекул попадает в этот же диапазон *E*_a (рис. 8).

Рис. 8. Функции распределения энергии активации дипольной релаксации для замороженных вводных дисперсий овсяной (*a*) и пшеничной (*б*) муки при температуре подготовки 40 (1) и 85(2) °C.

Энергия активации сквозной проводимости Есп (обусловленной в основном подвижными протонами и другими малыми ионами и которая соответствует линейному росту логарифма тока ТСД как функции Т [14]) составляет от 58 кДж/моль (овсяная мука при $T_{\rm n} = 40$ °C) до 79 кДж/моль (пшеничная мука при $T_{\rm n} = 40$ °C) и 65 – 67 кДж/моль для систем, желированных при 85 °C. Эти величины ниже, чем Есп чистой воды (91 – 125 кДж/моль в зависимости от остаточной концентрации солей и других примесей в воде и условий эксперимента) вследствие наличия в муке водорастворимых солей и других источников подвижных зарядов. Для чистого желированного крахмала величина E_{cn} достаточно низкая (≈ 50 кДж/моль), что свидетельствует об условиях, достаточных для перколяционных эффектов для подвижных ионов, несмотря на клейстеризацию крахмала и сильное структурирование воды в системе. Перколяционный эффект в ТСД спектрах (т.е. сквозная проводимость) проявляется при более высоких (на 10 – 30 К) температурах, чем локальная молекулярная подвижность воды, регистрируемая в ЯМР спектрах замороженных водных дисперсий макромолекул, нанооксидов, пористых и других материалов [14 – 16]. Оба эффекта наблюдаются при T < 273 K, поэтому они относятся в основном к границам раздела фаз. При клейстеризации муки площадь поверхности границ раздела значительно увеличивается в результате набухания частиц и разворачивания макромолекул и появляются дополнительные перколяционные каналы для сквозной проводимости. Этот эффект хорошо виден на примере водной дисперсии пшеничной муки (рис. 4, *a*). В случае овсяной муки наличие гумми приводит к обратному эффекту – сквозная проводимость появляется при более высокой температуре в системе после клейстеризации при 85 °С.

Выводы

Природа полисахаридов, входящих в состав различных зерновых культур, определяет их загущающие способности, а также термодинамические, электрофизические и другие характеристики их водных дисперсий. Количество свободной и связанной воды зависит от температуры подготовки водных дисперсий муки, и вклад связанной воды растет при клейстеризации. Процессы набухания и разворачивания полисахаридов сопровождаются переходом полостей (внутри- и межмолекулярных), заполненных водой, из диапазона микропор (радиус R < 1 нм) и узких мезопор (1 < R < 3 нм) в область широких мезопор (10 < R < 25 нм) и макропор (R > 25 нм). Энергия активации дипольной релаксации развернутых полимеров уменьшается на 20 - 100 кДж/моль вследствие пластифицирующего действия воды, которая разделяет соседние функциональные группы соседних полимеров, и эта энергия попадает в диапазон энергий дипольной релаксации чистой воды (10 - 45 кДж/моль). Это свидетельствует о том, что дипольная релаксация в замороженных водных дисперсиях клейстеризованной муки происходит (T < 240 K) в основном в результате вращательных движений ОН-групп как в молекулах воды, так и макромолекулах. Сквозная проводимость в дисперсиях появляется при 210 - 240 K, что свидетельствует о перколяционных эффектах вдоль границ раздела фаз, где локализована подвижная незамерзающая вода.

Благодарность

Работа выполнена при финансовой поддержке НАН Украины в рамках комплексной программы фундаментальных исследований «Наноструктурные системы, наноматериалы и нанотехнологии».

Литература

- 1. Thomas D. J., Atwell W. A., Eds. Starches. New York: Eagan Press, 1999.
- 2. Nelson S.O. Electrical properties of agricultural products a critical review // Trans. ASAE. 1973. V. 1, № 2. P. 384 400.
- Dielectric properties of starch solutions as influenced by temperature, concentration, frequency and salt / P. Piyasena, H.S. Ramaswamy, G.B. Awuah, C. Defelice // J. Food Process Eng. – 2003. – V. 26. – P. 93 – 119.
- Rheological and heat transfer characteristics of starch-water suspensions during cooking / K.P. Self, T.J. Wilkin, M.J. Morley, C. Bailey // J. Food Eng. – 1990. – V. 11. – P. 291 – 316.
- 5. Tananuwong K., Reid D.S. DSC and NMR relaxation studies of starch-water interactions during gelatinization // Carbohydrate Polym. 2004. V. 58. P. 345 358.
- The phase transformations in starch during gelatinization: a liquid crystalline approach / T.A. Waigh, M.J. Gidley, B.U. Komanshenk, A.M. Donald // Carbohydrate Res. – 2000. – V. 328. – P. 165 – 176.
- Motwani T., Seetharaman K., Anantheswaran R.C. Dielectric properties of starch slurries as influenced by starch concentration and gelatinization // Carbohydrate Polym. – 2007. – V. 67. – P. 73 – 79
- 8. Cunningham W.C. Study of cryogenic procedures for preparation of food for element analysis // J. Food Compos. Analys. 2008. V. 21, № 1. P. 35 44.
- 9. McMinn W.A.M., McKee D.J., Magee T.R.A. Moisture adsorption behaviour of oatmeal biscuit and oat flakes // J. Food Eng. 2007. V. 79, № 2. P. 481 493.
- Interfacial phenomena in starch/fumed silica at varied hydration levels / V.M. Gun'ko, P. Pissis, A. Spanoudaki, A.A. Turova, V.V. Turov, V.I. Zarko, E.V. Goncharuk // Colloids Surf. A. – 2008. – V. 320. – P. 247 – 259.
- 11. Вода и водные растворы при температурах ниже 0°С. / Под ред. Ф. Франкса. Киев: Наук. думка, 1985. 387 с.
- 12. Михайлик В.А., Давыдова Е.О. Исследование состояния воды в сахаросодержащем растительном сырье при его обезвоживании // Промышленная теплотехника. 2000. Т. 22, № 5-6. С. 50 54.
- Evaluation of thermoporometry for characterization of mesoporous materials / T. Yamamoto, A. Endo, Y. Inagi, T. Ohmori, M. Nakaiwa // J. Colloid Interface Sci. – 2005. – V. 284. – P. 614 – 620.

- TSDC spectroscopy of relaxational and interfacial phenomena / V.M. Gun'ko, V.I. Zarko, E.V. Goncharuk, L.S. Andriyko, V.V. Turov, Y.M. Nychiporuk, R. Leboda, J. Skubiszewska-Zięba, A.L. Gabchak, V.D. Osovskii, Y.G. Ptushinskii, G.R. Yurchenko, O.A. Mishchuk, P.P. Gorbik, P. Pissis, J.P. Blitz // Adv. Colloid Interface Sci. – 2007. – V. 131, № 1-2. – P. 1 – 89.
- Adsorption, NMR and thermally stimulated depolarization current methods for comparative analysis of heterogeneous solid and soft materials / V.M. Gun'ko, V.V. Turov, R. Leboda, V.I. Zarko, J. Skubiszewska-Zięba, B. Charmas // Langmuir. 2007. V. 23, Nº 6. P. 3184 3192.
- Unusual properties of water at hydrophilic/hydrophobic interfaces / V.M. Gun'ko, V.V. Turov, V.M. Bogatyrev, V.I. Zarko, R. Leboda, E.V. Goncharuk, A.A. Novza, A.V. Turov, A.A. Chuiko // Adv. Colloid Interface Sci. - 2005 - V. 118. - P. 125 - 172.
- 17. Photon correlation spectroscopy investigations of proteins / V.M. Gun'ko, A.V. Klyueva, Yu.N. Levchuk, R. Leboda // Adv. Colloid Interface Sci. 2003. V. 105. P. 201 328.

SUPRAMOLECULAR EFFECTS IN HYDRATED MEAL

V.I. Zarko¹, G.E. Polischuk², O.N. Rybak², E.V. Goncharuk¹, V.A. Mikhaylik³, V.F. Gritsenko¹, V.M. Gun'ko¹

¹ Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine General Naumov Str. 17, 03164 Kyiv-164 ²National University of Food Technologies, Kyiv ³ Institute of Technical Thermal Physics of National Academy of Sciences of Ukraine, Kyiv

Features of the behavior of supramolecular structures were studied for hydrated oatmeal and wheat meal before and after gelatinization.