РОЛЬ АТОМНОЇ СТРУКТУРИ ПОВЕРХОНЬ У ФОРМУВАННІ ПОТЕНЦІАЛУ У ВАКУУМНОМУ ПРОМІЖКУ МІЖ БЛИЗЬКОРОЗДІЛЕНИМИ МЕТАЛОМ ТА НАПІВПРОВІДНИКОМ

Л.Г. Ільченко, В.В. Лобанов

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова 17, 03164 Київ-164

В наближенні нелокальної електростатики проведено розрахунки структурного потенціалу $\Delta V_{st}(\vec{r})$ в вакуумній щілині товщиною L, якою розділені метал та напівпровідник, у випадку квазінейтральних їх поверхонь з двома типами впорядкованих поверхневих граток.

Показано, що структурний потенціал $\Delta V_{st}(\vec{r})$, який є суперпозицією вкладів, обумовлених мікроскопічними структурами кожної з двох поверхонь, є несиметричним і формує латеральну (вздовж меж поділу) зміну сумарного потенціалу V(\vec{r}) у вакуумній щілині. Збільшення амплітуди $\Delta V_{st}(\vec{r})$ пов'язане зі зменшенням відстані між напівпровідником та металом, а також зі зниженням концентрації вільних електронів в металі.

Перехід від мікро- до нанотехнологій передбачає створення і використання нових матеріалів та структур, властивості яких значно відрізняються від загальновідомих завдяки зменшенню розмірів частинок (S < 100 нм) та відстаней між ними L < 5 нм. Розмірні ефекти [1–3], посилення вкладу поверхонь та меж поділу призводять до суттєвої зміни макроскопічно вимірних параметрів наноструктурованих систем [4, 5].

Однією з найважливіших теоретичних задач при переході від мікро- до нанорозмірів та відстаней між частинками є встановлення залежності зміни властивостей твердих тіл при зменшенні відстаней між ними. Відомо, що зменшення вакуумного розділяючого інтервалу L між твердими тілами приводить до утворення потенціального бар'єру, який визначається розподілом потенціалу сил зображення, $V_j^0(x)$, та різницею в об'ємних властивостях кожного з трьох середовищ (j=1,2,3) [6–11]. Форма утвореного потенціального бар'єру буде змінюватись у випадку наявності нескомпенсованих зарядів на поверхнях взаємодіючих частинок, які обумовлюють зарядову компоненту $\Delta V_{\sigma}(x)$ повного потенціалу взаємодії, $V(\vec{r})$, при умові, коли густина заряду σ_1 та σ_2 між фазних границях

$$\sigma_1 = \sum_{i=1}^{\nu_1} \sigma_i \neq 0$$
 i $\sigma_2 = \sum_{n=1}^{\nu_2} \sigma_n \neq 0$.

Це приводить до збільшення притягання (або відштовхування) між взаємодіючими частинками в залежності від знаку та величини густини нескомпенсованого поверхневого заряду [12–14]. Вклад структурного потенціалу, $\Delta V_{st}(\vec{r})$, [12–14] в повний потенціал взаємодії, $V(\vec{r})$, збільшується при подальшому зменшенні розділяючої відстані а також зумовлює виникнення рельєфу потенціалу всередині вакуумної щілини.

Структурна компонента, повного потенціалу взаємодії між двома близько розділеними малим вакуумним проміжком діелектриками [12, 13] та металами [14] була теоретично розрахована на основі методу функцій Гріна нелокального рівняння Пуассона.

В даній роботі проведено обчислення структурного потенціалу в вакуумній щілині L, якою розділені метал та напівпровідник. Відповідні розрахунки проведені в наближенні нелокальної електростатики з врахуванням ефектів просторової дисперсії функцій діелектричної проникності металу $\varepsilon_1(\vec{k})$ та напівпровідника $\varepsilon_3(\vec{k})$, що зумовлює неперервність потенціалу $V_i^0(x)$ на міжфазних границях.

Розглянуто випадок квазінейтральних поверхонь з двома типами упорядкованих поверхневих граток $v_1, v_2 = 2$, коли сумарна густина заряду $\sigma_{1,2}$ на межах поділу

Показано, що, як і у випадку двох близько розділених металів або діелектриків [12–14], врахування структурної компоненти потенціалу обумовлює латеральну (вздовж меж поділу) зміну амплітуди сумарного потенціалу, $V_2(x)$, у вакуумній щілині. Проведено аналіз впливу концентрації електронів в металі на амплітуду $\Delta V_{st}(\vec{r})$ в вакуумній щілині.

Врахування просторової дисперсії діелектричної функції металу $\varepsilon_1(\vec{k})$ проведено із застосуванням загальновідомого довгохвильового наближення Томаса-Фермі (НТФ) [6]. В НТФ діелектрична функція металу має вигляд

$$\varepsilon_1(\vec{k}) = 1 + \frac{\kappa_1^2}{k^2}, \quad k = \{k_\perp, q\},$$
(2)

де $\kappa_1^2 = 6\pi e^2 n_1 / E_F^1$, n_1 – концентрація, $E_F^1 = \hbar^2 (3\pi^2 n_{1,3})^{2/3} / 2m_0$ – енергія Фермі, m_0 – ефективна маса вільних електронів в металі.

Просторова дисперсія діелектричної функції $\varepsilon_3(\vec{k})$ власного напівпровідника (діелектрика) достатньо точно передається інтерполяційною моделлю Інксона [13], в якій

$$\varepsilon_{3}(\vec{k}) = 1 + \frac{\varepsilon_{3} - 1}{1 + (\vec{k}^{2} / \lambda_{3}^{2}) \cdot (\varepsilon_{3} - 1)}, \qquad \vec{k}^{2} = k_{\perp}^{2} + q^{2}, \qquad (3)$$

де ε_3 – діелектрична стала кристалічної гратки (при $\vec{k} \to 0$), λ_3^{-1} – ефективний радіус екранування зв'язаними (валентними) електронами іонних остовів кристалічної гратки, який по порядку величини рівний розміру атома (іона) і який обчислюється з врахуванням зонної структури напівпровідника [10].

На рис. 1 суцільною кривою показаний хід потенціалу сил зображення та відповідна зонна енергетична діаграма для системи метал — вакуум — кремній, одержаний згідно роботи [6], при розділяючому вакуумному проміжку L = 0,4 нм.

Рис. 1. Зонна енергетична діаграма несиметричної системи метал-вакуум-кремній та хід потенціалу сил зображення $V_j^0(x)$ в ній, порахований з об'ємними параметрами для металу $\varphi_1 = 4,6 \, eB$, $n_1 = 2 \cdot 10^{22} \, cm^{-3}$ і $m = 0,6913 \, m_0$ та кремнію $\varepsilon_3 = 11,9$ і $\lambda_3 = 7,345 \cdot 10^7 \, cm^{-1}$ при товщині вакуумного зазору L = 0,4 нм, де φ_1 – робота виходу металу та m_0 – маса вільного електрона.

З рис. 1 видно, що врахування залежності діелектричних функцій металу $\varepsilon_1(\vec{k})$ (2) та власного напівпровідника (кремній) $\varepsilon_3(\vec{k})$ (3) від хвильового вектора забезпечує неперервність потенціалу сил зображення, $V_j^0(x)$, на границях фаз, відкриваючи можливість коректного врахування зарядового стану кожної з двох поверхонь.

Врахування зарядового стану та мікроскопічної структури (конфігурації атомів) металевої поверхні, виконано в припущенні, що густина заряду σ_1 на поверхні металу ($x \le 0$) сформована впорядкованими гратками адсорбованих іонів (для спрощення розрахунків розглянуто тільки квадратні гратки) з стороною гратки a_i , двовимірною концентрацією $N_i = a_i^{-2}$ та ефективним зарядом e_i^* на поверхневих атомах i-го типу. Фур'є-компонента густини заряду $\sigma_1(q)$ на впорядкованих гратках поверхні металу може бути представлена у вигляді [3–6]

$$\sigma_{1}(q) = \sum_{i=1}^{\nu_{1}} \sigma_{i}(q) = (2\pi)^{2} \sum_{i=1}^{\nu_{1}} e_{i}^{*} N_{i} \bigg[\delta(q_{y}) \delta(q_{z}) + \delta \bigg((q_{y} - \frac{2\pi}{a_{i}}) \delta \bigg(q_{z} - \frac{2\pi}{a_{i}} \bigg) \bigg], \tag{4}$$

де v₁ – кількість типів атомних граток на ній.

Мікроскопічну структуру напівпровідникової поверхні враховано, в наближенні, згідно якого поверхнева густина заряду σ_2 на ній ($x \ge L$) сформована також впорядкованими гратками поверхневих атомів з стороною гратки b_n , двовимірною концентрацією $N_n = b_n^{-2}$ та ефективним зарядом e_n^* на поверхневих атомах n – го типу. Переходячи до Фур'є-компоненти густини заряду $\sigma_2(q)$ на впорядкованих квадратних гратках поверхневих атомів напівпровідника, маємо [3 – 6]

$$\sigma_{2}(q) = \sum_{n=1}^{\nu_{2}} \sigma_{n}(q) = (2\pi)^{2} \sum_{n=1}^{\nu_{2}} e_{n}^{*} N_{n} \bigg[\delta(q_{y}) \delta(q_{z}) + \delta \bigg((q_{y} - \frac{2\pi}{b_{n}}) \delta \bigg(q_{z} - \frac{2\pi}{b_{n}} \bigg) \bigg],$$
(5)

де v_2 – кількість типів атомних граток на напівпровідниковій поверхні.

Перший член в (4) і (5) відповідає однорідній (не модульованій) густині заряду на металевій та напівпровідниковій поверхнях відповідно.

Незважаючи на те, що найпростіший вигляд формули структурної компоненти $\Delta V_{st}(\vec{r})$ потенціалу взаємодії несиметричної по об'ємним властивостям метал-вакуумкремній системи мають для квазінейтральних поверхонь, тобто при виконанні умови (1), вона має достатньо громіздкий вид і в роботі не наводиться.

З рис. 2, на якому показано розподіл структурної компоненти $\Delta V_{st}(x, 0, 0)$ в залежності від товщини вакуумної щілини між поверхнями металу та напівпровідника (реконструйована поверхня кремнію $Si(100) - (5 \times 5)$), розрахований з врахуванням ефектів просторової дисперсії в діелектричних функціях металу (2) та напівпровідника (3), видно, що вклад структурної компоненти повного потенціалу зменшується зі збільшенням відстані L.

Рис. 2. Розподіл структурної компоненти $\Delta V_{st}(x, 0, 0)$ потенціалу у вакуумному проміжку різної товщини ($L = 0, 4 \dots 1$ нм) між металом з об'ємними ($\varphi_1 = 4, 6$ eB, $n_1 = 2 \cdot 10^{22} cm^{-3}$, $m_1 = 0,6913 m_0$) і поверхневими ($e_1^* = 0,05$, $N_1 = 10^{15} cm^{-2}$, $e_2^* = -0,45$, $N_2 = 1,11 \cdot 10^{14} cm^{-2}$) параметрами та кремнієм з об'ємними ($\varepsilon_1 = 11,9$, $\lambda_1 = 7,345 \cdot 10^7 cm^{-1}$) і поверхневими параметрами $e_1^* = 0,02$, $N_1 = 6,8 \cdot 10^{14} cm^{-2}$, $e_2^* = -0,5$, $N_2 = 2,72 \cdot 10^{13} cm^{-2}$.

На рис. З показано розподіл повного потенціалу

$$V(\vec{r}) = V_0(x) + \Delta V_{st}(\vec{r}) \tag{6}$$

в вакуумній щілині при L = 0,4 нм, розрахований з врахуванням ефектів просторової дисперсії в металі та напівпровіднику. Аналогічний розподіл потенціалу сил зображення $V_i^0(x)$, розрахований згідно даним робіт [6, 10], показано точковою кривою.

Рис. 3. Розподіл повного потенціалу V(x, 0, 0) - (суцільна крива) у вакуумній щілині при L = 0,4 нм між металом з об'ємними ($\varphi_1 = 4,6$ eB, $n_1 = 2 \cdot 10^{21} cm^{-3}$ і $m_1 = 0,6315 m_0$) і поверхневими ($e_1^* = 0,05$, $N_1 = 10^{15} cm^{-2}$ і $e_2^* = -0,45$, $N_2 = 1,11 \cdot 10^{14} cm^{-2}$) параметрами та кремнієм з об'ємними ($\varepsilon_1 = 11,9$, $\lambda_1 = 7,345 \cdot 10^7 cm^{-1}$) і поверхневими ($e_1^* = 0,02$, $N_1 = 6,8 \cdot 10^{14} cm^{-2}$, $e_2^* = -0,5$, $N_2 = 2,72 \cdot 10^{13} cm^{-2}$) параметрами. Точкова крива – розподіл потенціалу сил зображення $V_2^0(x)$.

З наведеного рисунку видно, що врахування структурного потенціалу $\Delta V_{st}(x, 0, 0)$ не змінює форми відповідних кривих, але суттєво впливає на величину потенціального бар'єру $V(\vec{r})$.

Залежність структурного потенціалу, $\Delta V_{st}(x, 0, 0)$, від концентрації електронів в металі, розрахована при незмінній роботі виходу $\varphi_1 = 4,6 eB$ наведена на рис. 4, аналогічна залежність амплітуди потенціалу $\Delta V_{st}(L/2, y, 0)$ в центрі вакуумної щілини L = 0,4 нм для несиметричної системи метал-вакуум-кремній показана на рис. 5.

Рис. 4 та 5 ілюструють, що амплітуда структурного потенціалу $\Delta V_{st}(\vec{r})$ суттєво зменшується зі збільшенням концентрації електронів в металі.

Як і у випадку двох близько розділених діелектриків [12], металів [14] та напівпровідників [13] зміна потенціалу $V(\vec{r})$ в вакуумній цілині для квазінейтральних поверхонь обумовлена зміною поляризаційної компоненти $V_0(x)$ (зміною потенціалу сил зображення) та мікроскопічною структурою поверхонь. На рис. 6 показано розподіл латерального повного потенціалу V(L/2, y, 0) всередині вакуумного проміжку $L/2 = 0,2 \, hm$ (суцільна крива) між металом та кремнієм як суперпозицію вкладів від атомних структур поверхні кремнію V(L, y, 0) (штрихова крива) та металу V(0, y, 0)(точкова крива).

Рис. 4. Розподіл $\Delta V_{st}(x, 0, 0)$ в вакуумній щілині L = 0,4 нм між кремнієм з об'ємними ($\varepsilon_1 = 11,9$, і $\lambda_1 = 7,345 \cdot 10^7 cm^{-1}$) та поверхневими ($e_1^* = 0,02$, $N_1 = 6,8 \cdot 10^{14} cm^{-2}$, $e_2^* = -0,5$, $N_2 = 2,72 \cdot 10^{13} cm^{-2}$) параметрами та металом з поверхневими параметрами ($e_1^* = 0,05$, $N_1 = 10^{15} cm^{-2}$ і $e_2^* = -0,45$, $N_2 = 1,11 \cdot 10^{14} cm^{-2}$) в залежності від електронної структури металу при $\varphi_1 = 4,6 eB$ та $n = 2 \cdot 10^{21} cm^{-3}$, $m^* = 0,6315 m_0$ (штрихова крива), $n = 2 \cdot 10^{22} cm^{-3}$, $m^* = 0,6913 m_0$ (суцільна крива) та $n = 2 \cdot 10^{23} cm^{-3}$, $m^* = 1,1116 m_0$ (точкова крива).

Рис. 5. Латеральний розподіл структурного потенціалу $\Delta V_{st}(L/2, y, 0)$ в центрі вакуумного проміжку L = 0,4 нм між кремнієм та металом. Значення параметрів, що були використані при розрахунку та відповідні позначення, наведені в підписі до рис. 4.

Рис. 6. Латеральний розподіл повного потенціалу V(L/2, y, 0) в центрі вакуумного проміжку L = 0,4 нм (суцільна крива) між кремнієм та металом. Штрихова крива – латеральний розподіл V(L, y, 0) на поверхні кремнію (x = L), точкова крива – латеральний розподіл V(0, y, 0) на поверхні металу (x = 0). Розрахунки виконані при значеннях параметрів, що наведені в підпису до рис. 4.

Особливо наглядно виникнення надграток повного потенціалу $V(\vec{r})$ всередині вакуумної щілини L = 0,4 нм демонструє 3D розподіл структурного потенціалу $\Delta V_{st}(L/2, y, z)$, порахований з врахуванням ефектів просторової дисперсії в діалектричних функціях металу $\varepsilon_1(\vec{k})$ (2) та власного напівпровідника $\varepsilon_3(\vec{k})$ (3) (рис. 7).

Рис. 7. Латеральний 3-D розподіл структурного потенціалу $\Delta V_{st}(L/2, y, z)$ в центрі вакуумного проміжку x = L/2 між квазінейтральними поверхнями металу та напівпровідника (реконструйована поверхня кремнію $Si(100) - (5 \times 5)$), розрахований в межах нелокальної електростатики з об'ємними та поверхневими параметрами відповідно до рис. 4.

З наведених рисунків видно, що для несиметричної по об'ємним та поверхневим характеристикам системи рельєф структурної компоненти потенціалу $\Delta V_{st}(L/2, y, 0)$

всередині вакуумної щілини між поверхнею металу та напівпровідника, який є суперпозицією вкладів мікроскопічної структури кожної з двох близько розділених поверхонь (рис. 6), є несиметричним і призводить до виникнення впорядкованої гратки областей максимального підвищення (пониження) висоти потенціального бар'єру. Характеристики рельєфу залежать від параметрів кожної з поверхонь: від ефективного заряду $e_{i,n}^*$ на поверхневих атомах металу та напівпровідника, їх двохвимірної концентрації $N_{i,n}$ та типів поверхневих граток. Для малих розділяючих відстаней $L \sim 0,3...1$ нм врахування структурної компоненти $\Delta V_{st}(\vec{r})$ зумовлює латеральну зміну висоти потенціального бар'єру у всьому вакуумному проміжку.

Амплітуда структурного потенціалу $\Delta V_{st}(\vec{r})$ (і також повного потенціалу $V(\vec{r})$ (6)) суттєво зменшується зі збільшенням концентрації електронів в металі (для вироджених напівпровідників фактично зі збільшенням ступені об'ємного легування). Має місце також швидке зменшення впливу мікроскопічної структури поверхонь на повний потенціал $V(\vec{r})$ при збільшенні розділяючої відстані L, так що у випадку (1) повний потенціал $V(\vec{r})$ при L > 2 нм буде визначатися потенціалом сил зображення $V_0(x)$ (рис. 1).

Література

- Litovchenko V.V., Il'chenko L.G., Kryvchenko Yu.V. Optimization of quantum well structures for field emission applications // J. Vac. Sci. Technol. B. – 1995. – V. 13, № 2. – P. 602 – 605.
- 2. Il'chenko L.G., Kryvchenko Yu.V., Litovchenko V.V. Electron field emission (FE) from quantum size systems // Appl. Surface Sci. 1995. V. 87 88. P. 53 60.
- Горайчук Т.В., Ільченко Л.Г., Ільченко В.В. Розмірна залежність потенціалу сил зображення поблизу тонкої металевої плівки з розмірно-квантованим спектром електронів // Вісн. київськ. ун-ту. Радиофізика і електроніка. – 2000. – Вып. 2. – С. 29 – 33.
- 4. Нанотехнология в ближайшем десятилетии. Прогноз направления исследований / Под ред. М.К. Роко, Р.С. Уильямса, П. Аливисатоса. М.: Мир, 2002. 292 с.
- 5. Химия поверхности кремнезема / Под ред. А.А. Чуйко Киев: УкрИНТЭИ, 2001. Ч. 1. 736 с.
- Il'chenko L.G., Goraychuk T.V. Role of the image forces potential in the formation of the potential barrier between closely spaced metals // Surf. Sci. – 2001. – V. 478. – P. 169 – 179.
- 7. Il'chenko L.G., Goraychuk T.V. Image potential between closely separated quantum size film and metal // Ultramicroscopy. 2003. V. 95. P. 67 73.
- Huang Z.-H., Weimer M., Allen R.E. Internal image potential in semiconductors: Effect on scanning tunneling microscopy // Phys. Rev. B. – 1993. – V. 48, № 20. – P. 15068 – 15076.
- 9. Войтенко А.И., Габович А.М. Динамические силы изображения вблизи границ раздела полупроводник-вакуум: роль квантовомеханических поправок // Физика тверд. тела. 2001. V. 43, № 12. С. 2230 2236.
- 10. Горайчук Т.В., Ільченко Л.Г. Сили зображення між близькорозділеними діелектриками // Хімія, фізика та технологія поверхні. – 2003. – Вип. 9. – С. 11 – 17.

- 11. Ільченко Л.Г., Лобанов В.В., Чуйко О.О. Теоретичне визначення потенціалу взаємодії між двома близько розділеними діелектриками у воді // Доп. НАН України. 2005. Т. 1 С. 76 81.
- 12. Ільченко Л.Г., Лобанов В.В., Чуйко О.О. Вплив мікроструктури поверхні на потенціал взаємодії між наночастинками діелектриків // Наносистеми, наноматеріали, нанотехнології. 2004. Т. 2, Вип. 4. С. 1145 1158.
- 13. Ільченко Л.Г., Лобанов В.В., Чуйко О.О. Формування потенціального бар'єру між двома близько розділеними металами з субмоношаровим адсорбційним покриттям // Фізика і хімія твердого тіла. 2005. Т. 6, № 3 С. 471 475.
- 14. Ильченко Л.Г., Лобанов В.В., Чуйко А.А. Роль микроструктуры поверхности в формировании потенциала взаимодействия между близкоразделенными вакуумным промежутком неидентичными диэлектрическими (полупроводниковыми) наночастицами // Химия, физика и технология поверхности. – 2006. – Вып. 11 – 12. – С. 4 – 19.

ROLE OF SURFACE ATOMIC STRUCTURE IN FORMING A POTENTIAL WITHIN VACUUM INTERVAL BETWEEN NEARLY SEPARATED METAL AND SEMICONDUCTOR

L.G. Il'chenko, V.V. Lobanov

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine General Naumov Str. 17, 03164 Kyiv-164

With in the framework of a non-local electrostatics, the structure component $\Delta V_{st}(\vec{r})$ has been calculated in the vacuum interval L between a metal and a semiconductor with the quasi-neutral surfaces of two types of well-organized superficial lattices.

It has been shown that structural potential $\Delta V_{st}(\vec{r})$, which is a superposition of the microscopic structures of both surfaces, is asymmetrical and stipulates a lateral (along the interfaces) change in the total potential barrier $V(\vec{r})$ in the vacuum gap. The increase $\Delta V_{st}(\vec{r})$ (amplitudes) is related to decrease in the distance L between semiconductor and metal as well as with decrease in the free electrons concentration in the metal.