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In this paper we provide an overview of emerging Sensor Web paradigm and show several practical issues of using Sensor Web technologies 
for real-world tasks. Issues under study include sensor description using SensorML and database performance for serving observations data. 
This paper also shows an approach for integrating standard Sensor Observation Service with Globus Toolkit Grid platform. 

В данной работе представлен обзор развивающейся парадигмы Sensor Web и рассмотрены практические вопросы использования 
данной технологии для решения прикладных задач. Рассматриваются вопросы описания численных моделей с использованием 
языка SensorML и оценки производительности баз данных в задачах обслуживания сервисов Sensor Web. Кроме того, в работе 
описаны подходы к интеграции сервисов Sensor Web с Grid-платформой Globus Toolkit. 

The concept of Sensor Web 

Sensor Web is an emerging paradigm and technology stack for integration of heterogeneous sensors into 
common informational infrastructure. The basic functionality required from such infrastructure is remote data access 
with filtering capabilities, sensors discovery and triggering of events by sensors conditions. 

Sensor Web is governed by the set of standards developed by Open Geospatial Consortium [1]. At present, the 
following standards are available and approved by consortium: 

1. OGC Observations & Measurements [2] – Common terms and definition for Sensor Web domain; 
2. Sensor Model Language [3] – XML-based language for describing different kinds of sensors; 
3. Transducer Model Language [4] – XML-based language for describing the response characteristics of a 

transducer; 
4. Sensor Observations Service [5] – an interface for providing remote access to sensors data; 
5. Sensor Planning Service [6] – an interface for submitting tasks to sensors. 

There are also standards drafts that are available from Sensor Web working group but not yet approved as 
official OpenGIS standards: 

1. Sensor Alert Service – service for triggering different kinds of events basing of sensors data; 
2. Web Notification Services – notification framework for sensor events. 

Sensor Web paradigm assumes that sensors could belong to different organizations with different access policies 
or, in broader sense, to different administrative domains. However existing standards stack doesn’t provide any means 
for enforcing data access policies leaving it to underlying technologies. One possible way for handling informational 
security issues in Sensor Web is presented in this paper. 

Use case 

One of the most challenging problems for Sensor Web technology implementation is global ecological 
monitoring in the framework GEOSS (Global Earth Observation System of Systems) [7]. In this paper we consider the 
problem of flood monitoring using satellite remote sensing data, in-situ data and results of simulations. 

The problem of floods monitoring by itself consumes data from many heterogeneous data sources such as remote 
sensing satellites (we are using data of ASAR, MODIS and MERIS sensors), in-situ observations (water levels, 
temperature, humidity, etc). Floods prediction is adding the complexity of physical simulation to the task. All of these 
results into the complex dataflow shown on Fig. 1. 
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Fig. 1. Data flow perspective of flooding test case 

 
To predict flooding parameters such as rivers stage/discharge and extents of flooded areas we need to use 

cascade of simulation models: regional numerical weather prediction (NWP) model, hydrological model and hydraulic 
model (see Fig. 2).  

 

 

Fig. 2. Simulation cascade to predict flood events 
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To obtain quantitative estimates of precipitation and other meteorological parameters we use regional NWP 
model WRF (Weather Research&Forecasting). WRF model is a joint development of a number of USA agencies and 
universities (http://wrf-model.org). This model was configured and adapted to the territory of Ukraine to run with 
spatial resolution of 10 km. Currently we routinely produce 72-hours weather forecasts every 6 hours [8]. To drive 
regional model the additional weather forecasts from global NWP model are used. These data are required to specify 
external meteorological forcing as boundary conditions for regional weather model. Currently we use forecast frames 
produced by GFS (Global Forecast System) model operated by NCEP. 

The Sensor Web perspective of this test case is depicted on Fig. 3. It shows collaboration of different OpenGIS 
specifications of Sensor Web. The data from different sources (numerical models, remote sensing, in-situ observations) 
is accessed through Sensor Observation Service (SOS). Aggregator site is running Sensor Alert Service to notify 
interested organization of possible flood event using different communication mean. Aggregator site is also sending 
orders to satellite receiving facility using Sensor Planning Service (SPS) to get satellite imagery only available by 
preliminary order. 

 

 

Fig. 3. Sensor Web perspective of flooding test case 

SensorML description of WRF weather model 

Sensor Modeling Language (SensorML) is the cornerstone of all Sensor Web services. It provides 
comprehensive description of sensor parameters and capabilities as well as sensor calibration lineage, measure errors 
characteristics, response curves and other information about sensor. SensorML can be used for describing different kind 
of sensors: 

• Stationary or dynamic; 

• Remote or in-situ; 

• Physical measurements or simulations. 

Modeling and simulation are very important parts of environmental monitoring. The importance of different 
models in the process of solving of real-world tasks was demonstrated in the previous part of this paper. Sensor Web 
infrastructure should be able to integrate modelling data and provide remote data access for the as well as other Sensor 
Web features like discovery, sending orders, etc. 

At the bare minimum, SensorML description should contain general information about sensor (time and 
geographical extents, contact persons, etc) and lists of inputs and outputs. SensorML input could be either physical 
phenomena or some external measured value. The first case applies to physical measuring devices and second – to 
models and simulations. 

We have tried to describe weather modelling process using WRF numerical model in terms of SensorML. The 
following listing shows one input of this model. 
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<sml:input name="QVAPOR"> 

 <swe:DataArray definition="urn:ogc:def:phenomenon: time"> 

  <swe:elementCount> 

   <swe:Count definition="urn:ogc:def:property:OGC: numberOfPixels"> 

    <swe:value>1</swe:value> 

   </swe:Count> 

  </swe:elementCount> 

  <swe:elementType name=""> 

   <swe:DataArray definition="urn:ogc:def:phenomeno n:altitude"> 

    <swe:elementCount> 

     <swe:Count definition="urn:ogc:def:property:OG C:numberOfPixels"> 

      <swe:value>30</swe:value> 

     </swe:Count> 

    </swe:elementCount> 

    <swe:elementType name=""> 

     <swe:DataArray definition="urn:ogc:def:phenome non:latitude"> 

      <swe:elementCount> 

       <swe:Count definition="urn:ogc:def:property: OGC:numberOfPixels"> 

        <swe:value>202</swe:value> 

       </swe:Count> 

      </swe:elementCount> 

      <swe:elementType name=""> 

       <swe:DataArray definition="urn:ogc:def:pheno menon:longtitude"> 

        <swe:elementCount> 

         <swe:Count definition="urn:ogc:def:propert y:OGC:numberOfPixels"> 

          <swe:value>219</swe:value> 

         </swe:Count> 

        </swe:elementCount> 

        <swe:elementType name=""> 

         <swe:Quantity definition="urn:ogc:def:phen omenon:QVAPOR"> 

          <swe:uom code="kg_kg-1"/> 

         </swe:Quantity> 

        </swe:elementType> 

       </swe:DataArray> 

      </swe:elementType> 

     </swe:DataArray> 

    </swe:elementType> 

   </swe:DataArray> 

  </swe:elementType> 

 </swe:DataArray> 

</sml:input> 

 
There are nearly 50 inputs and 20 outputs for basic WRF configuration. It’s obvious that information density of 

inputs and outputs descriptions in SensorML is quite low and each of them requires quite significant amount of XML 
code to be properly described. The problem lies in very verbose description of multidimensional data. Three- and four- 
dimensional data arrays are very common in environmental modeling but SensorML provides poor experience 
regarding them. 

Authors have raised this problem during thematic meeting and hope that next revision of SensorML will include 
some elements for simpler description of multidimensional data. 

Sensor Observation Service implementation 

In order to provide access to hydrometeorological observations over the regions of interest we have deployed 
Sensor Observation Service implementation on the site of Space Research Institute of NASU-NSAU. We have studied 
two possible implementations of SOS for particular task of serving temperature sensors data. Implementations under 
study were: 

• UMN Mapserver v5 (http://mapserver.gis.umn.edu/) 
• 52North SOS (http://52north.org/) 

The advantages and disadvantages of these solutions can be summarized in the following table. 
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 UMN Mapserver v5 52North SOS 

Advantages 

1. Very good and reliable abstraction for 
different data sources (raster files, spatial 
databases, WFS, etc) 

2. Simple application model (CGI executable) 
3. Wide set of features beside SOS 
4. Open software 

1. SOS implementation is stable and 
complete 

2. Platform-independent (Java-based) 
3. A part of wider Sensor Web 

implementations stack (SPS, SAS) 
4. Open software 
5. Source code is clean and easily 

reusable 

Disadvantages 

1. SOS support is declared but far from being 
working implementation 

2. Poor documentation on SOS topic 
3. Strange plans for future development (in 

particular, automatic SensorML generation) 

1. No data abstraction: the only data 
source is relational database of 
specific structure 

2. Database structure is far from optimal 
(strings as primary keys, missed 
indexes, etc) 

3. Complex application model (Java web 
application) 

 
The best experience received was with 52North SOS server. Its main disadvantage is complex relational 

database scheme. However it was possible to adapt existing database structure to the one, required by 52North using a 
number of SQL views and synthetic tables. The details of database adaptation are given in the next section. 

We have used 52North implementation for building a testbed SOS server providing data of temperature sensors 
over Ukraine and South Africa regions. The server is available by URL http://web.ikd.kiev.ua:8080/52nsos/sos. 

SOS output comes as XML document in special scheme, specified by SOS reference document. The standard is 
describing two possible forms of results, namely “Measurement” and “Observation”. The first form is more suitable to 
the situations when the service is returning small amounts of heterogeneous data. The second form is most suitable for 
long time series of homogeneous data. The table below provides an example of SOS output in these two forms and 
clearly shows the difference. 

 
Measurement Observation 
<om:Measurement gml:id="o255136"> 
 <om:samplingTime> 
  <TimeInstant 

xsi:type="gml:TimeInstantType"> 
   <timePosition> 
    2005-04-14T04:00:00+04 
   </timePosition> 
  </TimeInstant> 
 </om:samplingTime> 
 <om:procedure xlink:href= 
  

"urn:ogc:object:feature:Sensor:WMO:33506"/> 
 <om:observedProperty xlink:href= 
   

"urn:ogc:def:phenomenon:OGC:temperature"/> 
 <om:featureOfInterest> 
  <sa:Station gml:id="33506"> 
   <name>WMO33506</name> 
   <sa:sampledFeature xlink:href=""/> 
   <sa:position> 
    <Point> 
     <pos srsName="urn:crs:epsg:4326"> 
      34.55 49.6 
     </pos> 
    </Point> 
   </sa:position> 
  </sa:Station> 
 </om:featureOfInterest> 
 <om:result uom="celsius">10.9</om:result> 
</om:Measurement> 

<om:result> 
2005-03-14T21:00:00+03,33506,-

5@@ 
2005-03-15T00:00:00+03,33506,-

5.2@@ 
2005-03-15T03:00:00+03,33506,-

5.5@@ 
2005-03-15T06:00:00+03,33506,-

4.6@@ 
2005-03-15T09:00:00+03,33506,-

2.2@@ 
2005-03-

15T12:00:00+03,33506,1.7@@ 
2005-03-

15T15:00:00+03,33506,1.7@@ 
2005-03-

15T18:00:00+03,33506,2.4@@ 
2005-03-15T21:00:00+03,33506,-

0.7@@ 
2005-03-16T00:00:00+03,33506,-

1.4@@ 
2005-03-16T03:00:00+03,33506,-

1.1@@ 
2005-03-16T06:00:00+03,33506,-

1.1@@ 
2005-03-16T09:00:00+03,33506,-

1.3@@ 
2005-03-

16T12:00:00+03,33506,0.5@@ 
2005-03-

16T15:00:00+03,33506,1.7@@ 
2005-03-

16T18:00:00+03,33506,1.5@@ 
</om:result> 
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Database issues 

The database of hydrometerological information of Space Research Institute of NASU-NSAU contains nearly 
1.5 millions of records with observations started at year 2005 to the present moment. The data is stored in PostgreSQL 
database with PostGIS spatial extensions. Most of the data records are contained in single table ‘observations’ with 
indexes built over fields with observation time and station identifier. Tables of such volume requires some special 
handling so the index for time field was clusterized thus reordering data on the disks and reducing the need for I/O 
operations. Clusterization of time index reduced typical queries times from 8000 ms to 250 ms. 

To adapt this database to the requirements of 52North we have created a number of auxiliary tables with 
reference values related to SOS (such as phenomena names, sensor names, regions parameters, etc) and a set of views 
that transforms underlying database structure into 52North scheme. The most important view that binds all values of 
synthetic tables together with observations data have the following definition: 

 
SELECT observations."time" AS time_stamp, "procedur e".procedure_id, 

feature_of_interest.feature_of_interest_id, phenome non.phenomenon_id, 

offering.offering_id, '' AS text_value, observation s.t AS numeric_value, '' AS mime_type, 

observations.oid AS observation_id 

   FROM observations, "procedure", proc_foi, featur e_of_interest, proc_off, 

offering_strings offering, foi_off, phenomenon, pro c_phen, phen_off 

  WHERE "procedure".procedure_id::text = proc_foi.p rocedure_id::text AND 

proc_foi.feature_of_interest_id::text = feature_of_ interest.feature_of_interest_id AND 

"procedure".procedure_id::text = proc_off.procedure _id::text AND 

proc_off.offering_id::text = offering.offering_id:: text AND foi_off.offering_id::text = 

offering.offering_id::text AND foi_off.feature_of_i nterest_id::text = 

feature_of_interest.feature_of_interest_id AND proc _phen.procedure_id::text = 

"procedure".procedure_id::text AND proc_phen.phenom enon_id::text = 

phenomenon.phenomenon_id::text AND phen_off.phenome non_id::text = 

phenomenon.phenomenon_id::text AND phen_off.offerin g_id::text = 

offering.offering_id::text AND observations.wmoid:: text = 

feature_of_interest.feature_of_interest_id; 

 
52North’s database scheme uses string primary keys for auxiliary tables instead of synthetic numerical and is far 

from optimal in sense of performance. It doesn’t have strong impact on performance with record counts in these tables 
less than one hundred but will surely cause problems in large-scale SOS-enabled data warehouses. 

The typical SQL query from 52North service is quite complex (see listing below). An average response time for 
such query (assuming one month time period) is about 250 ms with PostgreSQL running in virtual environment on 4 
CPUs server with 8GB of RAM and 5 SCSI 10k rpm disks in RAID5 array. Increasing of query depth results in linear 
increasing of response time with estimate speed of 50 ms per month (see Fig. 4). 

 
SELECT observation.time_stamp, observation.text_val ue, observation.observation_id, 

observation.numeric_value, observation.mime_type, o bservation.offering_id, 

phenomenon.phenomenon_id, phenomenon.phenomenon_des cription, 

phenomenon.unit,phenomenon.valuetype,observation.pr ocedure_id, 

feature_of_interest.feature_of_interest_name, featu re_of_interest.feature_of_interest_id, 

feature_of_interest.feature_type, SRID(feature_of_i nterest.geom), 

AsText(feature_of_interest.geom) AS geom FROM pheno menon NATURAL INNER JOIN observation 

NATURAL INNER JOIN feature_of_interest WHERE (featu re_of_interest.feature_of_interest_id 

= '33506') AND (observation.phenomenon_id = 

'urn:ogc:def:phenomenon:OGC:1.0.30:temperature') AN D (observation.procedure_id = 

'urn:ogc:object:feature:Sensor:WMO:33506') AND (obs ervation.time_stamp >= '2006-01-01 

02:00:00+0300'AND observation.time_stamp <= '2006-0 2-26 01:00:00+0300') 
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Fig. 4. Dependency between depth of query and response time 

SOS Gridification 

Sensor Web services like SOS, SPS and SAS can benefit from integration with Grid platform like Globus 
Toolkit [9]. Many Sensor Web features can take advantage of Grid platform services, in particular: 

• Sensors discovery could be performed through combination of Index Service and Trigger Service; 
• High-level access to XML description of sensors and services could be made through queries to Index Service; 
• Grid platform provides convenient way for implementation of notifications and event triggering using 

corresponding platform components [10]; 
• Reliable File Transfer service [11] provides reliable data transfer for large datasets; 
• Globus Security Infrastructure [12] provides enforcement of data and services access policies in a very flexible 

way allowing implementation of desired security policy. 

Authors have developed a testbed SOS Service using Globus Toolkit as a platform. For now, this service works 
as proxy translating and redirecting user request to usual HTTP SOS server (see Fig. 5). The current version uses 
client-side libraries for interacting with SOS provided by 52North in their OX-Framework. Next version will include 
in-service implementation of SOS-server functionality. 

 

Fig. 5. Grid-based SOS service implementation 

 

Grid service implementing SOS provides the interface specified in SOS reference document. The key difference 
between interfaces of standard and Grid-based implementations of SOS lies in encoding of service requests. The 
standard implementation uses custom serialization for requests and responses and Grid-based implementation uses 
standard SOAP encoding. 

To get advantage of the most Globus features SOS service should export service capabilities and sensor 
descriptions as WSRF resource properties [13]. Traditional way of implementation of such properties requires 
translation between XML Schema and Java code. However the XML Schema of SOS and related standards (in 
particular GML [14]) is very complex and there are no available program tools able to generate Java classes from it. We 
have solved this problem by storing service capabilities and sensor descriptions data as DOM Element objects and using 
custom serialization for this class provided by Axis framework that is used by Globus Toolkit. Using this approach we 
can’t access particular elements of XML document in object-oriented styled. However SOS Grid service is acting as 
proxy between user and SOS implementation so it doesn’t need to modify XML directly. The following Java listing 
shows this approach in code. 
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public void initialize() { 

  this.propSet = new SimpleResourcePropertySet(RESO URCE_PROPERTIES); 

  try { 

    serviceCapabilitiesRP = new SimpleResourcePrope rty(RP_SERVICECAPABILITIES); 

    this.serviceCapabilitiesRP.add(new Object()); 

    this.propSet.add(serviceCapabilitiesRP); 

  } catch (Exception e) { 

    throw new RuntimeException(e.getMessage()); 

  } 

  try { 

    InputStream istream = new ByteArrayInputStream( SOSMethods.getCapabilities()); 

    DOMParser parser = new DOMParser(); 

    parser.parse(new InputSource(istream)); 

    this.serviceCapabilitiesRP.set(0, parser.getDoc ument().getDocumentElement()); 

  } catch (Exception e) { 

    throw new RuntimeException(e.getMessage(), e); 

  } 

} 

 
With resource properties defined in this way we user can access them using standard Globus API or 

command-line utilities: 
 
wsrf-get-property -s https://gt.ikd.kiev.ua:8443/ws rf/services/SOSService 

"{http://www.opengis.net/sos/0.0}Capabilities" 

Conclusions 

Despite of immaturity of Sensor Web technology stack it can provide good experience in serving heterogeneous 
data of in-situ observations. SOS implementation for serving geospatial raster data that is important for remote sensing 
data are yet to be implemented. 

SensorML descriptions of complex environmental models are too verbose. To allow wide use of models in 
Sensor Web environment some changes should be made in SensorML to shorten descriptions of multidimensional 
inputs and outputs. 

Integration with Globus Toolkit Grid platform allows Sensor Web service to take advantage of robust 
information management features of Grids as well as mature mechanisms for data access policy enforcement. 
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