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Abstract. For each of the eight n-th derivative parameter changing formulas for Gauss
hypergeometric functions a corresponding fractional integration formula is given. For both
types of formulas the differential or integral operator is intertwining between two actions
of the hypergeometric differential operator (for two sets of parameters): a so-called trans-
mutation property. This leads to eight fractional integration formulas and four generalized
Stieltjes transform formulas for each of the six different explicit solutions of the hypergeo-
metric differential equation, by letting the transforms act on the solutions. By specialization
two Euler type integral representations for each of the six solutions are obtained.
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1 Introduction

This paper has two sources of inspiration. The first aim was to give a complete list of the
fractional integration formulas corresponding to the eight parameter changing n-th derivative
formulas for Gauss hypergeometric functions given in [7, 2.8(20)–(27)] and [18, § 15.5]. The
first fractional generalization of one of these differentiation formulas was given by Bateman [4,
p. 184]. Fractional generalizations of some further differentiation formulas were given by Askey
& Fitch [3, Section 2]. One still missing case was partially handled by Camporesi [5, paragraph
after (2.28)]. In this paper the full list of the eight fractional integral transformation formulas
will be given.

Another observation leading to this paper was that Euler’s integral representation for the
Gauss hypergeometric function, when written as a fractional integral

2F1

(
a, b

c
;x

)
=

Γ(c)

Γ(b)Γ(c− b)
x1−c

∫ x

0
yb−1(1− y)−a(x− y)c−b−1 dy

(0 < x < 1, Re c > Re b > 0), (1.1)

should have a proof by using the hypergeometric differential equation [1, (2.3.5)]

La,b,c;z

(
2F1

(
a, b

c
; z

))
= 0, (1.2)
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where

La,b,c;z
(
f(z)

)
= (La,b,cf)(z) := z(1− z)f ′′(z) + (c− (a+ b+ 1)z)f ′(z)− abf(z), (1.3)

and that then essentially the same proof should also yield that

f(x) := |x|1−c
∫ M

m
|y|b−1|1− y|−a|x− y|c−b−1 dy (1.4)

is a solution of the hypergeometric differential equation if m, M and x are as follows:

(m,M) (−∞, x) (−∞, 0) (x, 0) (0, x) (0, 1) (0, 1) (x, 1) (1, x) (1,∞) (x,∞)

x ∈ (−∞, 0) (0,∞) (−∞, 0) (0, 1) (−∞, 0) (1,∞) (0, 1) (1,∞) (−∞, 1) (1,∞)

This means that m and M in (1.4) are two consecutive points of singularity of the integrand.
Indeed, we will see that in all listed cases the right-hand side of (1.4) equals a constant multiple
of one of the six explicit solutions wj [18, § 15.10(ii)] of the hypergeometric differential equation.
In fact, as was Sergei Sitnik kindly commenting to me following an earlier version of this paper,
the above observations (in the fractional integral case where m or M equals x) were already
made in great detail by Letnikov [14] in 1874 in a paper which seems to have been unobserved
outside Russia.

The Euler type integral representations of fractional integral type are specializations of pa-
rameter changing fractional integral transforms acting on some wj . For instance, (1.1) is a special
case of Bateman’s fractional integral formula [4, p. 184]:∫ x

0
yc−1 2F1

(
a, b

c
; y

)
(x− y)µ−1

Γ(µ)
dy =

Γ(c)

Γ(c+ µ)
xc+µ−1 2F1

(
a, b

c+ µ
;x

)
(0 < x < 1, Re c > 0, Reµ > 0). (1.5)

It will turn out that (1.5), and all other fractional integral formulas for hypergeometric functions
to be considered, admit a proof by using the hypergeometric differential equation. Here La,b,c,
given by (1.3), occurs in so-called transmutation formulas, for instance in connection with (1.5):

La,b,c+µ;x

(
x1−c−µ

∫ x

0
yc−1f(y)

(x− y)µ−1

Γ(µ)
dy

)
= x1−c−µ

∫ x

0
yc−1(La,b,cf)(y)

(x− y)µ−1

Γ(µ)
dy

(f ∈ C2([0, 1)), x ∈ (0, 1), Re c > 0, Reµ > 0). (1.6)

Transmutation is a term which occurs in many meanings in science, and even can have various
meanings in mathematics, but in the sense used here it was first considered in great detail
by Lions [15], namely as an operator A, often an integral operator, intertwining between two
differential operators L1 and L2:

L1A = AL2.

In most examples, but not here, L1 = d2/dx2. Then a typical example for L2 would be the
Bessel type differential operator L2 = d2/dx2 + ax−1d/dx. Lions [15] built on earlier work by
J. Delsarte (1938) and Levitan (1951). Many papers and books on transmutation have appeared
since then. See the surveys [21, 22] by Sitnik and references given there.

The cases of (1.4) where m and M are not equal to x are variants of the generalized Stieltjes
transform, introduced by Widder [26, Section 8], and further developed by many authors, see
for instance references in [10, 11]. We consider the generalized Stieltjes transform as a transform
sending f to g of the form

g(x) =

∫ M

m
f(y)|y − x|µ−1 dy, (1.7)
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where (m,M) is (−∞, 0) or (0, 1) or (1,∞), where x is on R outside the integration interval,
and where the function y 7→ |y|µ−1f(y) is L1 on the integration interval. The Euler type integral
representations of this form are special cases of generalized Stieltjes transforms which send a solu-
tion wi of the hypergeometric differential equation to a solution wj and change the parameters.

Some of these formulas can be found in literature, notably in the Bateman project [8]. There
[8, 14.4(9)] is essentially the case (m,M) = (−∞, 0) of (1.4), while [8, 20.2(10)] is a generalized
Stieltjes transform sending a 2F1 to a 2F1. A formula by Karp & Sitnik [12, Lemma 2] is
essentially a generalized Stieltjes transform sending a 2F1 to a 3F2, which can be specialized
to a transform sending 2F1 to 2F1. We will give a long list of generalized Stieltjes transforms
sending some wi to some wj , including the two from literature just mentioned. The formulas in
this list are essentially equivalent: they can all be derived from each other.

The case µ = 0 of (1.7) is essentially the classical Stieltjes transform. It will not change the
parameters of the hypergeometric solutions. A well-known example of this case is [25, (4.61.4)],
which sends Jacobi polynomials to Jacobi functions of the second kind.

The idea that formulas for hypergeometric functions can be proved by using the hypergeo-
metric differential equation goes back to Riemann. See Andrews, Askey & Roy [1, Sections 2.3
and 3.9] how this method can be used for a proof of Pfaff’s and Euler’s transformation formu-
las and of quadratic transformation formulas. Such methods are recently also used by Paris
and coauthors [13, 24]. They refer to an earlier proof in this spirit by Rainville [19, p. 126] of
a quadratic transformation formula involving a 1F1 and a 0F1. In this paper the method will be
applied to integral formulas, but with a different focus.

Our message is that many formulas for hypergeometric functions have a companion formula
involving the hypergeometric differential equation, which is more universal because it will imply
or suggest many formulas involving the various solutions wj of the hypergeometric differential
equation. A final rigorous proof of these formulas may not use the universal formula (as will be
often the case in the present paper), but the universal formula is helpful for arriving at these
formulas and for organizing them.

Quite probably the ideas of this paper will also work in other situations, for instance for
Appell hypergeometric series.

The contents of this paper are as follows. After some preliminaries for hypergeometric func-
tions in Section 2, we illustrate in Section 3 the main ideas of the paper for the special case
of the Bateman integral (1.5). This takes quite a few pages, but it is less technical than the
rest of the paper. In Section 4 we state and prove the eight fractional integral transformations
corresponding to the eight n-th derivative formulas for hypergeometric functions. We give also
eight corresponding transmutation formulas. In Section 5 we discuss the 48 fractional integration
formulas for the six solutions wj , which can be obtained by rewriting the formulas in Section 4.
Not all formulas will be given explicitly. In Section 6 we give 24 generalized Stieltjes transforms
sending some wi to some wj . In Section 7 we give for each of the six solutions wj two Euler type
integral representations. They can all be obtained by specialization of formulas in Sections 5
and 6. Finally, Section 8 discusses the connection between generalized Stieltjes transforms of
different order by fractional integration, and how this leads to connections between formulas in
Sections 5 and 6.

2 Preliminaries about hypergeometric functions

The Gauss hypergeometric function [7, Chapter 2], [1, Chapter 2], [18, Chapter 15] is defined
by its power series

2F1

(
a, b

c
; z

)
= F (a, b; c; z) :=

∞∑
k=0

(a)k(b)k
(c)kk!

zk (|z| < 1). (2.1)
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Here the (complex) parameters a, b, c are taken generically. In particular the series should be
well-defined (c /∈ Z≤0), while possibly nicer results in case of terminating series (a or b ∈ Z≤0)
are not paid attention to. The function (2.1) has a one-valued analytic continuation to C\[1,∞).
It satisfies the hypergeometric differential equation (1.2) and it is uniquely determined as the
function regular near 0 and equal to 1 at 0 which is annihilated by La,b,c.

Important transformation formulas, due to Pfaff and Euler, respectively, are [1, (2.2.6),
(2.2.7)], [18, (15.8.1)]:

2F1

(
a, b

c
; z

)
= (1− z)−a 2F1

(
a, c− b

c
;

z

z − 1

)
(z /∈ [1,∞)), (2.2)

2F1

(
a, b

c
; z

)
= (1− z)c−a−b 2F1

(
c− a, c− b

c
; z

)
(z /∈ [1,∞)). (2.3)

Often, a specific formula for F (a, b; c; . ) trivially implies another one by the symmetry in a
and b. For instance, when we will refer to (2.2), we may also mean a similar identity with the
right-hand side given by (1 − z)−bF (c − a, b; c; z/(z − 1)). An elementary special case of the
hypergeometric function is

2F1

(
a, b

b
; z

)
= (1− z)−a (z /∈ [1,∞)). (2.4)

In the case of generic parameters there are essentially six different explicit solutions of the
Gauss differential equation La,b,cf = 0 [7, Section 2.9], [18, § 15.10(ii)]. These are one-valued
analytic functions on the complex plane with a suitable real interval as cut:

w1(z; a, b, c) := 2F1

(
a, b

c
; z

)
(z /∈ [1,∞)), (2.5)

w2(z; a, b, c) := z1−c 2F1

(
a− c+ 1, b− c+ 1

2− c
; z

)
(z /∈ (−∞, 0] ∪ [1,∞)), (2.6)

w3(z; a, b, c) := z−a 2F1

(
a, a− c+ 1

a− b+ 1
; z−1

)
(z /∈ (−∞, 1]), (2.7)

w4(z; a, b, c) := z−b 2F1

(
b, b− c+ 1

b− a+ 1
; z−1

)
(z /∈ (−∞, 1]), (2.8)

w5(z; a, b, c) := 2F1

(
a, b

a+ b− c+ 1
; 1− z

)
(z /∈ (−∞, 0]), (2.9)

w6(z; a, b, c) := (1− z)c−a−b 2F1

(
c− a, c− b
c− a− b+ 1

; 1− z
)

(z /∈ (−∞, 0] ∪ [1,∞)). (2.10)

Here we had to exclude not just the branch cuts of the 2F1’s, but also those of the power factors
(we assume principal values for the complex powers). In the case of w2, w3, w4, w6 we might
have chosen the branch cuts due to the power factors differently. For instance, a companion
of w2 would be

w̃2(z; a, b, c) := (−z)1−c 2F1

(
a− c+ 1, b− c+ 1

2− c
; z

)
(z /∈ [0,∞)).

We will also consider the six solutions on subintervals of the real axis including the branch
cuts of the power factors as below (here we abuse notation by not changing it compared to
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above)

w1(x; a, b, c) = 2F1

(
a, b

c
;x

)
(x ∈ (−∞, 1)), (2.11)

w2(x; a, b, c) = |x|1−c 2F1

(
a− c+ 1, b− c+ 1

2− c
;x

)
(x ∈ (−∞, 0) ∪ (0, 1)), (2.12)

w3(x; a, b, c) = |x|−a 2F1

(
a, a− c+ 1

a− b+ 1
;x−1

)
(x ∈ (−∞, 0) ∪ (1,∞)), (2.13)

w4(x; a, b, c) = |x|−b 2F1

(
b, b− c+ 1

b− a+ 1
;x−1

)
(x ∈ (−∞, 0) ∪ (1,∞)), (2.14)

w5(x; a, b, c) = 2F1

(
a, b

a+ b− c+ 1
; 1− x

)
(x ∈ (0,∞)), (2.15)

w6(x; a, b, c) = |1− x|c−a−b 2F1

(
c− a, c− b
c− a− b+ 1

; 1− x
)

(x ∈ (0, 1) ∪ (1,∞)). (2.16)

3 The main ideas illustrated in a special case

3.1 Transmutation property of a differentiation operator

In [7, 2.8(20)–(27)] or [18, § 15.5] there is a list of eight parameter changing n-th derivative
formulas for Gauss hypergeometric functions. One of these is [18, (15.5.4)]:(

d

dz

)n(
zc−1 2F1

(
a, b

c
; z

))
=

Γ(c)

Γ(c− n)
zc−n−1 2F1

(
a, b

c− n
; z

)
. (3.1)

Formula (3.1) can be proved immediately by power series expansion (2.1). Note also that the
n-th derivative case follows by iteration of the case n = 1. The case n = 1 can be rewritten as

Dc−1 2F1

(
a, b

c
; .

)
= (c− 1) 2F1

(
a, b

c− 1
; .

)
, (3.2)

where

(Daf)(z) := zf ′(z) + af(z) = z−a+1 d

dz

(
zaf(z)

)
. (3.3)

Clearly, if f is analytic at 0 then Daf is analytic at 0 and (Daf)(0) = af(0).
Straightforward computation followed by iteration gives the following transmutation pro-

perty:

La,b,c−1Dc−1 = Dc−1La,b,c, (3.4)

La,b,c−nDc−n · · ·Dc−2Dc−1 = Dc−n · · ·Dc−2Dc−1La,b,c. (3.5)

Formula (3.2) is also a consequence of (3.4). Indeed, by (3.4) La,b,c−1 annihilates the left-hand
side of (3.2). Since this left-hand side is regular at 0, it must be a constant times F (a, b; c−1; . )
with the constant obtained by evaluating both sides at 0. Similarly, (3.1) is a consequence
of (3.5).

Because of the above argument, it is natural to consider Dc−1wj( . ; a, b, c) not just for j = 1
but also for the other explicit solutions of the hypergeometric differential equation (j = 2, . . . , 6).
It will turn out that for all j we get some constant factor times wj( . ; a, b, c− 1). For instance,
with w2 given by (2.6),

Dc−1w2( . ; a, b, c) =
(a− c+ 1)(b− c+ 1)

2− c
w2( . ; a, b, c− 1). (3.6)
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This is equivalent to the prototypical differentiation formula for the hypergeometric function [4,
(15.5.4)]:

d

dz
2F1

(
a, b

c
; z

)
=
ab

c
2F1

(
a+ 1, b+ 1

c+ 1
; z

)
. (3.7)

Corresponding to each of the eight n-th derivative formulas [18, (15.5.2)–(15.5.9)] one can
write down a transmutation formula like (3.5), and corresponding to each of these transmutation
formulas one can write down an n-th derivative formula for each of the six solutions wj . These
will not be included in the present paper. The transmutation formulas for the first derivative
operators were earlier given by Dereziński [6, end of Section 3.4]. He calls them commutation
relations and he relates them to to the Lie algebra so(6) (or equivalently sl(4)). This way
to associate a Lie algebra (the so-called dynamical symmetry algebra) with a hypergeomet-
ric differential equation was first described by Miller [17]. This was later understood in the
framework of A-hypergeometric systems, see Saito [20].

Remark 3.1. The transformation formulas (2.2) and (2.3) also have a more universal back-
ground because they can be understood from transformation properties of the differential ope-
rator La,b,c (see also [1, (2.3.10B) and (2.3.10F)]):

La,b,c;z

(
(1− z)−af

(
z

z − 1

))
= −(1− z)−a−1

(
La,c−b,cf

)( z

z − 1

)
, (3.8)

La,b,c;z
(
(1− z)c−a−bf(z)

)
= (1− z)c−a−b(Lc−a,c−b,cf)(z). (3.9)

This suggests identities involving wi(z; a, b, c), (1 − z)−awj(
z
z−1 ; a, c − b, c), (1 − z)−bwk(

z
z−1 ;

c− a, b, c) and (1− z)c−a−bwl(z; c− a, c− b, c). These can indeed be given, but sometimes one
needs another branch cut for the power factor than chosen in (2.5)–(2.10).

3.2 Transmutation property of a fractional integral operator

Both Riemann–Liouville and Weyl fractional integrals will occur in our formulas. See, for
instance, [8, pp. 181–183] or [16].

Formula (3.1) can equivalently be written as a repeated integral, which can be condensed to
a single integral [1, p. 111]. For this purpose, take 0 < x < 1 and assume Re c > n. We obtain

xc−1 2F1

(
a, b

c
;x

)
=

Γ(c)

Γ(c− n)

∫ x

0
yc−n−1 2F1

(
a, b

c− n
; y

)
(x− y)n−1

(n− 1)!
dy. (3.10)

Note that there are no other terms because, by our assumption, yc−m vanishes at y = 0 for
m = 1, . . . , n. Formula (3.10) has a fractional extension for n complex with Re c > Ren > 0. In
rewritten form this is Bateman’s fractional integral formula (1.5), which is often written in the
form ∫ 1

0
tc−1 2F1

(
a, b

c
; tz

)
(1− t)µ−1

Γ(µ)
dt =

Γ(c)

Γ(c+ µ)
2F1

(
a, b

c+ µ
; z

)
(z ∈ C\[1,∞), Re c > 0, Reµ > 0). (3.11)

Then (1.5) follows from (3.11) by specializing z to x ∈ (0, 1) and substituting t = y/x. By
analytic continuation it is sufficient to prove (3.11) for |z| < 1. There it follows by power series
expansion (2.1). For (3.11) see also [3, (2.4)], [2, (3.5)] and [1, Theorem 2.2.4, (2.9.6)].

Just as we proved (3.2) by (3.4), we can prove (1.5) from the following identity (derived by
straightforward computation):

y1−cL1−a,1−b,2−c;y
(
yc−1(x− y)µ−1

)
= xc+µ−1La,b,c+µ;x

(
x1−c−µ(x− y)µ−1

)
. (3.12)

We also need (straightforward by integration by parts):
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Lemma 3.2. Let f, g ∈ C2((m,M)). Then, for x ∈ (m,M),

(La,b,cf)(x)g(x)− f(x)(L1−a,1−b,2−cg)(x)

=
d

dx

(
x(1− x)

(
f ′(x)g(x)− f(x)g′(x)

)
+
(
c− 1 + (1− a− b)x

)
f(x)g(x)

)
.

Furthermore, let x(1 − x)f ′′(x)g(x), x(1 − x)f(x)g′′(x), (1 + |x|)f ′(x)g(x), (1 + |x|)f(x)g′(x),
f(x)g(x), as functions of x, be in L1((m,M)), and assume that

x(1− x)f ′(x)g(x)

x(1− x)f(x)g′(x)

(1 + |x|)f(x)g(x)

→ 0 as x ↓ m or x ↑M .

Then ∫ M

m
(La,b,cf)(x)g(x) dx =

∫ M

m
f(x)(L1−a,1−b,2−cg)(x) dx. (3.13)

In particular, L1−a,1−b,2−c is the formal adjoint of La,b,c.

Proof of (1.5) by (3.12). First assume 0 < x < 1, Re c > 1, Reµ > 2, We have

La,b,c+µ;x
(
x1−c−µ × left-hand side of (1.5)

)
=

1

Γ(µ)

∫ x

0
yc−1 2F1

(
a, b

c
; y

)
La,b,c+µ;x

(
x1−c−µ(x− y)µ−1

)
dy

=
x1−c−µ

Γ(µ)

∫ x

0
2F1

(
a, b

c
; y

)
L1−a,1−b,2−c;y

(
yc−1(x− y)µ−1

)
dy

=
x1−c−µ

Γ(µ)

∫ x

0
La,b,c;y

(
2F1

(
a, b

c
; y

))
yc−1(x− y)µ−1 dy = 0.

For the first equality sign we twice used a generalized Leibniz rule [9, (1.1)] (allowed because
the integral in the second line converges absolutely) together with the vanishing of the integrand
of the left-hand side of (1.5) for y = x (and similarly for the derivative with respect to x of
that integrand)1. For the second equality apply (3.12) and for the third equality (3.13) (the
conditions are satisfied). Because

x1−c−µ × left-hand side of (1.5) =

∫ 1

0
tc−1 2F1

(
a, b

c
; tx

)
(1− t)µ−1

Γ(µ)
dt,

this is analytic in x at x = 0, and for x = 0 it takes the value∫ 1

0
tc−1

(1− t)µ−1

Γ(µ)
dt =

Γ(c)

Γ(c+ µ)
.

Thus, by the characterization of the hypergeometric function as solution of the hypergeometric
differential equation, we have proved (3.12) for Reµ > 2, Re c > 1. These conditions can be
relaxed by analytic continuation. �

If we replace in the above proof the 2F1 by a suitable function f then we obtain the trans-
mutation property (1.6).

1The involved differentiation under the integral sign got some fame as “Feynman’s trick”, see https://en.

wikipedia.org/wiki/Differentiation_under_the_integral_sign#Popular_culture.

https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign#Popular_culture
https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign#Popular_culture
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Remark 3.3. For Reµ > 2 (1.6) is equivalent to (3.12). For µ = 3, 4, . . . (1.6) is also equivalent
to (3.5). Furthermore, it is sufficient to prove (3.12) for µ = 3, 4, . . . because, after division of
both sides by (x− y)µ−1, the two sides depend polynomially on µ.

Formally, the proof of (1.6) can be extended to showing that

La,b,c+µ;x

(
|x|1−c−µ

∫ M

m
|y|c−1f(y)

|x− y|µ−1

Γ(µ)
dy

)
= |x|1−c−µ

∫ M

m
|y|c−1(La,b,cf)(y)

|x− y|µ−1

Γ(µ)
dy. (3.14)

Here m or M may be equal to x, but not necessarily, and y and x − y should not change sign
for y ∈ [m,M). This becomes rigorous if f , c and µ are such that the first and third equality
(suitably modified) in the above Proof remain valid in the case of (3.14). In particular, f should
have suitable vanishing properties at m and M , even stronger if m or M are not equal to 0 or x.

If (3.14) holds and if La,b,cf = 0 then

La,b,c+µg = 0, g(x) := |x|1−c−µ
∫ M

m
|y|c−1f(y)

|x− y|µ−1

Γ(µ)
dy. (3.15)

In this paper many explicit cases of (3.15) will be given, where f = wi for some i and g = const·wj
for some j, with j = i if m or M equals x. As an example it can be derived that∫ x

−∞
(−y)c−1w2(y; a, b, c)

(x− y)µ−1

Γ(µ)
dy =

Γ(a− c− µ+ 1)

Γ(a− c+ 1)

Γ(b− c− µ+ 1)

Γ(b− c+ 1)

Γ(2− c)
Γ(2− c− µ)

× (−x)c+µ−1w2(x; a, b, c+ µ) (3.16)

(x < 0, Re (a− c− µ+ 1),Re (b− c− µ+ 1),Reµ > 0).

This is the fractional generalization of the iteration of (3.6). It can be equivalently written as∫ x

−∞
2F1

(
a, b

c
; y

)
(x− y)µ−1

Γ(µ)
dy =

Γ(a− µ)

Γ(a)

Γ(b− µ)

Γ(b)

Γ(c)

Γ(c− µ)
2F1

(
a− µ, b− µ

c− µ
;x

)
(x < 0, Re a, Re b > Reµ > 0). (3.17)

This is the fractional generalization of the iteration of (3.7). A different proof will be given in
the next section.

Another explicit case of (3.15) which we will meet is∫ ∞
1

yc−1w6(y; a, b, c)(y − x)µ−1 dy

=
Γ(a− c− µ+ 1)Γ(b− c− µ+ 1)Γ(c− a− b+ 1)

Γ(2− c− µ)Γ(1− µ)
xc+µ−1w2(x; a, b, c+ µ)

(0 < x < 1, Re (a− c− µ+ 1), Re (b− c− µ+ 1), Re (c− a− b+ 1) > 0). (3.18)

The left-hand side is no longer of fractional integral type, but it is a generalized Stieltjes trans-
form, to which we will return in a moment.

3.3 Euler type integral representations

When we replace c, µ by b, c− b in (1.5) or (3.11) and use (2.4) then we obtain Euler’s integral
representation as fractional integral (1.1), or in its most used form

2F1

(
a, b

c
; z

)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt

(z ∈ C\[1,∞), Re c > Re b > 0). (3.19)
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The right-hand side of (1.1) is annihilated by La,b,c;x. This is a consequence of the transmutation
property (1.6), by which La,b,c;x acting on the right-hand side of (1.1) is equal to

const · x1−c
∫ x

0
yb−1La,b,b;y

(
(1− y)−a

)
(x− y)c−b−1 dy = 0

because (1− y)−a is annihilated by La,b,b;y. This last fact is also apparent from

La,b,b;y =

(
y
d

dy
+ b

)
◦
(

(1− y)
d

dy
− a
)
.

The more general transmutation property (3.14), considered with c, µ replaced by b, c − b,
suggests that each wj has an Euler type integral representation (1.4). This is indeed the case,
as we already briefly indicated after (1.4).

We can write (3.19) also equivalently as a generalized Stieltjes transform

w3(x; a, b, c) =
Γ(a− b+ 1)

Γ(a− c+ 1)Γ(c− b)

∫ 1

0
ya−c(1− y)c−b−1(x− y)−a dy

(x > 1, Re (a+ 1) > Re c > Re b). (3.20)

It will turn out that, more generally and analogous to (1.4),

g(x) =

∫ M

m
|y|a−c|1− y|c−b−1|x− y|−a dy (3.21)

is a solution of the hypergeometric differential equation if m, M and x are as listed after (1.4).
Although most Euler type integral representations of fractional integral type are equivalent

to some integral representation of generalized Stieltjes transform type by a change of integration
variable, this is no longer true for the integral transforms mapping wi to wj which specialize to
an Euler type integral representation.

3.4 Generalized Stieltjes transforms as transmutation operators

We already observed in Section 1 that variants of fractional integral transforms and the Euler
integral representation for hypergeometric functions naturally lead to formulas involving a ge-
neralized Stieltjes transform. In the definition by Widder [26, Section 8] the generalized Stieltjes
transform sends a suitable measure α or function φ (with dα(t) = φ(t) dt) to a function f analytic
on C\(−∞, 0]:∫ ∞

0

dα(t)

(z + t)ρ
= f(z).

The special case ρ = 1 gives the classical Stieltjes transform. In order to have analytic expressions
similar to the ones in fractional integral transforms, we will work with transforms (1.7).

Transforms of generalized Stieltjes type have transmutation properties. For instance, from
(3.14) we have, associated with (3.18), the intertwining property

La,b,c+µ;x

(
x1−c−µ

∫ ∞
1

yc−1f(y)(y − x)µ−1 dy

)
= x1−c−µ

∫ ∞
1

yc−1(La,b,cf)(y)(y − x)µ−1 dy (0 < x < 1).

Noteworthy is the case µ = 0. Then we have the same hypergeometric differential operator on
both sides. The Stieltjes transform will then map solutions of the differential equation to other
solutions.
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Karp & Sitnik [12, Lemma 2] proved the following formula:∫ 1

0
tb−1(1− t)d+e−b−c−1 2F1

(
d− c, e− c
d+ e− b− c

; 1− t
)

(1− tz)−a dt

=
Γ(b)Γ(c)Γ(d+ e− b− c)

Γ(d)Γ(e)
3F2

(
a, b, c

d, e
; z

)
(z ∈ C\[1,∞), Re b,Re c,Re (d+ e− b− c) > 0). (3.22)

If we replace z by z−1 then we recognize the formula as a generalized Stieltjes transform sending
a 2F1 to a 3F2 of general parameters. (For more general formulas expressing pFp−1 functions
as generalized Stieltjes transforms see [11] and references given there.) If moreover d = a the
transform in [19] sends a 2F1 to a 2F1:∫ 1

0
tb−1(1− t)a+e−b−c−1 2F1

(
a− c, e− c
a+ e− b− c

; 1− t
)

(z − t)−a dt

=
Γ(b)Γ(c)Γ(a+ e− b− c)

Γ(a)Γ(e)
z−a 2F1

(
b, c

e
; z−1

)
(z ∈ C\(−∞, 1], Re b,Re c,Re (d+ e− b− c) > 0). (3.23)

All generalized Stieltjes transforms mapping a solution wi to a solution wj we know can be
obtained from (3.23) by change of parameters, change of integration variable, and application
of (2.2) and (2.3).

4 The eight fractional integral transformations
of the Gauss hypergeometric function

Each of the eight n-th derivative formulas in [18, § 15.5] has a fractional generalization. Some of
these are very well-known, but others were hardly known until now. They fall apart into three
families. Within a family the formulas follow from each other by application of (2.2) or (2.3).
We will use shorthand names for the eight cases of which the meaning will be obvious. The
division of the cases into families and their correspondence with the n-th derivative formulas is
as follows:

family I I I II II III III III

case c+ a+, c+ a+, b+, c+ a− a+ a−, b−, c− a−, c− c−
[18, § 15.5] (4) (8) (9) (3) (5) (1) (7) (6)

4.1 Family I

Case c+. We already discussed Bateman’s fractional integral formula (1.5). From (3.11) we
get another variant of (1.5):∫ 0

x
(−y)c−1 2F1

(
a, b

c
; y

)
(y − x)µ−1

Γ(µ)
dy =

Γ(c)

Γ(c+ µ)
(−x)c+µ−1 2F1

(
a, b

c+ µ
;x

)
(x < 0, Re c > 0, Reµ > 0),

which we can write together with (1.5) in a unified way as:∫
0<y/x<1

|y|c−1 2F1

(
a, b

c
; y

)
|x− y|µ−1

Γ(µ)
dy =

Γ(c)

Γ(c+ µ)
|x|c+µ−1 2F1

(
a, b

c+ µ
;x

)
(x ∈ (−∞, 0) ∪ (0, 1), Re c > 0, Reµ > 0). (4.1)
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Case a+, c+. By using (2.2) in (4.1) we arrive at∫
0<y/x<1

|y|c−1(1− y)b−c−µ 2F1

(
a, b

c
; y

)
|x− y|µ−1

Γ(µ)
dy

=
Γ(c)

Γ(c+ µ)
|x|c+µ−1(1− x)b−c 2F1

(
a+ µ, b

c+ µ
;x

)
(x ∈ (−∞, 0) ∪ (0, 1), Re c > 0, Reµ > 0). (4.2)

Case a+, b+, c+. By using (2.3) in (4.1) we arrive at∫
0<y/x<1

|y|c−1(1− y)a+b−c 2F1

(
a, b

c
; y

)
|x− y|µ−1

Γ(µ)
dy

=
Γ(c)

Γ(c+ µ)
|x|c+µ−1(1− x)a+b−c+µ 2F1

(
a+ µ, b+ µ

c+ µ
;x

)
(x ∈ (−∞, 0) ∪ (0, 1), Re c > 0, Reµ > 0). (4.3)

See also Askey & Fitch [3, (2.11)].

4.2 Family II

Case a−. Askey & Fitch [3, (2.10)] give∫ 1

0
ta−µ−1 2F1

(
a, b

c
; zt

)
(1− t)µ−1

Γ(µ)
dt =

Γ(a− µ)

Γ(a)
2F1

(
a− µ, b

c
; z

)
(z /∈ (1,∞), Re a > Reµ > 0). (4.4)

The proof is as for (3.11). For |z| < 1 the formula follows by power series expansion (2.1),
and next the general case follows by analytic continuation. Formula (4.4) implies the following
fractional integral formula:∫

0<y/x<1
|y|a−µ−1 2F1

(
a, b

c
; y

)
|x− y|µ−1

Γ(µ)
dy =

Γ(a− µ)

Γ(a)
|x|a−1 2F1

(
a− µ, b

c
;x

)
(x ∈ (−∞, 0) ∪ (0, 1), Re a > Reµ > 0). (4.5)

Case a+. By using (2.2) or (2.3) in (4.5) we arrive at∫
0<y/x<1

|y|c−a−µ−1(1− y)a+b−c 2F1

(
a, b

c
; y

)
|x− y|µ−1

Γ(µ)
dy

=
Γ(c− a− µ)

Γ(c− a)
|x|c−a−1(1− x)a+b−c+µ 2F1

(
a+ µ, b

c
;x

)
(x ∈ (−∞, 0) ∪ (0, 1), Re (c− a) > Reµ > 0). (4.6)

4.3 Family III

Case a−, b−, c−. The following generalizes a formula of Camporesi [5, paragraph af-
ter (2.28)].

Proposition 4.1. We have∫ x

−∞
2F1

(
a, b

c
; y

)
(x− y)µ−1

Γ(µ)
dy =

Γ(a− µ)

Γ(a)

Γ(b− µ)

Γ(b)

Γ(c)

Γ(c− µ)
2F1

(
a− µ, b− µ

c− µ
;x

)
(x < 1, Re a,Re b > Reµ > 0). (4.7)
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Proof. Formula (4.5) can be rewritten as:∫
1< y

x

|y|−a 2F1

(
a, b

c
; y−1

)
|x− y|µ−1

Γ(µ)
dy =

Γ(a− µ)

Γ(a)
|x|−a+µ 2F1

(
a− µ, b

c
;x−1

)
(x ∈ (−∞, 0) ∪ (1,∞), Re a > Reµ > 0). (4.8)

Combination with [7, 2.10(2) and (5)] (or with [18, (15.8.2)]) yields (4.7) for x < 0. This, in its
turn, implies by transformation of integration variable and by analytic continuation that∫ ∞

1
2F1

(
a, b

c
; 1 + tz

)
(t− 1)µ−1

Γ(µ)
dt =

Γ(a− µ)

Γ(a)

Γ(b− µ)

Γ(b)

Γ(c)

Γ(c− µ)

× (−z)−µ 2F1

(
a− µ, b− µ

c− µ
; 1 + z

)
(z /∈ [0,∞), Re a > Reµ > 0). (4.9)

From that we see that (4.7) holds for x < 1. �

Case a−, c−. By using (2.2) in (4.7) we arrive at∫ 1

x
(1− y)a−µ−1 2F1

(
a, b

c
; y

)
(y − x)µ−1

Γ(µ)
dy =

Γ(a− µ)

Γ(a)

Γ(c− b− µ)

Γ(c− b)
Γ(c)

Γ(c− µ)

× (1− x)a−1 2F1

(
a− µ, b
c− µ

;x

)
(x < 1, Re a,Re (c− b) > Reµ > 0). (4.10)

Case c−. By using (2.3) in (4.7) we arrive at∫ x

−∞
(1− y)a+b−c 2F1

(
a, b

c
; y

)
(x− y)µ−1

Γ(µ)
dy =

Γ(c− a− µ)

Γ(c− a)

Γ(c− b− µ)

Γ(c− b)
Γ(c)

Γ(c− µ)

× (1− x)a+b−c+µ 2F1

(
a, b

c− µ
;x

)
(x < 1, Re (c− a),Re (c− b) > Reµ > 0).(4.11)

4.4 Transmutation formulas

Corresponding to case c+ above, we gave already (3.12), which gives rise to the transmutation
formula (1.6), and by which a proof of (4.1) can be given. Analogues of (3.12) and (1.6) can be
given for all cases above. These have the general form

La′,b′,c′;x

(
w(y)

v(x)
|x− y|µ−1

)
= L1−a,1−b,2−c;y

(
w(y)w2(y)

v(x)v2(x)
|x− y|µ−1

)
(4.12)

and

La′,b′,c′;x

(∫
I
f(y)

w(y)

v(x)
|x− y|µ−1 dy

)
=

∫
I
(La,b,cf)(y)

w(y)w2(y)

v(x)v2(x)
|x− y|µ−1 dy. (4.13)

The data to be used in these two formulas for the eight cases are specified in the table below.
In general, w(y) is a product of powers of |y| and 1 − y, and w2(y) is equal to |y|, 1 − y or 1.
Similarly for v(x) and v2(x), respectively. The variable y in (4.12) ranges over an open interval I
which is also the integration interval in (4.13). The interval I has endpoint x at one side and
endpoint x0 = 0, 1 or −∞ at the other side. The variable x in (4.12) and (4.13) ranges over
some open subset J of R. The function f in (4.13) should be in C2(J) and should moreover
satisfy certain growth conditions at x0, to be specified in a moment. The parameter µ can be
arbitrarily complex in (4.12) but should satisfy Reµ > 2 in (4.13).
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case a′ b′ c′ x0 w(y)/v(x) w2(y)/v2(x) J

c+ a b c+ µ 0 |y|c−1/|x|c+µ−1 1 (−∞, 0) ∪ (0, 1)

a+, c+ a+ µ b c+ µ 0
|y|c−1(1− y)b−c−µ

|x|c+µ−1(1− x)b−c
1− y
1− x

(−∞, 0) ∪ (0, 1)

a+, b+, c+ a+ µ b+ µ c+ µ 0
|y|c−1(1− y)a+b−c

|x|c+µ−1(1− x)b−c
1 (−∞, 0) ∪ (0, 1)

a− a− µ b c 0 |y|a−µ−1/|x|a−1 |y|/|x| (−∞, 0) ∪ (0, 1)

a+ a+ µ b c 0
|y|c−a−µ−1(1− y)a+b−c

|x|c−a−1(1− x)a+b−c+µ
|y|/|x| (−∞, 0) ∪ (0, 1)

a−, b−, c− a− µ b− µ c− µ −∞ 1 1 (−∞, 1)

a−, c− a− µ b c− µ 1
(1− y)a−µ−1

(1− x)a−1
1− y
1− x

(−∞, 1)

c− a b c− µ −∞ (1− y)a+b−c

(1− x)a+b−c+µ
1 (−∞, 1)

Verification of (4.12) in the eight cases is by straightforward computation, possibly using com-
puter algebra.

In order to find the growth conditions in (4.13) for f at x0 we recall that (4.13) is obtained
from the string of equalities

La′,b′,c′;x

(∫
I
f(y)

w(y)

v(x)
|x− y|µ−1 dy

)
=

∫
I
f(y)La′,b′,c′;x

(
w(y)

v(x)
|x− y|µ−1

)
dy

=

∫
I
f(y)L1−a,1−b,2−c;y

(
w(y)w2(y)

v(x)v2(x)
|x− y|µ−1

)
dy

=

∫
I
(La,b,cf)(y)

w(y)w2(y)

v(x)v2(x)
|x− y|µ−1 dy.

In the various steps we have to consider the singularities for y at x and at x0. The first singularity
is already taken into account by the condition Reµ > 2. As for the singularity at x0 the first
and the third equality need extra assumptions (which will also imply that the four parts of the
string are well defined). For the first equality we need

f(y)w(y)(1 + |y|)Reµ−1 as a function of y is L1 at y = x0.

For the third equality the needed assumptions follow from Lemma 3.2:

f ′′(y)y(1− y)w(y)w2(y)(1 + |y|)Reµ−1

f ′(y)w(y)w2(y)(1 + |y|)Reµ

f(y)y(1− y)
d2

dy2
(
w(y)w2(y)(1 + |y|)Reµ−1)

f(y)
d

dy

(
w(y)w2(y)(1 + |y|)Reµ

)
f(y)w(y)w2(y)(1 + |y|)Reµ−1


as functions of y are L1 at y = x0,

and

f ′(y)y(1− y)w(y)w2(y)(1 + |y|)Reµ−1

f(y)y(1− y)
d

dy

(
w(y)w2(y)(1 + |y|)Reµ−1)

f(y)w(y)w2(y)(1 + |y|)Reµ

→ 0 as y → x0.
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Thus, for given f , the identity (4.13) is settled under certain constraints for a, b, c and µ.
But then the identity will be valid under relaxed constraints on a, b, c and µ such that both
sides of (4.13) are analytic in these four parameters, i.e., if Reµ > 2 and

f ′′(y)y(1− y)w(y)w2(y)(1 + |y|)Reµ−1

f ′(y)w(y)w2(y)(1 + |y|)Reµ

f(y)w(y)(1 + |y|)Reµ−1

 as functions of y are L1 at y = x0.

5 Fractional integral transformations for the six solutions
of the hypergeometric differential equation

Formula (4.1) is a fractional integral transformation of type c+ for the solution w1 of the
hypergeometric differential equation. It turns out that for all six solutions wi there is such
a transformation of the form ( . )c−1wi( . ; a, b, c) → ( . )c+µ−1wi( . ; a, b, c + µ). These can all be
obtained by rewriting fractional integral transformations for 2F1(a, b; c; . ) of various types given
in Section 4, namely types c+; a−, b−, c−; a−; a−; c−; a+, b+, c+, respectively. Here we list
these formulas. Each formula is preceded by the formula number of the formula in Section 4 to
which it reduces:

(4.1) :

∫
0<y/x<1

|y|c−1w1(y; a, b, c)
(x− y)µ−1

Γ(µ)
dy =

Γ(c)

Γ(c+ µ)
|x|c+µ−1w1(x; a, b, c+ µ)

(x ∈ (−∞, 0) ∪ (0, 1), Re c > 0, Reµ > 0); (5.1)

(4.7) :

∫ x

−∞
|y|c−1w2(y; a, b, c)

(x− y)µ−1

Γ(µ)
dy =

Γ(a− c− µ+ 1)

Γ(a− c+ 1)

× Γ(b− c− µ+ 1)

Γ(b− c+ 1)

Γ(2− c)
Γ(2− c− µ)

|x|c+µ−1w2(x; a, b, c+ µ)

(x ∈ (−∞, 1), Re (a− c+ 1),Re (b− c+ 1) > Reµ > 0); (5.2)

(4.8) :

∫
y/x>1

|y|c−1w3(y; a, b, c)
|x− y|µ−1

Γ(µ)
dy =

Γ(a− c− µ+ 1)

Γ(a− c+ 1)
|x|c+µ−1w3(x; a, b, c+ µ)

(x ∈ (−∞, 0) ∪ (1,∞), Re (a− c+ 1) > Reµ > 0); (5.3)

(4.8) :

∫
y/x>1

|y|c−1w4(y; a, b, c)
|x− y|µ−1

Γ(µ)
dy =

Γ(b− c− µ+ 1)

Γ(b− c+ 1)
|x|c+µ−1w4(x; a, b, c+ µ)

(x ∈ (−∞, 0) ∪ (1,∞), Re (b− c+ 1) > Reµ > 0); (5.4)

(4.11) :

∫ ∞
x

yc−1w5(y; a, b, c)
(y − x)µ−1

Γ(µ)
dy =

Γ(b− c− µ+ 1)

Γ(b− c+ 1)

× Γ(a− c− µ+ 1)

Γ(a− c+ 1)

Γ(a+ b− c+ 1)

Γ(a+ b− c− µ+ 1)
xc+µ−1w5(x; a, b, c+ µ)

(x ∈ (0,∞), Re (b− c+ 1),Re (a− c+ 1) > Re (µ) > 0); (5.5)

(4.3) :

∫
0< 1−y

1−x
<1
yc−1w6(y; a, b, c)

|y − x|µ−1

Γ(µ)
dy

=
Γ(c− a− b+ 1)

Γ(c− a− b+ µ+ 1)
xc+µ−1w6(x; a, b, c+ µ)

(x ∈ (0, 1) ∪ (1,∞), Re (c− a− b+ 1) > 0, Reµ > 0). (5.6)

It is a straightforward exercise to list also the fractional integral transformation formulas
of the wi corresponding to the other seven types. We do not list all these formulas here, but



Transmutation Operators 15

only give their essential behaviour in the following table. Here an entry in ith row, jth column
(place (i, j)) tells us that the transformation formula for wj of type given at (i, 1) can be reduced
to the transformation formula for w1 of type given at (i, j).

w1 w2 w3 w4 w5 w6

c+ a−, b−, c− a− a− c− a+, b+, c+
a+, c+ a−, c− a+, c+ a−, c− a+ a+
a+, b+, c+ c− a+ a+ a+, b+, c+ c−
a− a− a−, b−, c− c+ a−, c− a+, c+
a+ a+ a+, b+, c+ c− a+, c+ a−, c−
a−, b−, c− c+ a− a− a−, b−, c− c+
a−, c− a+, c+ a−, c− a+, c+ a− a−
c− a+, b+, c+ a+ a+ c+ a−, b−, c−

The cases c+; c−; a−, b−, c−; a+, b+, c+ occur 5 times, the cases a+, c+; a−, c− 6 times, and
the cases a−; a+ 8 times. That these numbers are not all equal will be caused by the symmetry
in a and b of the hypergeometric function.

Some more examples from the above table which we need later (because of specialization to
Euler type integral representations) are:∫

0< y
x
<1
|y|a−µ−1w2(y; a, b, c)

|x− y|µ−1

Γ(µ)
dy =

Γ(a− c− µ+ 1)

Γ(a− c+ 1)
|x|a−1w2(x; a− µ, b, c)

(x ∈ (−∞, 0) ∪ (0, 1), Re (a− c+ 1) > Reµ > 0), (5.7)∫
y
x
>1
w4(y; a, b, c)

|x− y|)µ−1

Γ(µ)
dy =

Γ(b− µ)

Γ(b)
w4(x; a− µ, b− µ, c− µ)

(x ∈ (−∞, 0) ∪ (1,∞), Re b > Reµ > 0), (5.8)∫
0< 1−y

1−x
<1
w6(y; a, b, c)

|x− y|µ−1

Γ(µ)
dy =

Γ(c− a− b+ 1)

Γ(c− a− b+ µ+ 1)
w6(x; a− µ, b− µ, c− µ)

(x ∈ (0, 1) ∪ (1,∞), Re (c− a− b+ 1) > 0, Reµ > 0). (5.9)

6 Generalized Stieltjes transforms between solutions
of the hypergeometric differential equation

First we recall the proof of (3.22) as given by Karp & Sitnik [12, Lemma 2]. Expand for |z| < 1
the left-hand side of (3.22) as

∞∑
k=0

(a)k
k!

zk
∫ 1

0
td+e−b−c−1(1− t)b+k−1 2F1

(
d− c, e− c
d+ e− b− c

; t

)
dt.

By the limit case x ↑ 1 of (1.5) this equals

∞∑
k=0

(a)k
k!

zk
Γ(d+ e− b− c)Γ(b+ k)

Γ(d+ e− c+ k)
2F1

(
d− c, e− c
d+ e− c+ k

; 1

)
.

By the Gauss summation formula [1, Theorem 2.2.2] we get

∞∑
k=0

(a)k
k!

zk
Γ(d+ e− b− c)Γ(b+ k)

Γ(d+ e− c+ k)

Γ(c+ k)Γ(d+ e− c+ k)

Γ(d+ k)Γ(e+ k)
,

which is equal to the right-hand side of (3.22). All steps can be rigorously justified because of
the constraints in (3.22).
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We now list the generalized Stieltjes transforms mapping a solution wi to a solution wj . They
can all be obtained from the special case (3.23) of (3.22) by change of parameters, change of
integration variable, and application of (2.2) and (2.3). In particular, (6.10) and (6.12) below
are simple rewritings of (3.23) by a change of parameters. Also, (6.1) below is a rewriting of [8,
20.2(10)].

The formulas in the list are grouped in cases similar to the cases in Section 4. In all formulas
the constraints are that x is in an interval (−∞, 0), (0, 1) or (1,∞) which does not coincide with
the integration interval, and that the arguments of the three gamma functions in the numerator
on the right-hand side have positive real parts.

Case c+.∫ 0

−∞
(−y)c−1w1(y; a, b, c)(x− y)µ−1 dy

=
Γ(a− c− µ+ 1)Γ(b− c− µ+ 1)Γ(c)

Γ(a+ b− c− µ+ 1)Γ(1− µ)
xc−1+µw5(x; a, b, c+ µ), (6.1)∫ ∞

1
yc−1w6(y; a, b, c)(y − x)µ−1 dy

=
Γ(a− c− µ+ 1)Γ(b− c− µ+ 1)Γ(c− a− b+ 1)

Γ(2− c− µ)Γ(1− µ)
|x|c+µ−1w2(x; a, b, c+ µ). (6.2)

Case a+, c+.∫ 1

0
yc−1(1− y)b−c−µw1(y; a, b, c)|x− y|µ−1 dy

=
Γ(−a− µ+ 1)Γ(b− c− µ+ 1)Γ(c)

Γ(b− a− µ+ 1)Γ(1− µ)

× |x|c+µ−1|x− 1|b−cw4(x; a+ µ, b, c+ µ), (6.3)∫ ∞
1

yc−1(y − 1)b−c−µw3(y; a, b, c)(y − x)µ−1 dy

=
Γ(−a− µ+ 1)Γ(b− c− µ+ 1)Γ(a− b+ 1)

Γ(−c− µ+ 2)Γ(1− µ)

× |x|c+µ−1|x− 1|b−cw2(x; a+ µ, b, c+ µ). (6.4)

Case b+, c+.∫ 1

0
yc−1(1− y)a−c−µw1(y; a, b, c)|x− y|µ−1 dy

=
Γ(−b− µ+ 1)Γ(a− c− µ+ 1)Γ(c)

Γ(a− b− µ+ 1)Γ(1− µ)

× |x|c+µ−1|x− 1|a−cw3(x; a, b+ µ, c+ µ), (6.5)∫ ∞
1

yc−1(y − 1)a−c−µw4(y; a, b, c)|x− y|µ−1 dy

=
Γ(−b− µ+ 1)Γ(a− c− µ+ 1)Γ(b− a+ 1)

Γ(−c− µ+ 2)Γ(1− µ)

× |x|c+µ−1|x− 1|a−cw2(x; a, b+ µ, c+ µ). (6.6)
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Case a+, b+, c+.∫ 0

−∞
(−y)c−1(1− y)a+b−cw1(x; a, b, c)(x− y)µ−1 dy

=
Γ(−a− µ+ 1)Γ(−b− µ+ 1)Γ(c)

Γ(c− a− b− µ+ 1)Γ(1− µ)

× xc+µ−1(1− x)a+b−c+µw6(x; a+ µ, b+ µ, c+ µ), (6.7)∫ ∞
1

yc−1(y − 1)a+b−cw5(y; a, b, c)(y − x)µ−1 dy

=
Γ(−a− µ+ 1)Γ(−b− µ+ 1)Γ(a+ b− c+ 1)

Γ(2− c− µ)Γ(1− µ)

× |x|c+µ−1(1− x)a+b−c+µw2(x; a+ µ, b+ µ, c+ µ). (6.8)

Case a−.∫ 0

−∞
(−y)a−µ−1w4(y; a, b, c)(x− y)µ−1 dy

=
Γ(a− µ)Γ(a− c− µ+ 1)Γ(b− a+ 1)

Γ(a+ b− c− µ+ 1)Γ(1− µ)
xa−1w5(x; a− µ, b, c), (6.9)∫ 1

0
ya−µ−1w6(y; a, b, c)|x− y|µ−1 dy

=
Γ(a− c− µ+ 1)Γ(a− µ)Γ(c− a− b+ 1)

Γ(a− b− µ+ 1)Γ(1− µ)
|x|a−1w3(x; a− µ, b, c). (6.10)

Case b−.∫ 0

−∞
(−y)b−µ−1w3(y; a, b, c)(x− y)µ−1 dy

=
Γ(b− µ)Γ(b− c− µ+ 1)Γ(a− b+ 1)

Γ(a+ b− c− µ+ 1)Γ(1− µ)
xb−1w5(x; a, b− µ, c), (6.11)∫ 1

0
yb−µ−1w6(y; a, b, c)|x− y|µ−1 dy

=
Γ(b− c− µ+ 1)Γ(b− µ)Γ(c− a− b+ 1)

Γ(b− a− µ+ 1)Γ(1− µ)
|x|b−1w4(x; a, b− µ, c). (6.12)

Case a+.∫ 0

−∞
(−y)c−a−µ−1(1− y)a+b−cw3(y; a, b, c)(x− y)µ−1 dy (6.13)

=
Γ(−a− µ+ 1)Γ(c− a− µ)Γ(a− b+ 1)

Γ(c− a− b− µ+ 1)Γ(1− µ)
xc−a−1(1− x)a+b−c+µw6(x; a+ µ, b, c),∫ 1

0
yc−a−µ−1(1− y)a+b−cw5(y; a, b, c)|x− y|µ−1 dy

=
Γ(−a− µ+ 1)Γ(c− a− µ)Γ(a+ b− c+ 1)

Γ(b− a− µ+ 1)Γ(1− µ)

× |x|c−a−1|1− x|a+b−c−µw4(x; a+ µ, b, c). (6.14)
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Case b+.∫ 0

−∞
(−y)c−b−µ−1(1− y)a+b−cw4(y; a, b, c)(x− y)µ−1 dy

=
Γ(−b− µ+ 1)Γ(c− b− µ)Γ(b− a+ 1)

Γ(c− a− b− µ+ 1)Γ(1− µ)

× xc−b−1(1− x)a+b−c+µw6(x; a, b+ µ, c), (6.15)∫ 1

0
yc−b−µ−1(1− y)a+b−cw5(y; a, b, c)|x− y|µ−1 dy

=
Γ(−b− µ+ 1)Γ(c− b− µ)Γ(a+ b− c+ 1)

Γ(a− b− µ+ 1)Γ(1− µ)

× |x|c−b−1|1− x|a+b−c−µw3(x; a, b+ µ, c). (6.16)

Case a−, b−, c−.

∫ 0

−∞
w2(y; a, b, c)(x− y)µ−1 dy

=
Γ(a− µ)Γ(b− µ)Γ(2− c)

Γ(a+ b− c− µ+ 1)Γ(1− µ)
w5(x; a− µ, b− µ, c− µ), (6.17)∫ ∞

1
w6(y; a, b, c)(y − x)µ−1 dy

=
Γ(a− µ)Γ(b− µ)Γ(c− a− b+ 1)

Γ(c− µ)Γ(1− µ)
w1(x; a− µ, b− µ, c− µ). (6.18)

Case a−, c−.

∫ 1

0
(1− y)a−µ−1w2(y; a, b, c)|x− y|µ−1 dy

=
Γ(c− b− µ)Γ(a− µ)Γ(2− c)

Γ(a− b− µ+ 1)Γ(1− µ)
|x− 1|a−1w3(x; a− µ, b, c− µ), (6.19)∫ ∞

1
(y − 1)a−µ−1w4(y; a, b, c)(y − x)µ−1 dy

=
Γ(c− b− µ)Γ(a− µ)Γ(b− a+ 1)

Γ(c− µ)Γ(1− µ)
|1− x|a−1w1(x; a− µ, b, c− µ). (6.20)

Case b−, c−.

∫ 1

0
(1− y)b−µ−1w2(y; a, b, c)|x− y|µ−1 dy

=
Γ(c− a− µ)Γ(b− µ)Γ(2− c)

Γ(b− a− µ+ 1)Γ(1− µ)
|x− 1|b−1w4(x; a, b− µ, c− µ), (6.21)∫ ∞

1
(y − 1)b−µ−1w3(y; a, b, c)(y − x)µ−1 dy

=
Γ(c− a− µ)Γ(b− µ)Γ(a− b+ 1)

Γ(c− µ)Γ(1− µ)
|1− x|b−1w1(x; a, b− µ, c− µ). (6.22)
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Case c−.∫ 0

−∞
(1− y)a+b−cw2(y; a, b, c)(x− y)µ−1 dy

=
Γ(c− a− µ)Γ(c− b− µ)Γ(2− c)

Γ(c− a− b− µ+ 1)Γ(1− µ)
|1− x|a+b−c+µw6(x; a, b, c− µ), (6.23)∫ ∞

1
(y − 1)a+b−cw5(y; a, b, c)(y − x)µ−1 dy

=
Γ(c− a− µ)Γ(c− b− µ)Γ(a+ b− c+ 1)

Γ(c− µ)Γ(1− µ)
(1− x)a+b−c+µw1(x; a, b, c− µ). (6.24)

We summarize the results of the above list in the following table. In the box in row wi and
column wj the type is given of the generalized Stieltjes transform sending wi to wj .

w1 w2 w3 w4 w5 w6

w1 b+, c+ a+, c+ c+ a+, b+, c+

w2 a−, c− b−, c− a−, b−, c− c−
w3 b−, c− a+, c+ b− a+

w4 a−, c− b+, c+ a− b+

w5 c− a+, b+, c+ b+ a+

w6 a−, b−, c− c+ a− b−
Due to the denominator factor Γ(1− µ) all generalized Stieltjes transforms above become zero
if µ is a positive integer satisfying the constraints.

7 Euler type integral representations

Below we give the explicit Euler type integral representations which have form (1.4) or (3.21).

Euler type integrals with integrand |x|1−c|y|b−1|1− y|−a|x− y|c−b−1.

w1(x; a, b, c) =
Γ(c)

Γ(b)Γ(c− b)
|x|1−c

∫
0<y/x<1

|y|b−1(1− y)−a|x− y|c−b−1 dy

(x ∈ (−∞, 0) ∪ (0, 1), Re c > Re b > 0), (7.1)

w2(x; a, b, c) =
Γ(2− c)

Γ(a− c+ 1)Γ(1− a)
|x|1−c

∫ ∞
1

yb−1(y − 1)−a(y − x)c−b−1 dy

(x ∈ (−∞, 0) ∪ (0, 1), Re (c− 1) < Re a < 1), (7.2)

w3(x; a, b, c) =
Γ(a− b+ 1)

Γ(a− c+ 1)Γ(c− b)
|x|1−c

∫
y/x>1

|y|b−1|y − 1|−a|y − x|c−b−1 dy

(x ∈ (−∞, 0) ∪ (1,∞), Re (a− c+ 1) > 0, Re (c− b) > 0), (7.3)

w4(x; a, b, c) =
Γ(b− a+ 1)

Γ(−a)Γ(b+ 1)
|x|1−c

∫ 1

0
yb−1(1− y)−a|x− y|c−b−1 dy

(x ∈ (−∞, 0) ∪ (1,∞), Re a < 0, Re b > −1), (7.4)

w5(x; a, b, c) =
Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b)
x1−c

∫ 0

−∞
(−y)b−1(1− y)−a(x− y)c−b−1 dy

(x ∈ (0,∞), Re b > 0, Re (a− c+ 1) > 0), (7.5)

w6(x; a, b, c) =
Γ(c− a− b+ 1)

Γ(1− a)Γ(c− b)
x1−c

∫
0< 1−y

1−x
<1
yb−1(1− y)−a|x− y|c−b−1 dy

(x ∈ (0, 1) ∪ (1,∞), Re (c− b) > 0, Re a < 1). (7.6)
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Euler type integral transformations with integrand |y|a−c|1− y|c−b−1|x− y|−a.

w1(x; a, b, c) =
Γ(c)

Γ(b)Γ(c− b)

∫ ∞
1

ya−c(y − 1)c−b−1(y − x)−a dy

(x < 1, Re c > Re b > 0), (7.7)

w2(x; a, b, c) =
Γ(2− c)

Γ(a− c+ 1)Γ(1− a)

∫
0<y/x<1

|y|a−c(1− y)c−b−1|x− y|−a dy

(x ∈ (−∞, 0) ∪ (0, 1), 2 > Re (a+ 1) > Re c), (7.8)

w3(x; a, b, c) =
Γ(a− b+ 1)

Γ(a− c+ 1)Γ(c− b)

∫ 1

0
ya−c(1− y)c−b−1|x− y|−a dy

(x ∈ (−∞, 0) ∪ (1,∞), Re (a+ 1) > Re c > Re b), (7.9)

w4(x; a, b, c) =
Γ(b− a+ 1)

Γ(−a)Γ(b+ 1)

∫
y/x>1

|y|a−c|y − 1|c−b−1|y − x|−a dy

(x ∈ (−∞, 0) ∪ (1,∞), Re a < 1, Re b > 0), (7.10)

w5(x; a, b, c) =
Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b)

∫ 0

−∞
(−y)a−c(1− y)c−b−1(x− y)−a dy

(x ∈ (0,∞), Re b > 0, Re (a+ 1) > Re c), (7.11)

w6(x; a, b, c) =
Γ(c− a− b+ 1)

Γ(1− a)Γ(c− b)

∫
0< 1−y

1−x
<1
|y|a−c|1− y|c−b−1|x− y|−a dy

(x ∈ (0, 1) ∪ (1,∞), Re (c− b) > 0, Re a < 1). (7.12)

The integrals in (7.1), (7.3), (7.6) (for w1, w3, w6) and in (7.8), (7.10), (7.12) (for w2, w4, w6)
are of fractional integral type. Formulas (7.3), (7.8), (7.10) and (7.12) can be reduced to (1.1)
by a change of integration variable, while (7.1) is a rewritten version of (1.1). Each of the six
formulas (7.1)–(7.6) is paired with one of the six formulas (7.7)–(7.12) by a transformation of
integration variable which involves x. The pairing is as follows:

(7.1) ↔ (7.9), (7.2) ↔ (7.10), (7.3) ↔ (7.7),

(7.4) ↔ (7.8), (7.5) ↔ (7.11), (7.6) ↔ (7.12).

In 1874 Letnikov [14, (11), (13), (16), (17), (21), (22)] (see also Sostak [23, Section 4]) already
gave the Euler type integral representations (7.8), (7.12), (7.10), (7.1), (7.6), (7.3), respectively,
as solutions of the hypergeometric differential equation [14, p. 115, (A)]. In order to arrive
at these results he essentially considered the fractional integral operator as a transmutation
operator with respect to the hypergeometric differential operator.

int. rep. transform from to case

(7.1) (5.1) w1 w1 c+
(7.2) (6.4) w3 w2 a+, c+
(7.3) (5.3) w3 w3 c+
(7.4) (6.3) w1 w4 a+, c+
(7.5) (6.1) w1 w5 c+
(7.6) (5.6) w6 w6 c+

(7.7) (6.20) w4 w1 a−, c−
(7.8) (5.7) w2 w2 a−
(7.9) (6.10) w6 w3 a−
(7.10) (5.8) w4 w4 a−, b−, c−
(7.11) (6.9) w4 w5 a−
(7.12) (5.9) w6 w6 a−, b−, c−
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The above table gives for each Euler type integral representation in the first column the
transformation formula in the second column from which it can be obtained by specialization
of parameters (b = c in the first six rows and a = −1 in the last six rows). The transformation
formula sends wi in the third column to wj in the fourth column. Its case is given in the fifth
column. Formula (7.5) is essentially the same as [8, 14.4(9)].

8 Generalized Stieltjes transform
and fractional integral transform combined

As observed in [8, p. 213], generalized Stieltjes transforms of different order are connected with
each other by fractional integration. Formula (8.1) below was essentially given there, and later
given with proof in [10, Theorem 9]. Some related identities can also be proved:

Proposition 8.1. Let Re (1 − ν) > Reµ > 0. Assume that f ∈ L1
loc((m,M)) and that the

integrals on the right-hand side of the four identities below converge absolutely. Then∫ x

−∞

(∫ M

m
f(z)

Γ(1− ν)

(z − y)1−ν
dz

)
(x− y)µ−1

Γ(µ)
dy =

∫ M

m
f(z)

Γ(1− µ− ν)

(z − x)1−µ−ν
dz (x < m), (8.1)∫ ∞

x

(∫ M

m
f(z)

Γ(1− ν)

(y − z)1−ν
dz

)
(y − x)µ−1

Γ(µ)
dy =

∫ M

m
f(z)

Γ(1− µ− ν)

(x− z)1−µ−ν
dz (M < x), (8.2)∫ ∞

m

(∫ y

m
f(z)

(y − z)µ−1

Γ(µ)
dz

)
Γ(1− ν)

(x− y)1−ν
dy =

∫ ∞
m

f(z)
Γ(1− µ− ν)

(z − x)1−µ−ν
dz (x < m), (8.3)∫ M

−∞

(∫ M

y
f(z)

(z − y)µ−1

Γ(µ)
dz

)
Γ(1− ν)

(y − x)1−ν
dy =

∫ M

−∞
f(z)

Γ(1− µ− ν)

(x− z)1−µ−ν
dz (x > M).(8.4)

The proofs are immediate, by the Fubini theorem and by a version [18, (5.12.3)] of the beta
integral. Furthermore, (8.2) is an immediate consequence of (8.1), and similarly (8.4) of (8.3).

Examples of formulas (8.1)–(8.4) can be found by combining suitable fractional integral for-
mulas in Section 5 with suitable generalized Stieltjes transform formulas in Section 6. For
instance:

• In (8.1) let m = 1, M =∞, f(z) = zc−1w6(z; a, b, c) and use (5.2) and (6.2).

• In (8.2) let m = −∞, M = 0, f(z) = (−z)c−1w1(z; a, b, c) and use (5.5) and (6.1).

• In (8.3) let m = 1, f(z) = zc−1w6(z; a, b, c) and use (5.6) and (6.2).

• In (8.4) let M = 0, f(z) = (−z)c−1w1(z; a, b, c) and use (5.1) and (6.1).
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1653, arXiv:1305.3113.
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[15] Lions J.L., Opérateurs de Delsarte et problèmes mixtes, Bull. Soc. Math. France 84 (1956), 9–95.

[16] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differential equations, A
Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.

[17] Miller Jr. W., Lie theory and generalizations of the hypergeometric functions, SIAM J. Appl. Math. 25
(1973), 226–235.

[18] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions,
U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC, Cambridge
University Press, Cambridge, 2010, available at http://dlmf.nist.gov.

[19] Rainville E.D., Special functions, The Macmillan Co., New York, 1960.

[20] Saito M., Symmetry algebras of normal A-hypergeometric systems, Hokkaido Math. J. 25 (1996), 591–619.

[21] Sitnik S.M., Transmutations and applications: a survey, arXiv:1012.3741 (in Russian).

[22] Sitnik S.M., Buschman–Erdelyi transmutations, classification and applications, arXiv:1304.2114.

[23] Sostak R.Ya., Aleksei Vasilevic Letnikov, Istor.-Mat. Issled. 5 (1952), 167–238 (in Russian).

[24] Swathi M., Rathie A.K., Paris R.B., A derivation of two quadratic transformations contiguous to that of
Gauss via a differential equation approach, arXiv:1411.5262.
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