УДК 535.3, 535.51. ПОВЕРХНОСТНЫЕ ВОЗБУЖДЕНИЯ СФЕРОИДА. ОБЩИЙ СЛУЧАЙ

В.Н. Горшков¹, Л.Г. Гречко², Е.Ю. Грищук²

¹Институт физики Национальной академии наук Украины Проспект Науки 46, Киев-028 ²Институт химии поверхности им. А.А. Чуйка Национальной академии наук Украины ул. Генерала Наумова 17, 03164 Киев-164

В работе в электростатическом приближении рассчитаны частоты поверхностных мод (плазмонов) металлического эллипсоида вращения (сфероида) - ω_{lm} . Показано, что частоты существенно зависят от эксцентриситета эллипса вращения (e) и целых чисел l, m (l=1, 2, ...; m = -l, ..., 0, ..., +l). Проведенные численные расчеты показали, что при изменении вытянутости эллипсоида $\xi = 1/e$ в интервале $1 < \xi < 4$ происходит сильное расщепление частот поверхностных плазмонов по числу m. Также обнаружено значительное влияние диэлектрической проницаемости окружающей среды – ε_h и диэлектрической проницаемости сфероида на высоких частотах – ε_{∞} на положения кривых зависимостей $\omega_{lm}(\xi)$. По отношению к расположению кривых $\omega_{lm}(\xi)$ при x = 1 ($x = \varepsilon_h / \varepsilon_{\infty}$), кривые $\omega_{lm}(\xi)$ с уменьшением (увеличением) x смещается вверх (вниз) соответственно.

Введение

В последние годы в диэлектрической и оптической спектроскопии поверхности все больше и больше внимания уделяется изучению поверхностных электромагнитных мод (поверхностные поляритоны, плазмоны, экситоны и т.д.) как на границах раздела сред, так и в малых частицах (МЧ) и матричных дисперсных системах (МДС) [1–2] на их основе. Хотя основные свойства поверхностных электромагнитных мод для пространственно ограниченных сред непосредственно следуют из решений уравнения Максвелла и активно изучались еще А. Зоммерфельдом в начале девятнадцатого столетия, интерес к ним возникал от случая к случаю. Лишь в самое последнее время, главным образом под влиянием развития физики и химии поверхности и открытия в спектроскопии поверхности Surface Enhanced Raman Scattering [4] стало ясно, что спектроскопия поверхностных электромагнитных мод может служить мощным методом исследования свойств поверхности и структуры МДС.

Особенностью поверхностных электромагнитных мод (ПЭМ) является условие их возникновения: для возникновения необходимо, чтобы вещественная часть диэлектрической проницаемости одной из сред на границах раздела или малой частицы в МДС была отрицательной (точнее Re $\varepsilon(\omega) \le -1$). Однако в большинстве случаев при рассмотрении процессов отражения и рассеяния света явно или не явно предполагалось, что Re $\varepsilon(\omega) > 0$, хотя условие Re $\varepsilon(\omega) > 0$ – даже в отсутствие пространственной дисперсии $(\vec{k}=0)$ – выполняется лишь для статической диэлектрической проницаемости $(\omega \rightarrow 0)$ [3]. Так, например, для металлов в приближении свободных электронов Друде $\varepsilon(\omega) = 1 - \omega_p^2 / (\omega(\omega + iv))$. Из вида зависимости $\varepsilon(\omega)$ при $v \rightarrow 0$ и всех $\omega < \omega_p / \sqrt{2}$

следует, что $\operatorname{Re} \varepsilon(\omega) \leq -1$ (равенство соответствует возникновению поверхностного плазмона). Для алюминия при $\omega_p/\sqrt{2} = 10,6$ эВ на границе раздела алюминийдиэлектрик (в малых металлических частицах при $\omega \leq \omega_p/\sqrt{3} = 6,24$ эВ) возможно возникновение поверхностных плазмонов, спектральная область существования которых простирается от далекого ультрафиолетового до далекой ИК-области. Аналогичные утверждения справедливы и для многих других металлов и полупроводников.

В диэлектриках $\vec{D} = \vec{E} + 4\pi \vec{P} = \varepsilon(\omega)\vec{E}$, и поэтому, чтобы Re $\varepsilon(\omega)$ была отрицательной, возникающая под действием внешнего поля \vec{E} поляризации \vec{P} должна быть большей по абсолютной величине и сдвинутой на 180° по фазе относительно поля \vec{E} . Такая ситуация реализуется в диэлектриках только вблизи полос поглощения среды на частотах Ω_0 , если частота возбуждающего поля немного больше Ω_0 (частота основного перехода). Отметим, что при изучении спектра ПЭМ в МЧ и МДС на их основе была обнаружена сильная зависимость спектральных характеристик ПЭМ от формы МЧ [3].

Традиционно спектр ПЭМ для пространственно ограниченных систем рассчитывался при наличии внешнего электромагнитного поля. Для пространственно ограниченных систем вычислялась ее поляризуемость и частоты ПЭМ определялись из условий аномального возрастания поляризуемости. Другими словами решалась неоднородная система дифференциальных уравнений для соответствующей системы [1 – 3], хотя сам спектр поверхностных ПЭМ можно найти и из однородной системы уравнений Максвелла для конкретной задачи, как условие ее разрешимости [5, 6]. Именно этим методом в данной работе и рассчитан спектр поверхностных мод – $\omega_{lm}(\xi)$. Численными методами исследована зависимость этих частот от вытянутости эллипсоида $\xi = 1/e$ (e – эксцентриситет эллипса вращения) при разных значениях чисел l и m.

Постановка и решение задачи

В любой пространственно ограниченной среде всегда существует флуктуационное электромагнитное поле [7]. Спектр возможных возбуждений в такой системе определяется уравнением Максвелла и соответствующим данной задаче граничным условиям. В электростатическом приближении, для случая сфероида (рис. 1)

Рис. 1. Эллипсоид вращения (сфероид).

эти уравнения и граничные условия имеют вид [8]

$$\Delta V = 0, \ (\dot{E} = -grad \ V), \tag{1}$$

$$E_t^{(in)} = E_t^{(out)}; \ \varepsilon_{in} E_n^{in} = \varepsilon_{out} E_n^{out},$$
(2)

где V(x, y, z) – потенциал электрического поля в любой точке пространства (x, y, z), E_t^{in} и E_n^{in} – тангенциальная и нормальная к поверхности, составляющие электрического поля \vec{E} внутри сфероида (*in*), а E_t^{out} и E_n^{out} – те же составляющие \vec{E} вне сфероида (*out*). Исходя из симметрии задачи, ее решение будем искать в сфероидальной системе координат (ξ, η, φ) [9]. Декартовые (x, y, z) связаны с этими координатами формулами [9]

$$x = f \xi \eta \qquad 1 \le \xi \le \infty,$$

$$y = f (\xi^{2} - 1)^{\frac{1}{2}} (1 - \eta^{2})^{\frac{1}{2}} \cos \varphi \qquad -1 \le \eta \le 1,$$

$$z = f (\xi^{2} - 1)^{\frac{1}{2}} (1 - \eta^{2})^{\frac{1}{2}} \sin \varphi \qquad 0 \le \varphi < 2\pi,$$

(3)

где *f* – фокусное расстояние большой полуоси эллипсоида вращения; соотношение (1) в ней принимает вид:

$$\frac{4}{f^{2}\left(\xi^{2}-\eta^{2}\right)}\left\{\frac{\partial}{\partial\xi}\left[\left(\xi^{2}-1\right)\frac{\partial V}{\partial\xi}\right]+\frac{\partial}{\partial\eta}\left[\left(1-\eta^{2}\right)\frac{\partial V}{\partial\eta}\right]+\frac{\xi^{2}-\eta^{2}}{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}\frac{\partial^{2} V}{\partial\varphi^{2}}\right\}=0$$
(4)

Уравнение (4) допускает разделение переменных ξ, η, φ . Действительно, представляя решение для потенциалов в виде:

$$V\left(\xi,\eta,\varphi\right) = R\left(\xi\right)S\left(\eta\right)\Phi\left(\varphi\right) \tag{5}$$

и подставляя его в формулу (4), находим уравнение для функций $R(\xi), S(\eta), \Phi(\varphi)$.

$$\frac{d^2\Phi}{d\varphi^2} + m^2\Phi(\varphi) = 0, \qquad (6)$$

$$\frac{d}{d\xi} \left[\left(\xi^2 - 1 \right) \frac{dR}{d\xi} \right] - \left(\frac{m^2}{\xi^2 - 1} + \lambda_{m,l} \right) R\left(\xi \right) = 0, \qquad (7)$$

$$\frac{d}{d\eta} \left[\left(1 - \eta^2 \right) \frac{dS}{d\eta} \right] - \left(\frac{m^2}{1 - \eta^2} - \lambda_{m,l} \right) S\left(\eta \right) = 0, \qquad (8)$$

где $\lambda_{m,l}$ – параметр разделения.

Уравнения (7), (8) являются уравнениями для функции Лежандра I-го и II-го рода [9]. Эти функции имеют особенности при: $\xi = 1; \xi \to \infty; \eta = \pm 1$.

Исходя из физических соображений конечности потенциала V и ее первых производных в любой точке пространства следует, что $\lambda_{m,l} = l(l+1)$, где l и m целые числа, причем $l=1, 2, ..., \infty$, а m=-l, ..., 0, ..., l [9]. Исходя из этих замечаний, решение уравнения (4) во внутренней (*in*) и внешней (*out*) областях пространства по отношению к поверхности эллипсоида можно записать в виде:

$$V_{in} = P_l^m \left(\xi\right) P_l^m \left(\eta\right) \left[A \cos m\varphi + B \sin m\varphi\right], \tag{9}$$

$$V_{out} = Q_l^m \left(\xi\right) P_l^m \left(\eta\right) \left[C \cos m\varphi + D \sin m\varphi\right]. \tag{10}$$

С учетом граничных условий (2) и формул (9), (10) находим:

$$\varepsilon_{in} \frac{P_l^{'m}\left(\xi_o\right)}{P_l^m\left(\xi_o\right)} = \varepsilon_{out} \frac{Q_l^{'m}\left(\xi_o\right)}{Q_l^m\left(\xi_o\right)},\tag{11}$$

где штрих у полиномов Лежандра означает дифференциирование по ξ для конкретного сфероида $\xi = \xi_0$. Уравнение (11) является основным для нахождения частот поверхностных мод произвольного сфероида.

Рассмотрим металлический сфероид, расположенный в диэлектрической среде с независящей от чистоты ω и диэлектрической проницаемости $\varepsilon_{out} = \varepsilon_h$. Диэлектрическую функцию сфероида выбираем в друдевском виде [3].

$$\varepsilon_{in}(\omega) = \varepsilon_{\infty} - \frac{\Omega_p^2}{\omega^2}, \quad \nu \to 0$$
(12)

где ε_{∞} есть $\varepsilon_{in}(\omega)$ на больших частотах ($\omega \to \infty$), а Ω_p - плазменная частота свободных электронов в металле.

Подставляя (12) в (11) получаем уравнение для нахождения спектра поверхностных плазмонов (ПП) в металлическом сфероиде в общем случае - ω_{lm} :

$$(1 - \frac{\omega_p^2}{\omega_{em}^2}) \frac{P_l^{'m}(\xi_o)}{P_l^m(\xi_o)} = x \frac{Q_l^{'m}(\xi_o)}{Q_l^m(\xi_o)} , \qquad (13)$$

где $\omega_p^2 = \frac{\Omega_p^2}{\varepsilon_{\infty}}$, $x = \frac{\varepsilon_h}{\varepsilon_{\infty}}$, а ω_{em} – частоты поверхностых мод для металического сфероида. В работе [5] рассмотрен частный случай, когда x = 1 и l = 1, 2.

Численные результаты

С использованием рекуррентных соотношений для полиномов Лежандра $P_l^m(\xi)$ и $Q_l^m(\xi)$ [10] нами была реализована численная процедура расчета зависимостей ПП сфероида $\omega_{lm}(\xi)$ от $\xi = \frac{1}{e}$ (e – эксцентриситет эллипса вращения) для разных значений чисел l и m. Результаты расчетов показаны на рис. 2 и рис. 3.

Рис. 2. Зависимость частот ПП (ω_{lm}) вытянутого сфероида от $\xi = 1/e$ для значений $l = 1, \ l = 3$ при x = 1 ($\mathcal{E}_h = \mathcal{E}_{\infty} = 1$).

Рис. 3. Зависимость частот ПП (ω_{lm}) вытянутого сфероида от $\xi = 1/e$ для значений l = 2 при x = 0, 1; x = 1; x = 10

Обсуждение результатов. Выводы

В случае x = 1, для сфероида близкого по форме к шару ($\xi \to \infty$) из (13) можно получить асимптотическое выражение для нахождения частот ПП (ω_{lm}):

$$\omega_{im}^{2} = \omega_{p}^{2} \left(\frac{l}{2l+1}\right) \left(1 + \frac{1}{\xi_{0}^{2}} \alpha_{lm} + \frac{1}{\xi_{0}^{4}} \beta_{lm} + \dots\right), \tag{14}$$

где

$$\alpha_{lm} = \frac{3m^2 - l^2 - l}{(2l+1)l(2l+3)}, \quad \beta_{lm} = \frac{3(6l^2m^2 + 6lm^2 - l^4 - 2l^3 + 2l^2 - 5m^4 - 10m^2 + 3l)}{l(2l-1)(2l+3)(2l-3)(2l+5)}$$
(15)

Как следует из рис. 1, 2, в отличии от частот поверхностных плазмонов шара $\omega_l^2 / \omega_p^2 = \frac{l\varepsilon_\infty}{l\varepsilon_\infty + (1+l)\varepsilon_h}$, частоты ω_{lm} существенно зависят от числа *m* (расщепление по числу *m*), причем при увеличении вытянутости сфероида ($\xi \rightarrow 1$), это расщепление увеличивается. Интересным является и то, что при изменении параметра $x = \frac{\varepsilon_h}{\varepsilon_\infty}$, кривые $\omega_{lm}(\xi)$ смещаются вверх (вниз) при уменьшении (увеличении) *x* по сравнению с

кривыми $\omega_{lm}(\xi)$ при x = 1. Это тем более важно потому, что для большинства металлов x < 1 (для серебра $\varepsilon_{\infty} = 4,5$; золото $\varepsilon_{\infty} = 10$) при $\varepsilon_h = 1$ (вакуум).

Полученные формулы для расчета частот ω_{lm} вытянутого элипсоида, легко обобщаються на случай сплюснутого элипсоида простой заменой ξ_0 на $i(\xi_0^2 - 1)^{1/2}$ [6]. Это следует из свойств полиномов Лежанда [10].

Работа выполнена при частичной финансовой поддержке общего проекта НАН Украины и Российского фонда фундаментальных исследований (договор №28) и научного проекта «Моделирования процессов взаимодействия электромагнитного излучения с регулярными, стохастическими и фрактальными поверхностными структурами» программы НАН Украины «Наноструктурные системы, наноматериалы, нанотехнологии» (договор № 37/07-Н).

Литература

- 1. Theory of surface plasmons and surface-plasmon polaritons / J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique // Rep. Prog. Phys. 2007. V. 70. P. 1 87.
- 2. Ангранович В.М., Миллс Д.Л. Электромагнитные волны на поверхностях и границах раздела сред. М.: Наука, 1985. 526 с.
- 3. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986. 660 с.
- 4. Гигантское комбинационное рассеяние. Пер. с англ. Под ред. Р. Ченг, Т. Фурмак. М.: Мир, 1984. 408 с.
- 5. Moussiax A., Ronveaux A., Lucas A. Surface plasmon oscilators for different geometrical shapes // Can. J. Phys. 1977. V. 55. P. 1423.
- 6. Brako R., Hrncevic J., Sunjic M. International Centre for Theoretical Physics. Preprint 1C/75/8.
- 7. Бараш Ю.С., Гинзбург В.Л. Электромагнитные флуктуации в веществе и молекулярные (Ван-дер-ваальсовы) силы между телами // УФН. – 1975. – Т. 116, вып. 1.
- 8. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Гостехиздат, 1957.
- 9. Морс Ф., Фешбах Г. Методы теоретической физики. Т. 1-2, 1958.
- 10. Абрамовиц М., Стиган И. Справочник по специальным функциям: Пер. с англ. М.: Наука, 1979. 830 с.

SURFACES EXCITATIONS OF SPHEROID. GENERAL CASE

B.N. Gorshkov¹, L.G. Grechko², E.Yu. Grischuk²

¹Institute of physics National academy of sciences of Ukraine Prospect Nauky 46, 03039 Kyiv-039

²Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine General Naumov Str. 17, 03164 Kyiv

In-process, in the electrostatic approaching, frequencies of superficial fashions (plasmons) of metallic ellipsoid of rotation are expected (spheroid) - ω_{lm} . It is rotined that frequencies substantially depend on the excentricity of ellipse of rotation (e) and integers l, m (l = 1, 2, ...; m = -l, ..., 0, ..., +l). Numeral calculations are conducted rotined that at a change oblongness of ellipsoid $\xi = 1/e$ in an interval $1 < \xi < 4$ the strong breaking up of frequencies of superficial plasmons is revealed on a number m. Also found out strong influence of inductivity of environment $-\varepsilon_h$ and to the inductivity of spheroid on high-frequencies - ε_{∞} on position of the crooked dependences $\omega_{lm}(\xi)$. In relation to the location of curves $\omega_{lm}(\xi)$ at x = 1 ($x = \varepsilon_h / \varepsilon_{\infty}$), curves $\omega_{lm}(\xi)$ with diminishing (by an increase) x displaced upwards (downward) accordingly.