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Abstract. Methods of construction of the composition function, left- and right-invariant
vector fields and differential 1-forms of a Lie group from the structure constants of the
associated Lie algebra are proposed. It is shown that in the second canonical coordinates
these problems are reduced to the matrix inversions and matrix exponentiations, and the
composition function can be represented in quadratures. Moreover, it is proven that the
transition function from the first canonical coordinates to the second canonical coordinates
can be found by quadratures.
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1 Introduction

Researchers in the field of theoretical and mathematical physics who use methods of Lie theory
face the problem on realizations of a finite-dimensional Lie algebra by means of vector fields
on a certain domain of a finite-dimensional real space. This problem is vitally important for
group classification of partial differential equations [3, 13], for the classification of pseudo-
Riemannian metrics on manifolds with groups of motions [20], as well as for the construction
of relativistic wave equations in external fields with a given symmetry group [14]. The more
general and interesting problem on realizations of Lie algebras by nonhomogeneous first-order
differential operators should also be mentioned in this context. It naturally emerges in the
theory of projective representations of Lie groups [2, 17]. This problem is of great importance
in applications, for instance in quantum theory of scattering [1] and in integration of differential
and integro-differential equations [9, 23].

The problem on realizations of a Lie algebra by vector fields has long history and goes back
to works of S. Lie but modern mathematicians still demonstrate their interest to this field and
their approaches are directly depend on applications. As a result, now there are a sufficiently
large number of works in this field. We point out some of the most important results.

Undoubtedly, S. Lie stated the principal ideas in this field, and the first important results also
belong to him. For example, he listed all possible realizations of finite-dimensional Lie algebras
on the real and complex lines. Later he presented the similar result for the complex plane [15].
The results of S. Lie were completed by the classification of vector fields on the two-dimensional
real plane [10]. Further efforts of mathematicians were mainly concentrated on the classification
of realizations of low-dimensional Lie algebras. Here we would like to point out the important
paper [22], where the special technique of so called megaideals was used to list all inequivalent
realizations of Lie algebras up to dimension four by vector fields on an arbitrary real (resp.
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complex) finite-dimensional space. (This paper also contains a quite complete list of references
on the discussed problem.) At the same time, a number of researchers classified inequivalent
realizations of Lie algebras that are important for theoretical physics. Such classifications were
done for the Lie algebras of the Euclidean group E(3) and the Poincaré group P(1, 3) (see,
e.g., [8]). Some important results were also obtained for some infinite series of Lie groups and
algebras. For instance, the constructive algorithm of embedding of an arbitrary Z-graded Lie
algebra into a Lie algebra of polynomial vector fields over a field of arbitrary characteristic was
described in [24]. We also have to mention the review paper [6] in which the author consider
the problem on realizations of transitive Lie algebras by formal vector fields.

In the present paper we introduce a method to construct an explicit realization of a finite-
dimensional Lie algebra by left- and right-invariant vector fields on the associated local Lie
group using only the structure constants of the algebra. It is shown that in the second canonical
coordinates the problem can be solved just by tools of linear algebra and it is reduced to the
computation of matrix inversions and matrix exponentiations. The introduced method allows
one to construct only regular realizations of Lie algebras but its possible applications are wider.
Indeed, if we can construct the realization of the Lie algebra by left-invariant vector fields
in canonical coordinates, then we can list other inequivalent realizations of this algebra by
vector fields depending on smaller number of independent variables. This can be done by the
classification of inequivalent subalgebras of the initial Lie algebra and by the projection of the
left-invariant vector fields on the corresponding spaces of right cosets.

Even more complicated problem is solved below. This is the construction of the composition
function of a local Lie group whose Lie algebra is known. We emphasize this problem since
knowing the composition function gives the complete description of the group structure. Mo-
dern approaches to the computation of composition functions is reviewed in the next section,
but the main result of this paper can be announced here: The composition function in the
second canonical coordinates can be found by quadratures. In Section 5 it is shown that the
transition from the second canonical coordinates to the first canonical coordinates can be found
by quadratures too. Therefore, if one knows the composition function in any system of canonical
coordinates, then the transition to another system of canonical coordinates can be done using
special techniques described in this paper.

2 Preliminary information on theory of Lie groups and algebras

To make the presentation self-contained and to fix the notations we present basic facts of the
Lie theory.

Let Ge be an open neighborhood of the identity element e of an n-dimensional simply con-
nected real Lie group G that is diffeomorphic to an open subset U of the Euclidean space Rn
and let ψ be a mapping realizing this diffeomorphism, ψ : Ge → U . Any group element from
the domain Ge is uniquely defined by its coordinates. Explicitly this can be expressed as
gx = ψ−1(x) ∈ Ge, where x = (x1, . . . , xn) ∈ U . Therefore, the multiplication rule is repre-
sented as1

gxgy = gz, zi = Φi(x, y), gx, gy, gz ∈ Ge. (2.1)

The n-dimensional vector function Φ(x, y) = (Φ1(x, y), . . . ,Φn(x, y)) is called a composition
function of the group G. Since the group multiplication is associative, the function Φ(x, y)
satisfies the identity

Φ(x,Φ(y, z)) = Φ(Φ(x, y), z).

1It is clear that for all objects to be well defined in (2.1), we should consider only pairs of x and y with
gxgy ∈ Ge. In what follows we omit similar conditions for coordinates.
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Without loss of generality one can assume that the zero value of the coordinate tuple corresponds
to the identity element e of the group, ψ(e) = 0. Then the composition function satisfies the
initial conditions

Φ(0, y) = y, Φ(x, 0) = x. (2.2)

Denote by κ(x) the coordinates of the inverse of gx, so g−1
x = gκ(x). Then the following equalities

are obvious:

Φ(κ(x), x) = Φ(x, κ(x)) = 0,
∂κi(x)

∂xj

∣∣∣∣
x=0

= −δij .

The tangent vectors ∂xi at a point x constitute a basis of the tangent space TxRn. The
corresponding tangent vectors (ψ−1)∗∂xi ≡ ∂xigx ∈ TgxG form a basis of the tangent space of
the group G at the point gx. If we assume x = 0 then the tangent vectors ∂xigx|x=0 ≡ ei form
a basis of the Lie algebra g of the Lie group G with commutation relations

[ei, ej ] = Ckijek. (2.3)

The numbers Ckij are the structure constants of the Lie algebra g in the basis chosen. Hereafter,
we follow the Einstein summation convention assuming summation over the repeated indices
unless otherwise stated.

The group G acts on itself by the right Rgy and the left Lgy translations,

Rgygx = gxgy, Lgygx = gygx.

These actions generate the right TR and the left TL regular representations of the group G,

TR(gy)f(gx) = f(gxgy), TL(gy)f(gx) = f
(
g−1
y gx

)
, f ∈ C∞(G),

whose generators are left- and right-invariant vector fields, respectively,

ξi(gx) = (Lgx)∗ei ∈ TgxG, ψ∗ξi(gx) ≡ ξi(x) = ξji (x)
∂

∂xj
,

ηi(gx) = −(Rgx)∗ei ∈ TgxG, ψ∗ηi(gx) ≡ ηi(x) = ηji (x)
∂

∂xj
,

ξji (x) =
∂Φj(x, y)

∂yi

∣∣∣∣
y=0

, ηji (x) =
∂Φj(κ(y), x)

∂yi

∣∣∣∣
y=0

= − ∂Φj(y, x)

∂yi

∣∣∣∣
y=0

. (2.4)

By ‖ξ(x)‖ and ‖η(x)‖ we denote the matrices formed by the components ξji (x) and ηji (x),
respectively. The left- and right-invariant basis vector fields ξi and ηj satisfy the commutation
relations (2.3) and commute with each other, [ξi, ηj ] = 0.

Denote by ωi and σi the differential 1-forms on G that are dual to the vector fields ξi(gx) and
ηi(gx), respectively, 〈ωi, ξj〉 = 〈σi, ηj〉 = δij . The basis 1-forms can be written in coordinates xi as

ωi = ωij(x)dxj , ωij(x) =
∥∥ξ−1(x)

∥∥i
j
, σi = σij(x)dxj , σij(x) =

∥∥η−1(x)
∥∥i
j
. (2.5)

The commutation relations (2.3) can be rewritten in the form of equations for the invariant
1-forms

dωi = −1

2
Cijkω

j ∧ ωk, dσi = −1

2
Cijkσ

j ∧ σk. (2.6)

These equations are known as Maurer–Cartan equations.
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An element g of the group G generates the inner automorphism Adg of the algebra g,

Adg ei ≡ (Lg)∗(Rg−1)∗ei = ‖Adg ‖jiej ,
∂

∂xk
‖Adgx ‖

j
i

∣∣∣∣
x=0

= Cjki = ‖ ad ek‖ji . (2.7)

The matrix Adgx can be expressed in terms of the components of basis invariant vector fields
and dual 1-forms

‖Adgx ‖ij = −σik(x)ξkj (x), (2.8)

so that Adgx = −‖σ(x)‖ · ‖ξ(x)‖.
The composition function satisfying the initial conditions (2.2) can be uniquely determined

from the condition of left- or right-invariance of the vector fields ξj and ηj , respectively,

∂Φk(x, y)

∂yi
= ξkj (Φ(x, y))ωji (y), (2.9)

∂Φk(x, y)

∂xi
= ηkj (Φ(x, y))σji (x). (2.10)

Note that the above relations hold for any coordinate system on the Lie group G. Consider
now special kinds of local coordinates.

Let the Lie algebra g (as a vector space) be decomposed into a direct sum of subspaces,

g =

m⊕
k=1

gk = g1 ⊕ g2 ⊕ · · · ⊕ gm. (2.11)

We define a mapping φ : g→ G by φ(X) =
m∏
k=1

exp(Xk) for any X ∈ g, where exp: g→ G is the

exponential map, Xk is the component of X corresponding to gk in the decomposition (2.11).
There exists a neighborhood U of 0 ∈ g such that φ is a diffeomorphism on a neighborhood Ge of
the identity element e ∈ G. Therefore, the pair (Ge, φ

−1) is a map on G, which is called canonical
and the respective local coordinates x = (x1, . . . , xn) ∈ U are called canonical coordinates.

Consider two types of canonical coordinates that are frequently used [4, 5]. Let the decom-
position (2.11) be trivial, i.e., m = 1 and g1 = g. Then

gx = exp

(
n∑
i=1

xiei

)
= exp

(
x1e1 + · · ·+ xnen

)
,

where e1, . . . , en constitute a basis of the Lie algebra g. In this case, the canonical coordinates
are called first canonical coordinates. If m = n and thus the subspaces gk are necessarily one-
dimensional, then one has second canonical coordinates,

gx =

n∏
i=1

exp
(
xiei

)
= exp

(
x1e1

)
· · · exp

(
xnen

)
(the Einstein summation convention is not implied). The choice of canonical coordinates depends
on the problem to be solved.

One of classical problems of the theory of Lie groups is the construction of group multi-
plication law of a Lie group from the structure constants of the associated Lie algebra. The
traditional way consists of two steps in accordance with the well-known Lie theorems. First, the
Maurer–Cartan equations (2.6) are to be solved (to be specific we consider the first system),
where the components ωji (x) of the left-invariant 1-forms are assumed the unknowns. Note that
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the obvious initial condition ωji (0) = δji does not guarantee the solution uniqueness. Therefore,
at the first stage one usually chooses and fixes a certain system of canonical coordinates on the
Lie group. For instance, the equality ωij(x)xj = xi holds true in the first canonical coordinates.
Using this equality the solution of (2.6) can be represented in the explicit form [21]

‖ω(x)‖ = Ω(adx), Ω(s) =
1− e−s

s
. (2.12)

The second step of the computation of the composition function Φ(x, y) is the integration of the
equation (2.9) with the initial condition (2.2).

Another possible way to construct the composition function for a given Lie group from the
structure constants of its Lie algebra, requires the explicit computation of the element Z =
ln
(
eXeY

)
in the form

Z = Y +

∫ t

0
θ
(
et adXeadY

)
Xdt, (2.13)

where θ(s) = ln s/(s − 1), and the elements X and Y belong to a sufficiently small neighbor-
hood of the zero element of the Lie algebra [18]. Indeed, if X = xiei and Y = yiei are the
decompositions of vectors X and Y in the fixed basis of the Lie algebra g, respectively, then the
components of the vector Z computed by formula (2.13) are the components of the composition
function Φ(x, y) in the first canonical coordinates. One of the consequences of (2.13) is the
Baker–Campbell–Hausdorff series which can be obtained by means of the decomposition of the
function θ(s) in power series at the point s = 1.

Although the presented methods make it possible to find the group multiplication from the
commutation relations of the associated Lie algebra, they are not convenient for applications.
The first method based on the Lie theorems requires the integration of systems of nonlinear
partial differential equations, which appears to be a quite difficult task even for low-dimensional
Lie groups. The use of (2.13) involves the complicated calculation of functions depending on
matrices as variables (details are discussed below).

Consider a more promising way to construct the composition function. Denote by Matm(R)
the set of all square m × m matrices over the field R. Let τ : g → Matm(R) be a faithful
finite-dimensional representation of the Lie algebra g. Denote the neighborhood of the identity
element in the group G as U ⊂ G. Then V will stand for the neighborhood of the zero element
of the Lie algebra g, which is mapped onto U under the action of exponential mapping. Then
a mapping T defined as

T (expX) = exp(τ(X)), X ∈ V,

gives locally homomorphic mapping of G into GLm(R) [4, 12]. It means that there exists such
a neighborhood of the identity element Ge ⊂ U that T (g1g2) = T (g1)T (g2) for any g1, g2 ∈ Ge.
Replacing the group elements in (2.1) by their representations, g → T (g), results in the matrix
equality that can be used for the identification of all components of the composition function
zi = Φi(x, y); this can be done as far as the representation τ is faithful. For example, in the
first and the second canonical coordinates we get the following matrix equalities (there is no
summation over the repeated indices in the second formula)

exp

(
n∑
i=1

xiτ(ei)

)
exp

 n∑
j=1

yjτ(ej)

 = exp

(
n∑
k=1

zkτ(ek)

)
,

n∏
i=1

exp
(
xiτ(ei)

) n∏
j=1

exp
(
yjτ(ej)

)
=

n∏
k=1

exp
(
zkτ(ek)

)
.
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The main disadvantage of the present approach is the absence of a simple procedure that
allows to construct a faithful representation of an arbitrary Lie algebra (however some investi-
gations in this direction are in progress [26]).

At the same time, there always exists a special finite-dimensional representation acting in
the linear space of the Lie algebra g, τ = ad. In the general case the adjoint representation ad
is not faithful since the center of the Lie algebra g is a kernel of it, z = ker ad. Let {eµ} be
a basis of z and let the set {ea} forms a basis of the subspace p complementary to z. Fix certain
canonical coordinates in the local group Ge and let these coordinates be connected to the basis
{ea, eµ} of the Lie algebra g. The functions Φa(x, y) can be found from the matrix equality

Adgx Adgy = Adgz , z = Φ(x, y), AdeX = exp(adX), X ∈ g, (2.14)

and appear to be the components of the composition function for the local quotient group
Ḡ = Ge/ exp(z). So, the problem of construction of the composition function Φ = (Φa,Φµ)
on Ge can be reduced to the solution of equations (2.14) with unknown variables za = Φa(x, y)
and to the computation of Φµ(x, y) for the central components. The last problem will be solved
in Section 4 and it will be shown that functions Φµ(x, y) can be constructed by quadratures.

Finally, we discuss the important issue mentioned in the introduction: How the knowledge
of the left- and right-invariant vector fields on a Lie group can be used for the construction of
realizations of its Lie algebra by vector fields in finite-dimensional spaces?

Consider an m-dimensional space M (an open domain in Rm) with coordinates q = (q1, . . . ,
qm). Let Xi = Xa

i (q)∂qa be vector fields on M that realize an n-dimensional Lie algebra g.
Then there exists one and only one local transformation Lie group Ge of M whose Lie algebra
coincides with the above realization of g. Let U = ψ(Ge) ⊂ Rn be an image of Ge under
coordinate mapping ψ. It means that there exists a function Ψ: M × U →M such that

Ψ(Ψ(q, x), y) = Ψ(q,Φ(x, y)), Ψ(q, 0) = q, q ∈M, x, y ∈ U,

Xa
i (q) =

∂Ψa(q, x)

∂xi

∣∣∣∣
x=0

. (2.15)

The vector fields Xi that are defined by (2.15) are called (infinitesimal) generators of the action
of the group Ge on M .

Suppose that the action of Ge on M is transitive. It means that any point q0 ∈ M has
a neighborhood V ⊂ M such that for any q ∈ V there exists an element gx ∈ Ge with q =
Ψ(q0, x). This implies that rank(Xa

i (q)) = m, q ∈ V . We fix a point q0 ∈ M and denote by H
the isotropy group of the point q0 under the action of Ge, H = {gx ∈ Ge |Ψ(q0, x) = q0}, which
is a subgroup of Ge. As a result, we obtain a Ge-equivariant diffeomorphism between points
of the space M and elements of the space of right cosets H\Ge [11]. The choice of the point
q0 ∈M is not essential as far as the isotropy groups of different points of a homogeneous space
are conjugate.

So, the transitive action of local transformation group is defined by the pair (Ge, H), where
Ge is a local Lie group and H is a subgroup of Ge. This is equivalent to the assignment
of the pair (g, h), where g is the Lie algebra of the group Ge, and h is the Lie algebra of
the group H. Inversely, given a Lie algebra g and its subalgebra h, we can construct the
corresponding local groups Ge and H and the domain M , where Ge acts transitively; M can
be defined as the space of right cosets H\Ge. Subalgebras of g that are connected by inner
automorphisms correspond to equivalent actions of the local group Ge, because of equivariant
diffeomorphism of the homogeneous spaces.

Note that in general case the group action of Ge on the space of right cosets H\Ge may be
not effective, i.e., there may exist gx ∈ Ge such that Ψ(q, x) = q for all q ∈ H\Ge. A number of
researchers without loss of generality restrict their consideration to the class of effective actions
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of transformation groups. For instance, if the action of Ge on H\Ge is not effective, then we
can consider the effective action of the quotient group Ge/N on the given homogeneous space,
where N is the maximal normal subgroup of Ge that is contained in H [11]. Here we do not
restrict ourselves to effective group actions and allow H to contain a nontrivial normal subgroup
of Ge. In terms of Lie algebras, it means that the subalgebra h may include nonzero ideals of
the algebra g.

An arbitrary element of the Lie group Ge can be represented as gx = hy ḡq, where hy ∈ H
and ḡq is a fixed representative of the right coset Hgx,

x = (q, y), xa = qa, a = 1, . . . ,m, xm+β = yβ, β = 1, . . . , n−m.

Here qa are coordinates in the space of right cosets H\Ge and yβ the coordinates in the sub-
group H. Therefore, the action of the local group Ge on M ' H\Ge is reduced to the trans-
formation of the coset representatives ḡqgz = h(q, z)ḡΨ(q,z), where h(q, z) ∈ H is a factor of the
homogeneous space. Multiplying the last equality by hy we get

gΦ((q,y),z) = (hy ḡq)gz = (hyh(q, z))ḡΨ(q,z).

This implies that each a-th component of the composition function Φ(x, z) = Φ((q, y), z) does not
depend on the coordinates in H and coincides with the respective component of the composition
function Ψ(q, z)

Ψa(q, z) = Φa((q, y), z), a = 1, . . . ,m. (2.16)

The equalities (2.16), (2.4) and (2.15) allow us to connect the left-invariant vector fields ξi on Ge
with the corresponding generators Xi of the group action on the homogeneous space M ' H\Ge

ξi(q, y) = ξai (q)
∂

∂qa
+ ξβi (q, y)

∂

∂yβ
, (2.17)

Xi(q) = ξai (q)
∂

∂qa
. (2.18)

Concluding this section, we would like to make the following remark. The problems of the
construction of generators of the transitive transformation group and the realization of the
Lie algebra by vector fields with a given number of independent variables are connected but
definitely are not equivalent. The second problem is much more complicated and requires more
sophisticated methods (see, for example, [16, 19, 22]). Our paper is concentrated on the solution
of the first problem.

3 Computation of invariant vector fields and 1-forms
in second canonical coordinates

The practical computation of components of invariant vector fields and 1-forms in the first
canonical coordinates is a complicated problem even for low-dimensional Lie groups. The ap-
plication of the formulas (2.12), (2.13) to the explicit computation requires evaluation of the
involved functions at the matrices adX and exp(t adX) exp(adY ). These problems are linear and
they are solved by reduction of the matrices to their Jordan normal forms. In the first canonical
coordinates the matrices adX and exp(t adX) exp(adY ) depend on n and 2n + 1 variables xi

and xi, yj , t, respectively, which makes the problem quite complicated. If all the above cal-
culations are done, then the result of computation is cumbersome and hardly applicable in
practice. In the second canonical coordinates the components of the invariant vector fields
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and 1-forms are relatively simple and can be easily calculated. This fact is proven by the
following algorithm, which originates from the work of one of the authors of the present pa-
per [25].

We apply the differential of a left translation (Lgx)∗ to a basis vector ek of the Lie algebra g.

Then, taking into account the equations (2.4) that define ξji (x), we get

(Lgx)∗ ek = (Lgx)∗ ∂ykgy
∣∣
y=0

= ∂yk (gxgy)
∣∣
y=0

= ∂ykgΦ(x,y)

∣∣
y=0

=
∂Φi(x, y)

∂yk

∣∣∣∣
y=0

∂xigx = ξik(x)∂xigx,

which is equivalent to the conditions

ωik(x)ei =
(
Lg−1

x

)
∗∂xkgx. (3.1)

Choose the second canonical coordinates on the local group Ge

gx = gn
(
xn
)
· · · g1

(
x1
)
, gi(t) ≡ exp(tei). (3.2)

The relation ∂tgk(t)|t=0 = ek obviously implies ∂x1gx = (Lgx)∗e1. For any k > 1 we obtain
∂xkgx = (Lgn)∗ · · · (Lgk)∗(Rg1)∗ · · · (Rgk−1

)∗ek. In the chosen coordinate system we also have(
Lg−1

x

)
∗ =

(
Lg−1

1

)
∗
(
Lg−1

2

)
∗ · · ·

(
Lg−1

n

)
∗.

Due to the commutativity of the right and left translations and in view of (2.7), the condi-
tions (3.1) can be rewritten as

ωik(x)ei =
[(
Lg−1

1

)
∗(Rg1)∗

][(
Lg−1

2

)
∗(Rg2)∗

]
· · ·
[(
Lg−1

k−1

)
∗(Rgk−1

)∗
]
ek

= Adg−1
1

Adg−1
2
· · ·Adg−1

k−1
ek.

So, the components of left-invariant 1-forms in the second canonical coordinates are calculated
by the formulas

ωi1(x) = δi1,

ωik(x) =
∥∥ exp

(
−x1 ad e1

)
exp

(
−x2 ad e2

)
· · · exp

(
−xk−1 ad ek−1

)∥∥i
k
, k > 1. (3.3)

The use of (2.5) allows us to find the components of right-invariant 1-forms and left- and
right-invariant vector fields. In view of (3.3), the general structure of the left-invariant 1-forms
in the chosen coordinates is

ωi(x) = δi1dx
1 + ωi2

(
x1
)
dx2 + ωi3

(
x1, x2

)
dx3 + · · ·+ ωin

(
x1, . . . , xn−1

)
dxn.

It’s obvious that ξ1 = ∂x1 and, if [e1, e2] = 0, then also ξ2 = ∂x2 , etc. All the functions ξji do

not depend on xn and, if the condition [en, en−1] = 0 is satisfied, then ξji do also not depend
on xn−1, etc.

The suggested method of the construction of invariant fields and 1-forms can be easily gen-
eralized for an arbitrary coordinate system of the second type. For instance, one can choose
an arbitrary order of exponentials in (3.2): gx = gπ(n)(x

π(n)) · · · gπ(1)(x
π(1)), where π ∈ Sn is

a certain permutation of the set {1, . . . , n}. In this case the left-invariant field ξπ(1) is diagonal
ξπ(1) = ∂xπ(1) . Therefore, changing the basis of the Lie algebra we can diagonalize any given
vector field along the chosen direction.

The second canonical coordinates are especially convenient for the coordinate realization of
generators of the group action on homogeneous space. Indeed, let M be the right homogeneous
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space equivariant to the space of right cosets M ' H\Ge, let h be the Lie algebra of group H
with a basis {eβ} and let p = {ea} be a linear subspace complementary to the space h. We
choose the second canonical coordinates on Ge with

g(q,y) =

dim h∏
β=1

exp
(
yβeβ

) dim p∏
a=1

exp
(
qaea

)
. (3.4)

Then the coordinate form of left-invariant vector fields and generators of the transformation
group is given by (2.17) and (2.18), respectively.

We should emphasize that a researcher who solves the problem of realization of a Lie alge-
bra by left-invariant vector fields on the associated Lie group can take into account only the
commutation relations. For instance, one can assume ξ1 = ∂x1 and also can choose the diagonal
form for all the fields commuting with it. After that, the system of constructed vector fields is
to be completed by the rest of them with unknown coefficients; as a result, the overdetermined
system of differential equations is to be obtained from the commutation relations. Consequent
integration of this system gives the solution of the problem. This procedure provides vector
fields, which will coincide with the left-invariant vector fields in the second canonical coor-
dinates (up to coordinate transformations and up to a basis change from the automorphism
group). In other words, the simplest realization of a Lie algebra by left-invariant vector fields
is a realization in the second canonical coordinates and in that sense, this type of coordinates
is privileged.

As an example, consider the six-dimensional unsolvable Lie algebra g with the following
non-zero commutation relations:

[e1, e2] = e6, [e1, e4] = −e1, [e1, e5] = e2, [e2, e3] = e1,

[e2, e4] = e2, [e3, e4] = −2e3, [e3, e5] = e4, [e4, e5] = −2e5. (3.5)

This algebra is a semidirect sum of the three-dimensional nilpotent ideal and the simple Lie
algebra so(1, 2).

We choose the second canonical coordinates (3.2) gx = g6(x6)g5(x5) · · · g1(x1) on the cor-
responding local Lie group. The coordinate representations of basic left-invariant 1-forms are
obtained by the computation of matrix exponentials exp(−xi ad ei) according to (3.3),

ω1 = dx1 − x2dx3 +
(
x1 − 2x2x3

)
dx4 + x3e2x4

(
x2x3 − x1

)
dx5,

ω2 = dx2 − x2dx4 + e2x4
(
x2x3 − x1

)
dx5,

ω3 = dx3 + 2x3dx4 −
(
x3
)2
e2x4dx5,

ω4 = dx4 − x3e2x4dx5,

ω5 = e2x4dx5,

ω6 = dx6 − x1dx2 − 1

2

(
x2
)2
dx3 + x2

(
x1 − x2x3

)
dx4 +

1

2
e2x4

(
x1 − x2x3

)2
dx5. (3.6)

The matrices Adg−1
x

and their inverses Adgx are constructed via the multiplication of the mat-

rix exponentials exp(−xi ad ei) in the appropriate order, here – in the decreasing order of indices.
Components of the right-invariant 1-forms are given by the formula ‖σ(x)‖ = −Adgx ·‖ω(x)‖ as
it follows from (2.8). The matrices of components of the right- and left-invariant vector fields
are computed as the inverses of the corresponding matrices for 1-forms ‖σ(x)‖ and ‖ω(x)‖,
respectively. In this example, the final expression for the left- and right-invariant vector fields
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looks as follows (the notation ∂xi ≡ ∂/∂xi is assumed):

ξ1 = ∂x1 , ξ2 = ∂x2 + x1∂x6 , ξ3 = x2∂x1 + ∂x3 +
1

2

(
x2
)2
∂x6 ,

ξ4 = −x1∂x1 + x2∂x2 − 2x3∂x3 + ∂x4 ,

ξ5 = x1∂x2 −
(
x3
)2
∂x3 + x3∂x4 + e−2x4∂x5 +

1

2

(
x1
)2
∂x6 , ξ6 = ∂x6 ,

η1 = −
(
e−x

4
+ x3x5ex

4)
∂x1 − x5ex

4
∂x2 − x2

(
e−x

4
+ x3x5ex

4)
∂x6 ,

η2 = −ex4
(
x3∂x1 + ∂x2 + x2x3∂x6

)
, η3 = −e−2x4∂x3 − x5∂x4 +

(
x5
)2
∂x5 ,

η4 = −∂x4 + 2x5∂x5 , η5 = −∂x5 , η6 = −∂x6 . (3.7)

Consider the four-dimensional homogeneous space M = H\Ge with the isotropy subalgebra
h = {e4, e5}, H = exp(h). Since the basis vector e6 generates the center of g, the element g6(x6)
commutes with any element of the group,

g6

(
x6
)
g5

(
x5
)
· · · g1

(
x1
)

= g5

(
x5
)
· · · g1

(
x1
)
g6

(
x6
)
.

Therefore, the element gx has representation (3.4) in the chosen second canonical coordinates and
the generators Xi of the transformation group of homogeneous space with the local coordinates
q1 = x1, q2 = x2, q3 = x3, q4 = x6 are obtained from the left-invariant fields (3.7) by the formal
substitution ∂x1 → ∂q1 , ∂x2 → ∂q2 , ∂x3 → ∂q3 , ∂x4 → 0, ∂x5 → 0 and ∂x6 → ∂q4

X1 = ∂q1 , X2 = ∂q2 + q1∂q4 , X3 = q2∂q1 + ∂q3 +
1

2

(
q2
)2
∂q4 ,

X4 = −q1∂q1 + q2∂q2 − 2q3∂q3 , X5 = q1∂q2 −
(
q3
)2
∂q3 +

1

2

(
q1
)2
∂q4 , X6 = ∂q4 .

The problem on realizations of a Lie algebra whose commutation relations contain arbitrary
parameters is quite common in applications. Isotropy subalgebras may also depend on arbitrary
parameters. The described method is still useful in these cases. We illustrate this by a simple
example.

The canonical basis of the Poincaré algebra p(1, 3) is {PA, JAB, A < B}, where PA are
generators of translations and JAB are generators of Lorentz transformations in the Minkowski
spacetime, A,B = 0, 1, 2, 3. The complete classification of all inequivalent subalgebras of the
algebra p(1, 3) is given in [7]. Consider the four-dimensional subalgebra g from this classification
with the basis elements

e1 = P1, e2 = P2, e3 = J12 + αJ03, e4 = P0 + P3, α ∈ R,

which satisfy the following nonzero commutation relations:

[e1, e3] = e2, [e2, e3] = −e1, [e3, e4] = −αe4.

We construct a realization of the algebra g that is associated with the isotropy subalgebra h
spanned by the element {e3 + be4}.

For this purpose, we choose the second canonical coordinates (y, q1, q2, q3) on a neighborhood
of the identity in the Lie group with the Lie algebra g such that an arbitrary element from this
neighborhood is represented as

g = exp(y(e3 + be4)) exp
(
q3e3

)
exp

(
q2e2

)
exp

(
q1e1

)
, b ∈ R.
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The matrix Adg is a result of matrix exponentiations. The components of left-invariant 1-forms
ωij are to be found on the next step and the formulas (2.5) and (2.8) give expressions for left-

and right-invariant vector fields in the considered coordinate system (∂y ≡ ∂/∂y, ∂qi ≡ ∂/∂qi)

ξ1 = ∂q1 , ξ2 = ∂q2 , ξ3 = −q2∂q1 + q1∂q2 + ∂q3 , ξ4 = (1/b)e−αq
3
(∂y − ∂q3),

η1 = − cos
(
y + q3

)
∂q1 − sin

(
y + q3

)
∂q2 , η2 = sin

(
y + q3

)
∂q1 − cos

(
y + q3

)
∂q2 ,

η3 =
(
eαy − 1

)
∂y − eαy∂q3 , η4 = (1/b)eαy(∂q3 − ∂y).

Finally, we can construct the generators of the transformation group whose isotropy subgroup
is associated with the subalgebra h = {e3 + be4}. As mentioned above, this can be realized by
the restriction of the left-invariant vector fields on the space of functions that do not depend on
the variable y. This allows us to formally substitute ∂y → 0 and get

X1 = ∂q1 , X2 = ∂q2 , X3 = −q2∂q1 + q1∂q2 + ∂q3 , X4 = −(1/b)e−αq
3
∂q3 .

4 Composition function in second canonical coordinates

We represent the Lie algebra g as the direct sum of two subspaces – the center z = ker ad of g
and a linear complement p to z in g, g = z ⊕ p. Let {eµ} and {ea} be bases in z and in p,
respectively. Since any element of exp(z) commutes with any element of the local group Ge, in
the second canonical coordinates we get (the Einstein summation convention is not assumed)

gxgy =

dim z∏
µ=1

exp
(
xµeµ

) dim p∏
a=1

exp
(
xaea

)(dim z∏
ν=1

exp
(
yνeν

) dim p∏
b=1

exp
(
ybeb

))

=

dim z∏
µ=1

exp
((
xµ + yµ

)
eµ
)(dim p∏

a=1

exp
(
xaea

) dim p∏
b=1

exp
(
ybeb

))
. (4.1)

In the general case, the subspace p is not a subalgebra of g and the expression in the last big
brackets can be rewritten as

dim p∏
a=1

exp
(
xaea

) dim p∏
b=1

exp
(
ybeb

)
=

dim z∏
µ=1

exp
(
Θµ(x, y)eµ

) dim p∏
a=1

exp
(
Φ̄a(x, y)ea

)
. (4.2)

The equality (4.2) should be considered as the definition of the functions Θµ(x, y) and Φ̄a(x, y).
It is important that these functions depend only on coordinates xa and ya corresponding to the
subspace p. The substitution of (4.2) into (4.1) gives

gxgy =

dim z∏
µ=1

exp
((
xµ + yµ + Θµ(x, y)

)
eµ
) dim p∏
a=1

exp
(
Φ̄a(x, y)ea

)
.

Therefore, the composition function Φ(x, y) in the second canonical coordinates related to the
decomposition g = z⊕ p looks as

Φµ(x, y) = xµ + yµ + Θµ(x, y), Φa(x, y) = Φ̄a(x, y). (4.3)

It is necessary to note here that the subspace p in the decomposition g = z⊕ p can be chosen
in many different ways. This ambiguity originates from the possibility to change the basis of
the Lie algebra g: eµ → eµ, ea → ea+λµaeµ, where (λµa) is an arbitrary matrix of the appropriate
size. It is easy to prove that this basis change makes the functions Θµ and Φ̄a to transform as

Θµ(x, y)→ Θµ(x, y) +
(
xa + ya − Φ̄a(x, y)

)
λµa , Φ̄a(x, y)→ Φ̄a(x, y).
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Proposition 1. The composition function for a local Lie group Ge in the second canonical
coordinates can be found by quadratures.

Proof. The proposition is proven in a constructive way by the demonstration of the algorithm
for computing the functions Φ̄a(x, y) and Θµ(x, y) that are involved in the representation (4.3),
for the composition function of local group Ge.

Since ad eµ = 0, the matrix of the adjoint representation Adgx in the second canonical
coordinates depends only on xa, and hence

Adgx =

dim p∏
a=1

exp
(
xa ad ea

)
. (4.4)

Then from (2.14) and (4.3) we obtain

dim p∏
a=1

exp
(
xa ad ea

) dim p∏
b=1

exp
(
yb ad eb

)
=

dim p∏
a=1

exp
(
Φ̄a(x, y) ad ea

)
. (4.5)

Let a tuple of xa be the coordinates in the local quotient group Ge/ exp(z). Then the matri-
ces (4.4) are the matrices of adjoint representation of the group Ge and, at the same time, they
form a faithful representation of the quotient group Ge/ exp(z) that acts in the linear space g.
Therefore, the matrix relation (4.5) allows us to define uniquely the functions Φ̄a(x, y), which
are the composition functions for the local quotient group Ge/ exp(z). So, the problem (4.3) is
reduced to finding the still undefined functions Θµ(x, y).

Let ξi(x) = ξji (x)∂xj be the left-invariant vector fields on the group Ge which are written in
the second canonical coordinates, and let ωi(x) = ωij(x)dxj be the corresponding left-invariant
1-forms. As shown in the previous section, in given coordinates this is a problem of linear algebra
and can be solved by the computation of matrix exponentials. Note that the components ξji (x)
and ωij(x) are functions only of the coordinates xa and do not depend on the coordinates of the
center exp(z) (see (4.3) for the composition function of the local group Ge).

Setting i = a, k = µ in (2.10) and then taking into account (4.3), we obtain a system of
differential equations for the unknown functions Θµ(x, y), where coordinates xa are parameters,

∂Θµ(x, y)

∂ya
= ξµj (Φ̄(x, y))ωja(y). (4.6)

The system (4.6) is completely integrable since the 1-forms ξµj (Φ̄(x, y))ωja(y)dya are closed and
the solution of this system with the initial condition Θµ(x, 0) = 0 is given by the integral

Θµ(x, y) =

∫ y

0
ξµj (Φ̄(x, z))ωja(z)dz

a. (4.7)

The proposition is proven. �

In order to illustrate results of this section, we construct an example of the composition
function for the local Lie group Ge that corresponds to the six-dimensional Lie algebra g defined
by the commutation relations (3.5). The center z of g is one-dimensional, z = {e6}. Let the
five-dimensional subspace p = {e1, e2, e3, e4, e5} be the chosen linear complement to z.

We compute the matrix exponentials exp(xi ad ei) and substitute them into the matrix equali-
ty (4.5), which gives a system of algebraic equations on the unknown functions Φ̄a(x, y). Solving



Computation of Composition Functions and Invariant Vector Fields 13

this system we get

Φ1(x, y) = Φ̄1(x, y) = x1e−y
4

+ y1 + y3ey
4(
x2 + x1y5

)
,

Φ2(x, y) = Φ̄2(x, y) = ey
4(
x2 + x1y5

)
+ y2,

Φ3(x, y) = Φ̄3(x, y) =
e−2y4x3 + y3

(
1 + x3y5

)
1 + x3y5

,

Φ4(x, y) = Φ̄4(x, y) = x4 + y4 + ln
(
1 + x3y5

)
,

Φ5(x, y) = Φ̄5(x, y) =
x5 + e−2x4y5 + x3x5y5

1 + x3y5
. (4.8)

We substitute the expressions for left-invariant vector fields ξi(x), dual 1-forms ωi(x) and
functions that are presented in (3.7), (3.6) and (4.8), respectively, into (4.7). The computing
the resulting integral jointly with (4.3) gives the sixth component of the composition function

Φ6(x, y) = x6 + y6 +
1

2

(
x1
)2
y5 + y2y3ey

4(
x1y5 + x2

)
+ x1y2e−y

4
+

1

2
y3e2y4

(
x1y5 + x2

)2
.

Concluding the example we find the components of the function Ψ(q, z) that defines the
action of the local group Ge on the homogeneous space M = H\Ge, where H = exp(h) with
h = {e4, e5}. For this purpose, we choose q1 = x1, q2 = x2, q3 = x3, q4 = x6 as local coordinates
on M . Then in view of (2.16) we get

Ψ1(q, y) = q1e−y
4

+ y1 + y3ey
4(
q2 + q1y5

)
,

Ψ2(q, y) = ey
4(
q2 + q1y5

)
+ y2,

Ψ3(q, y) =
e−2y4q3 + y3

(
1 + q3y5

)
1 + q3y5

,

Ψ4(q, y) = q4 + y6 +
1

2

(
q1
)2
y5 + y2y3ey

4(
q1y5 + q2

)
+ q1y2e−y

4
+

1

2
y3e2y4

(
q1y5 + q2

)2
.

5 Transition from second canonical coordinates
to first canonical coordinates

The first canonical coordinates are universal in the sense that if one knows a composition
function, then the transition to any type of canonical coordinates can be found and, consequently,
the composition function can be represented in these coordinates. Consider the mentioned
transition to the second canonical coordinates.

Let gI
y be a group element in the first canonical coordinates yi and gII

x is the same element in
the second canonical coordinates xi. The connection between the coordinate systems yi = Y i(x)
and xi = Xi(y), X = Y −1, follows from the equality

exp

(
n∑
i=1

yiei

)
=

n∏
i=1

exp
(
xiei

)
. (5.1)

Using (2.13), we multiply the exponentials and get

Y i(x) = Φi(X1,Φ(X2, . . .) . . .),

X1 =
(
x1, 0, . . . , 0

)
, X2 =

(
0, x2, 0, . . .

)
, . . . , Xn =

(
0, . . . , 0, xn

)
.
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So, if we know the composition function ΦI in the first canonical coordinates, then the compo-
sition function ΦII in the second canonical coordinates can be easily obtained,

ΦII(x, x̃) = X
(
ΦI(Y (x), Y (x̃))

)
.

The purpose of this section is to find the connection between the first and the second canonical
coordinates in the case of unknown composition function.

Consider a local one-parametric subgroup

exp (tY ) = gI
yt = gII

xt , Y =
n∑
i=1

yiei.

The equation defining this one-parametric curve in the first canonical coordinates is simple:
yit = tyi. Let xt = X(yt) = X(ty) = α(t) be the equation of the same curve in the second
canonical coordinates. As the zero coordinates correspond to the identity element of the group,
we have

xt|t=0 = α(0) = 0. (5.2)

The variables x and y are coordinates of the same group element, which is equivalent to the
condition

xt|t=1 = α(1) = x. (5.3)

It is well known that any one-parametric subgroup (as a curve in a group) is the integral
trajectory of a left-invariant (resp. right-invariant) vector field. Consider the left- and right-
invariant vector field with a chosen direction Y ∈ g at the identity element of the group,
ξ(x) = yiξi(x) and η(x) = −yiηi(x). Since the trajectory of such a vector field is uniquely
defined by the initial point and the associated direction at the identity element, we can find
the equation describing the one-parametric subgroup as the solution of one of the systems of
ordinary differential equations

dxt
dt

= ξ(xt), (5.4)

dxt
dt

= η(xt), (5.5)

that additionally satisfies the initial condition (5.2). This solution parametrically depends on
the variables yi, xt = α(t, y) = α(1, ty). Using (5.3) we get the requested connection x = X(y) =
α(1, y) between the first and the second canonical coordinates.

Subtracting (5.5) from (5.4), we obtain the integrals of motion

yi
(
ξki (xt) + ηki (xt)

)
= 0.

Using (2.8), this formula can be written as

AdgIIxt
Y = Y.

The above integrals of motion simplify the integration of the system (5.4) or (5.5) but do not
allow to get all the functions αi(t, y). Show that this problem can be solved by quadratures and
do not require any integration of the differential equations.

Proposition 2. The transformation x = X(y) connecting the first and second canonical coor-
dinates are found by quadratures.
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Proof. We replace the basis elements of the Lie algebra in (5.1) by their adjoint representations,
ei → ad ei, which gives the matrix equality

AdgIy = AdgIIx . (5.6)

Recall that the exponentiation of a matrix is a linear algebra problem. Let z be the kernel
of the adjoint representation of the Lie algebra g. Denote by (yµ), (xµ), (ya) and (xa) the
first and the second canonical coordinates of the subgroup exp(z) and the first and the second
coordinates of the local quotient group Ge/ exp(z), respectively. For any element Z ∈ z, its
adjoint representation adZ is the zero matrix. Hence the coordinates yµ and xµ are not involved
in (5.6). In other words, the equation (5.6) connects the coordinates of the local quotient group
Ge/ exp(z), which leads to n−dim z components of the n-component function X(y), xa = Xa(y).
Therefore, if the Lie algebra is centerless, then the equality (5.6) gives the complete solution.
Otherwise we need to construct dim z more components Xµ(y).

It is easy to show that in any system of canonical coordinates, components of invariant vector
fields and 1-forms do not depend on the coordinates xµ of the center. Suppose that we have
already computed the functions Xa(y) using (5.6) and the components of left-invariant vector
fields in the second canonical coordinates using, e.g., techniques developed in Section 2. Then
the equations of the system (5.4) that are associated with the center can be easily integrated,

xµt = Xµ(ty) =

∫ t

0
ξµ(X(ty))dt =

∫ t

0
yiξµi (X(ty))dt

since the expressions ξµi (X) do not involve Xµ. Taking into account the condition (5.3), we get
the rest of transformation components

xµ = Xµ(y) =

∫ 1

0
yiξµi (X(ty))dt. (5.7)

The proposition is proven. �

We illustrate Proposition 2 with the same six-dimensional Lie algebra g, which is defined
by the commutation relations (3.5). As the center z of g is nontrivial, z = {e6}, the matrix
equality (5.6) connects the first and the second canonical coordinates on the quotient group
Ge/ exp(z) as xi = Xi(y), i = 1, . . . , 5. Specifically,

x1 = y1 sinh(J)/J + 2
(
y2y3 − y1y4

)
sinh2(J/2)/J2,

x2 = y2 sinh(J)/J + 2
(
y2y3 + y1y5

)
sinh2(J/2)/J2,

x3 = y3
(
sinh(2J)/(2J) + y4 sinh2(J)/J2

)
/
(
cosh(J) + y4 sinh(J)/J

)2
,

x4 = ln
(
cosh(J) + y4 sinh(J)/J

)
,

x5 = y5 sinh(J)/
(
J cosh(J) + y4 sinh(J)

)
, J :=

√(
y4
)2

+ y3y5.

The expressions for invariant fields (3.7) allow us to write down the integrand in (5.7) as

yiξ6
i (X(ty)) = y2X1(ty) + y3X2(ty)/2 + y5

(
X1(ty)

)2
/2 + y6,

where

X1(ty) = y1 sinh(tJ)/J + 2
(
y2y3 − y1y4

)
sinh2(tJ/2)/J2,

X2(ty) = y2 sinh(tJ)/J + 2
(
y2y3 + y1y5

)
sinh2(tJ/2)/J2.
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The integral in (5.7) is easily computed in this case, which gives

x6 = y6 +
y1y2 cosh(J)− y1y2 −

(
y2
)2
y3/2 +

(
y1
)2
y5/2 + y1y2y4

J2
+

+
sinh(2J)

((
y2
)2
y3 +

(
y1
)2
y5
)
/4− sinh(J)

(
y1y2y4 +

(
y1
)2
y5
)

J3
+

+

(
−2y1y2y3y5 −

(
y2
)2
y3y4 +

(
y1
)2
y4y5

)
(cosh(J)− cosh(2J)/4− 3/4)

J4
.

We should note that the relation x = X(y) is invertible and we can get the inverse mapping
y = Y (x) in elementary functions as well.
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