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Conditions on parameters of the dielectric waveguides are determined for the possibility of laser pulse propaga-
tion with relativistic group velocity. In such waveguides laser pulse can excite electromagnetic wake waves, in
which phase velocity is close to the light speed. These electromagnetic waves may be used for acceleration of

charged particles.
PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq

INTRODUCTION

Cherenkov electromagnetic radiation as a wakefield
can be excited in a slowing down medium not only by a
relativistic electron bunch but by a short laser pulse too
[1]. For laser power of PW-level excited wakefields are
so intensive that particle acceleration by using such
wakefields is related to the advanced methods of high
gradient acceleration. We considered the dispersion
properties of waveguide partly filled with dielectric
which are required to accelerate electrons by wakefield,
excited in dielectric waveguide by a laser pulse. Phase
velocity of the excited wakefield is coincided with
group velocity of the laser wave packet, which is less
than speed of light. Therefore for realization of effective
acceleration of relativistic electrons it is necessary to
provide such conditions that group velocity should be
close to speed of light. This requirement can be attained
at partly filling waveguide with dielectric. In present
report for realization these conditions two dielectric
waveguides are considered. First dielectric waveguide is
perfectly conductive tube (cylindrical mirror) in which
there is thin dielectric layer near the inner wall. Second
dielectric structure is dielectric coaxial line, which in-
cludes in itself same mirror and located near axis homo-
geneous dielectric cylinder. It is shown, that in such
systems transversal dielectric inhomogeneity will only
weekly changes discrete transverse wave numbers of
eigen waves of the waveguide. In result phase and group
velocities are weekly depend on the degree of filling of
waveguide with dielectric.

1. DIELECTRIC WAVEGUIDE
WITH PARIETEL DIELECTRIC LAYER

The geometry of the dielectric slowing structure in
the cross section is shown in Fig. 1.

Fig. 1. Tubular dielectric waveguide

The dispersion equation describing the propagation
of symmetric electromagnetic waves of the E -type
with the field components E,,E,,H has the view
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where A=va, v =/k2 -k’ is transverse wave number in
vacuum region, o=k, a, k, =4/kie—k* is transverse wave
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number in dielectric layer, k, =w/c, n=b/a>1, b

and a are outer and inner radii of the dielectric layer, ®
is frequency, k is longitudinal wave number. The parame-
ters A and o are related by the relation

o’ =p>+A7, (2)
p? =kia®(e—1) is frequency parameter. The dispersion
equation (1) together with the relation (2) has a highly
universal form and determines the discrete spectrum of
transverse wave A =4 (p,¢&,17). From the last relation

we find the longitudinal wave numbers of the fast elec-
tromagnetic eigen waves of the dielectric waveguide
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In interesting for us quasi-optical frequency range
kZa? >>1 (4)

the phase velocity of the eigen waves is close to the
speed of light
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Accordingly, for group velocity we have expression
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From this relation it follows that, when the following
condition
Iy
kZa®
is satisfied, the dielectric layer weakly influences on the
group velocity value, which, in turn, is close to the
speed of light in a vacuum.

In the quasi-optical approximation o >>1 we can
use asymptotic representations of the Bessel and Neu-
mann functions for large values of the argument. As a
result, instead of (1), we obtain
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u=t/a, £=b-a is the thickness of the dielectric layer. For
radial harmonics with numbers n << p/z we obtain a

simpler transcendental equation for the eigenvalues A,

k%:f(p), f(p)=Lto(ow) (10)

It is easy to verify that, under the condition f(p) >0

the roots of this equation are in the intervals
Vo(ns1) > M > Vi, and under the condition f (p) <0 ones

n+l

are in the intervals v, ., >, > v,,, where v, and v,,

1(n+1
are the roots of the Bessel functions J,(x) and J,(x),
respectively.

To determine the group velocity (7) the function
o\, /0w easy to calculate from equation (10)
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In result for group velocity fast eigen electromagnet-
ic wave in the high frequency limit kZa® >> 4> we ob-
tain the following expression
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Let us investigate the expression for the group veloc-
ity (12). In the case pp=7zm (m is an integer), we

obtain
B .t N 13
c 2k2a’ (13)
The additive to the group velocity does not depend

on the number of the radial mode. The condition
Mo =mm means that an integer number of transverse

half-waves fit in the dielectric layer ¢=mh, /2,

L, =2n/k, , k, =k,ve—1. In this case, on the inner
surface of the layer, the longitudinal component of the
electric field equas zero, and the connection between the
vacuum region and the dielectric layer is realized
through a magnetic field.

We now consider the case ppo=n(m+1/2) or

¢=m\, /2+\, /4. For the group velocity, we obtain

1 Ko a €. (14)

In the case under consideration, the magnetic field

vanishes on the inner surface of the dielectric layer, and

the connection between the regions occurs through an
electric field.

Thus, the analysis showed that in the quasi-optical

frequency range ka®>>2? the group velocity of the
fast (v,, >c) electromagnetic eigen waves of the die-

lectric waveguide is close to the speed of light in a vac-
uum. The dielectric layer slightly slows down the wave
packet so that y, >>1.
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2. DIELECTRIC COAXIAL LINE

The geometry of the dielectric structure considered
below is shown in Fig. 2. A homogeneous dielectric
cylinder of radius a is surrounded by a coaxial cylindri-
cal mirror of larger radius b > a.

Fig. 2. Geometry of the dielectric coaxial line

The dispersion equation describing symmetric elec-
tromagnetic waves of the E-type in such a dielectric
structure has the form [2]
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where A=va, o=k, a o=k an=bl/a.
The parameters A and o are related by (2). In the
high-frequency limiting case A2 >>1, p* >> A%, 1%/2p <<1,
the dispersion equation (15) can be simplified

Atgh :“_Pﬂzf(p).
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Here u=—-1. The transverse wave number in the
a

» (15)
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vacuum region A is defined as follows
A=v(b-a). @an
From this relation instead of formulas (6), (7) we ob-
tain expressions for the phase andzgroup velocities
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where A are roots of the transcendental equation (16).
For positive values of the function f(p), the roots of

equation (16) are in intervals n(n+1/2)>%x, >nn, n

is positive integer, and for negative values f(p) inter-
valsare mn >, >n(n-1/2).

For a function v, (w) contained in the expression
for the group velocity (19), we have.
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Let us consider some particular cases. For discrete
cv .
X, (p=Vyy,) from the disper-

ave-1 ’
sion equation (16) we find the roots A, = zn.
Correspondingly, for the function v, (@) we obtain
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For the phase and group velocities we have expressions
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For a thin dielectric rod a <<, the correction to the
group velocity due to the dielectric rod is small and
negative.

Let now consider the set of frequencies

CVim
®, = , (p=v,,). Then the spectrum of trans-
ave-1 .

verse wave numbers is A, =mn(n—1/2). For the phase

and group velocities, we obtain
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The addition to group velocity is also small. And, fi-
nally, far from these discrete sets of frequencies for the
group velocity of fast electromagnetic waves of a die-
lectric coaxial line, we have expression
Vv 2
Bl 1 R0 9
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Thus, in the whole quasi-optical frequency region, in
the case of a thin dielectric rod a/b <1, the group ve-
locity of fast electromagnetic waves is close to the
speed of light.

As is known, in a perfectly conducting coaxial line,
there is a coaxial (TEM) electromagnetic wave with a
simple dispersion law @ =kc and a phase velocity equal
to the speed of light in a vacuum. An analogous quasi-
coaxial wave can propagate in a dielectric coaxial line.
For a theoretical analysis of this wave, we will consider
the exact dispersion equation (15). We will assume that
the phase velocity of the quasi-coaxial wave is close to
the speed of light in a vacuum and consequently
An <<1. In this limiting case, the dispersion equation

(15) is substantially simplified and takes the form

2,2 _ 1 cJ, (6) ) (25)
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Solving equation (25) by the method of successive
approximations, we find expressions for the longitudinal
wave number, phase and group velocities of the quasi-
coaxial wave
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Frequencies o, =v,,c/(ave—1) are called critical

[2] and they separate fast and slow waves. Indeed, in the
vicinity of the critical frequencies, the expression for the
phase velocity (24) can be written in the form
Vo 1 e-1 o-o, )
c 2¢ln(b/a) o,
When o <w, Vv, >c,and when o>o, Vv, <C.

In this case, the group velocity is equal
Vg 1_E -1 1

c “2¢ In(b/a)’
The group velocity is close to ¢ for a large ratio of
the radii of the mirror and the dielectric cylinder.

CONCLUSIONS

A necessary condition for the realization of the ac-
celeration method of relativistic electrons (positrons) by
the wake fields of a short laser pulse in dielectric struc-
tures is the possibility of propagation in them of laser
wave packets with a group velocity close to the speed of
light in a vacuum. This is due to the fact that the phase
velocity of the Cerenkov wakefield in dielectric media
coincides with the group velocity of the laser pulse. The
condition v, ~c can be realized in dielectric slowing

structures, in which the dielectric only partially fills the
dielectric structure in the cross section. In this case, the
transverse dielectric inhomogeneity will only slightly
perturb the discrete transverse wave numbers of the eig-
en waveguide waves. In turn, in the quasi-optical ap-
proximation wa/c>>1, where a is the characteristic
transverse dimension of the structure, the phase and
group velocities are weakly dependent on the values of
the transverse wave number and, respectively, the de-
gree dielectric filling of dielectric structure.

The theoretical analysis performed in the work on
the example of two dielectric structures fully confirms
the quasi-optical ideology presented above. It is shown
that, indeed, in the quasi-optical approximation, the fill-
ing dielectric with a relatively small volume does not
lead to a significant slowing down the group velocity.
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JUDJIEKTPUYECKHUE BOJIHOBO/BI UIS1 YCKOPEHU S 3JIEKTPOHOB KHWJIBBATEPHBIM IIOJIEM
JIASBEPHOI'O UMITYJIBCA
B.A. banaxupes, H.H. Onuwenko
OmnpeieneHsl yCIoBUst Ha MapamMeTphbl AUAICKTPUYECKUX BOJIHOBOJIOB, IIPH BHITOJHEHHH KOTOPBIX JIa3ePHBII HMITYJIBC MOYET pac-
MPOCTPAHATBCS C PEIITHUBUCTCKON TPYIIOBON CKOPOCTBIO. B Takoi cuTyaluu ja3epHblil UMITyJibe OyeT Bo30YKIaTh KHIIbBATCPHBIC
3JIEKTPOMArHUTHBIC BOJIHBI C (PA30BOH CKOPOCTBIO, OJIM3KOH K CKOPOCTH CBETa, KOTOPbIE MOTYT ObITh MCIIOJIB30BAHBI I YCKOPEHUS
3apsKCHHBIX YaCTHIL,
JIEJIEKTPUYHI XBIJIEBOIU /TSI TIPUCKOPEHHS EJIEKTPOHIB KVIbBBATEPHUM ITOJIEM JIASEPHOI'O IMITYJIBCY
B.A. banakipee, 1. M. Oniwenko
BusHayeHi yMOBH Ha HapaMeTpu AieNeKTPUYHUX XBUICBOIB, IIPH BUKOHAHHI SIKMX JIA3EPHUH IMIYJIBC MOXE PO3IOBCIO-
JDKYBAaTHUCh 3 PEIITHBICTCHKOIO TPYMOBOIO IIBUKICTIO. Y Takii cHTyanil Jla3epHUil iMITyibe Oyae 30yIKyBaTH KilbBaTepHi ene-
KTPOMArHiTHI XBHIi 3 (a30BOIO MIBUAKICTIO, OJIM3BKOIO [0 IIBHIKOCTI CBIT/A, SIKI MOXYTh OYTH BUKOPUCTAaHHUMH JUIS [IPUCKO-
PEHHS 3aps/UKCHUX YaCTHHOK.
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