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Interaction of a relativistic electron beam with electromagnetic fields in the cylindrical waveguide with the per-
fectly conducting and sinusoidally corrugated in azimuth wall is theoretically investigated. Influence of geometrical
parameters of the waveguide on characteristics of propagating in it fields is investigated. Regarding the approxima-
tion of small corrugation, analytical dependences of growth rates and resonant frequencies from beam and wave-

guide parameters are defined.
PACS: 41.75.Ht, 52.35.Hr.

INTRODUCTION

Interaction of charged particles beams with electro-
magnetic waves in electrodynamic structures is widely
used for creation of powerful generators of the micro-
wave radiation applied to heating of plasma, accelera-
tion of charged particles and etc. (e.g. see [1 - 5]). Due
to the development of intensive relativistic electronic
beams formation waveguide with smoothly changing
periodic surface represent considerable interest. For
generation of electromagnetic waves by relativistic elec-
tronic beams effective conversion of beam energy to
energy of electromagnetic radiation, as it is known, is
provided by slowing down structures of type of wave-
guides with the corrugated walls.

The paper describes the excitation of electromagnetic
waves by the monoenergetic relativistic electronic beam
in the cylindrical waveguide with azimuthally corrugat-
ed walls.

1. PROBLEM STATEMENT
AND SOLUTION METHOD

Let's consider the cylindrical waveguide with per-
fectly conducting wall of radius R(¢) which changes
with angular coordinate ¢ according to

R(p)= Roft+acos(No)].
where Ry is the mean radius of the waveguide, and N is
the positive integer, <1, 0 < @ < 271

Let the infinitely thin annular monoenergetic relativ-
istic electron beam with charge density n, =ng8(r—ry)
move in a guide steady uniform magnetic field
H (e — e,H, directed along the waveguide axis. Here
ng is the surface charge density, r, is the equilibrium
radius of the beam, ry <R,(L—q), e, is the unit vector

along the waveguide axis. The beam moves along the
waveguide axis with equilibrium velocity v,, and rotates
about this axis with equilibrium velocity v, = ooy,

where oy, =|eHy /(mey), 7o = (1—3300 —Bio)_]/z ,

Boo =V(p0/c’ B0 =Vyo/C.

The original system of equations. Describing inter-
action of a beam with electromagnetic fields in a wave-
guide, consists of the Maxwell's equations for a field of
waves and the relativistic equations of motion and the
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continuity equation for the electrons in cylindrical coor-
dinates.

Let’s consider excitation of a TE-field by an electron
beam.

As the waveguide radius is periodical on ¢ the exit-
ed fields in a waveguide can be expanded in terms of
azimuthal harmonics, by Floquet's theorem:

Fro.zt)= 3 Aty (rJespliv,).

where vy, =l,0+k,z—wt. I, =s+nN, s is an inte-
ger due to the periodicity of the whole system in ¢ with

the period 2.
The components of the TE- field can be expressed in
terms of the longitudinal magnetic field as follows:

kl ik 0
Ern =__nHzn’ Eq)n == <~ Mz
: o
k,l, o k,I,
Hy,=- kf E e <Pn=_EHznv

where k = w/c, k, =4k k2 .

The fields resulting from Maxwell's equations satis-
fy the boundary conditions at the beam-vacuum inter-
face and a perfectly conducting wall, respectively. On a
beam surface at r=r, boundary conditions reduce to the
conditions that E, becomes continuous. Changes in the
magnetic field across the boundary are associated with
surface current:

B = P, HY —HE = (4afc) s, (@)

where s is the surface current density of the beam.
On the wall the boundary conditions reduce to the
requirement that the tangential electric field vanishes,
i.e., E.[R(p)]=0. For quiet dependence of the function
describing a profile of a surface from coordinate this

boundary condition on a wall of a waveguide, expressed
through electric field components, becomes:

drR

% E? +R()EZ =0. @)
Superscript refers to the particular region of waveguide
being considered.

The components of longitudinal magnetic field take
the form:
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HY = A (k.r), ato<r<r,
Hﬁﬁ):BnJ,n(kLr)+CnN|n(klr), at rp<r<R(p).

On the basis of the equations of the electrons motion
in an external magnetic field and in the field of the elec-
tromagnetic wave excited by a beam, it is possible to
obtain the expressions for small perturbations of veloci-
ty and respectively the trajectory of electrons and ex-
press them through the components of the electromag-
netic field in the considered structure [6, 7].

Using the continuity equations, connecting the per-
turbation of density with the perturbation of velocity of
electrons, we can find the azimuthal component of cur-
rent density of a beam. Then substituting these expres-
sions for fields and current density in boundary condi-
tions (1), (2) and performing the relevant calculations
(see [8]) we obtain an infinite system of the algebraic
equations for A,

iamnAFOa —0<m<ow, 3)
where N
/N
am = | . RolL+ acos(No)PW [k, R(o)]+
—-n/N

+igl, N sin(Ne)W, [k, R(o)[e™"™dg
W, (%)= 3, (x)+ Ny (x), 3, (x), Nj(x) are the Bessel
functions of the first and second  kind,
Wy/(x) = (d/dx W, (x).
Considering the excitation of electromagnetic waves
caused by resonance o, =w—k, v,o—l,04, =0, the
expression for p, can be written as:

2 2

T (’ObL 2.4 I
=——|—oy, k,rgJ/(k,r 1- ,
Ky 2{@0 H1®1To I(LO):|[ kfron

where oy, =+/4re?ng /(myor,).

The nontrivial solution of Eq. (3) gives the depend-
ence of frequency ® on a wave number k,and azi-

muthal number s

"amn ((Dm =0, 4)

In a limiting case of small depth of corrugation

(g<<1), with accuracy of the second order in ¢, this
equation can be written as,

i an,n+1 . an+1,n =1, (5)
n=-0 an,n an+1,n+l
where the coefficients a., are defined by formulas:

2
App = {NI; (0“)_ 49 x

4

Hl('x_)w (a)+[ ;—)w (@}esn,m ;
; %{wl; (o)- 0{1— '(”:;“ )W.n (a)}(ﬁm,ml +8mna) |

wherea. =k Ry, 8, , is the Kronecker delta.
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2. ANALYSIS OF THE DISPERSION
RELATION

Let us consider the solution of equation (5) as an ex-
plicit analytical formulae since the quantity g is small.
To determine the dependence of frequency » on a wave
number k,, only the interaction of the fundamental
mode s (n=0) with the n=1, and n= -1 harmonics of the
azimuthally corrugated waveguide needs be considered.

In the absence of a beam, in the zero-order approxi-
mation on corrugation, analysis of eq. (5) leads to the
equation: J.[a(w,)]=0 and to the dispersion relation
for the normal-mode spectrum for cylindrical wave-
guide with perfectly conducting wall. The result is:

2 /.2 2 2 2
(DO/C _kz =Xs,m/R0'
where y , is the m-th root of derivative of the sth-

order Bessel function of the first kind.
Accurate within the second order in q inclusively,
we obtain the following correction Aw to the frequency

o of a smooth waveguide due to corrugation from the
equation (5):

-1
_qzczxg,m 1- s? y
4R§m0 Xg,m

9 2
y 1+Sz_+Xs,m 1 S(S;—N) J?+N(Xs,m)+ ©)
s+N (Xs,m)

Aw =

Xsm Xsm
2
+X5,ml:l— S(SZ—N):| ‘]ffN sz,m;_i_
Xs,m s—N Ls,m

From expression (6) it follows that at a finite non-
zero depth of corrugations the correction to the frequen-
cy is proportional to g°.

If N is an even number at s=N/2, the denominator of
the last term in the right-hand side of Eq. (9) is zero. At
these values of s the expression (6) is incorrect. In cal-
culating the correction of frequency at s=N/2 it is neces-
sary to take into account the coupling of fundamental
mode and n= -1 harmonic of the field. The expression
for the correction Aw in this case becomes:

o 9% 5%/
2RGwo [1-s? /x|

Thus, at s=N/2 there is a spectrum splitting due to
finite depth of corrugations. At the fixed value of longi-
tudinal wave number there is an opacity band which
width is proportional to q.

The account in the eq. (5) terms, depending on the
beam density, leads to occurrence resonant terms at
o=k, V,o+(s+nN)oy |

Let's consider the excitation of the electromagnetic
wave under the resonance of particles with the funda-
mental electromagnetic mode: =K, v,o+ Sy | . Writ-
ing down o=0m,+An+dn and taking into account

only resonant terms in the eq. (5), we obtain the follow-
ing expression for the growth rate

Jm(So)):(ﬁ/ZXmngalKo/a)o)vs, (8)
o7

: ()



Ko=—syd £%1- s? [‘]é(Xs,mg)]z Né(Xs,m).
Dot 12me? J1-52/72 0 Isltsm)

Here, to simplify the formulae, we omit the terms
proportional to g, & =y /R .

In a case of excitation of an electromagnetic wave
under the resonance with the first harmonic of the azi-
muthally corrugated waveguide

o=k, Vot (s+Noy |
the expression for growth rate is

Jm(é‘a)) = (\/g/zxqzwia’qusm /wo )]/3 )]

_r.3

2
B (L (s N Bl N2, ]
Kein = 1- 2 2 2/ 2 %
4 Xs,mi 1-s /Xs,m
2
><|: ;+N (Xsm‘i):|
‘]§+N Xs,m

CONCLUSIONS

The analytical theory of interaction of a relativistic
electron beam with electromagnetic waves in a cylindri-
cal waveguide with sinusoidally corrugated in azimuth
wall is investigated.

It is shown, in particular, that corrugation of wall
leads to change of a smooth waveguide dispersion and
occurrence of opacity bands. In a limiting case of small
depth of corrugations analytical dependences of fre-
quencies on waveguide parameters (depth of corruga-
tions, radius of a waveguide, etc.) are obtained. The
width of the first opacity band is proportional to g.

The growth rates of instability under the cyclotron
resonance of electron beam with the fundamental mode,
and also with the first harmonic of the azimuthally cor-
rugated waveguide are found. In the latter case growth

netic fields are necessary for generation of high-
frequency electromagnetic radiation, than in waveguides
with smooth walls.
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rate is proportional to gq%°. Thus smaller external mag-

B3AUMOJIEMCTBHUE PEJATUBUCTCKOI'O JIEKTPOHHOI'O ITYUKA
C DJIEKTPOMATHUTHBIMH MOJIAMHU B ABUMYTAJIBHO-TO®PUPOBAHHOM BOJIHOBOJE

B.B. Oznueenxo

TeopeTuuecky UCCIEI0OBAaHO B3aMMOJECHCTBUE PENIATUBUCTCKOIO 3JIEKTPOHHOTO My4YKa C 3JIEKTPOMArHUTHBIMU
TIOJISIMH B IIMIIMHAPUIECKOM BOJHOBO/IE C CHHYCOUAATBLHO-TO(QPUPOBAHHBIMHY TI0 a3UMYTY HJICATBHO-TIPOBOISITUMHI
cTeHkamu. Vccnejo0BaHo BIUSHUE TEOMETPUIESCKUX MapaMeTPOB BOJIHOBOJIA Ha XapaKTEPUCTHKHU PaCIPOCTPAHSIO-
IIUXCsl B HEM BOJIH. B npubmikennn Manoil riryOnHsl rodpa onpeeseHbl aHaIUTHIeCKIe 3aBUCHIMOCTH HHKPEMEH-
TOB HEYCTOWYMBOCTEH M PE30HAHCHBIE YaCTOTHI OT MTAPaMETPOB ITyYKa M BOIHOBOJA.

B3AEMOAIA PEJATUBICTCBKOI'O EJIEKTPOHHOI'O ITYYKA
3 EJIEKTPOMATHITHUMHU NOJIAMUA B ABUMYTAJIBHO-TO®POBAHOMY XBUJIEBOJI

B.B. Ocznisenko
TeopeTnyHO OCHTIPKEHA B3a€MOJIS PEISITUBICTCHKOTO €JIEKTPOHHOTO MydYKa 3 €JIEKTPOMArHiTHUMH ITIOJISIMH B
LJTTHJIPUYHOMY XBWJIEBOJII 13 CHHYCOIIHO-TO(QPOBAHUMH O a3UMYTY iJ€ajbHO-IIPOBITHUMH CTiHKamHu. Jlociixke-
HO BIUIMB T€OMETPUYHHX ITapaMeTpiB XBUIICBOAY Ha XapaKTEPUCTHKU XBWIb. Y HaOIMKeHHI Majoi IITMOMHN Todpu
BU3HAYEHI aHAITHYHI 3aJIEKHOCTI IHKPEMEHTIB HECTIMKOCTEH 1 pe30HaHCHI YacTOTH BiJl MapaMeTpiB IMy4yKa Ta XBH-
JIeBOLY.
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