НАНОХИМИЯ ДИХАЛЬКОГЕНИДОВ МОЛИБДЕНА И ВОЛЬФРАМА: НОВЫЕ ВОЗМОЖНОСТИ СОЗДАНИЯ НАНОМАТЕРИАЛОВ

Л.М. Куликов¹, Н.Б. Кёниг¹, Л.Г. Аксельруд², В.Н. Давыдов²

¹Институт проблем материаловедения им. И.Н. Францевича Национальной академии наук Украины ул. Кржижановского, 3, 03680, Киев-142 ²Львовский национальный университет им. И. Франко ул. Кирилла и Мефодия 6, 79005, Львов

Представлены некоторые результаты систематических исследований в области нанохимии слоистых дихалькогенидов d-переходных металлов: синтез, структурные, структурно-чувствительные физические и физико-химические свойства наноструктур, интеркаляционные наносистемы на их основе.

Some results of regular investigations in the field of nanochemistry of layered d-Transitive Metals Dichalcogenides: synthesis, structural, structural-sensitive physical and physical-chemical properties of nanostructures, intercalated nanosystems on their basis are submitted.

Введение

Дихалькогениды *d*-переходных металлов со слоистыми структурами типа 2*H* (2*H-MCh*₂, *M*=Mo, W, Ta, Nb, Ti; *Ch*=S, Se) представляют особый интерес, поскольку области их применения в сравнении с существующим использованием микронных порошков (в основном, природного дисульфида молибдена) могут быть значительно расширены за счет слоистых наноструктур с модифицированными физическими свойствами, а также интеркаляционных нанокристаллических фаз. Наноструктуры 2*H-MCh*₂ и их интеркаляционные нанофазы перспективны для создания новых наноструктурных функциональных материалов различного назначения (см. [1 - 5]):

• твердых, радиационно-стойких, электропроводящих наносмазок для космических и земных условий эксплуатации при высоких и низких температурах;

• нанокристаллических, твердосмазочных добавок к жидким и консистентным смазкам для улучшения их эксплуатационных характеристик;

• новых водородсодержащих наноматериалов с повышенным количеством водорода, водородных сенсоров, твердых наносмазок, способных работать в атмосфере водорода;

• высокоанизотропных, в том числе и полупроводниковых, наноматериалов для преобразователей энергии (наноионика);

• магнитных наноматериалов;

• катализаторов (нанокатализ, фотокатализ);

• наноматериалов с экстремально высокими характеристиками прочности при ударных нагрузках (,,наноброня");

• теплоизоляционных наноматериалов с рекордно низкими значениями теплопроводности;

• медицинской техники (наносмазки для хирургических инструментов).

В связи с этим, актуальными являются исследования процессов и механизмов синтеза наноструктур 2*H*-*M*Ch₂, а также разработки соответствующих нанотехнологий.

В сообщении представлены некоторые результаты исследований в области нанохимии слоистых дихалькогенидов *d*-переходных металлов: синтез, структурные, структурно-чувствительные физические и физико-химические свойства наноструктур, интеркаляционные наносистемы на их основе.

Экспериментальная часть

Слоистые наноструктуры 2*H-MCh*₂ (*M*=Mo, W; *Ch*=S, Se) синтезированы по разработанной нанотехнологии с использованием химического осаждения из газовой фазы. Дополнительный отжиг наноструктур 2*H*-MoS₂, 2*H*-MoSe₂ и 2*H*-WS₂, 2*H*-WSe₂ осуществляли при 820 - 1120 и 650 - 1075 К соответственно в вакуумированных кварцевых ампулах (~0,1 Па).

Рентгенофазовый и рентгеноструктурный анализы порошков 2H- MCh_2 , а также определение средних размеров анизотропных наночастиц выполнены на автоматическом порошковом дифрактометре HZG-4A (Си- K_{α} -излучение) с использованием пакета программ WinCSD [6].

Процессы интеркаляции слоистых наноструктур 2*H*-MoS₂, 2*H*-WS₂ молекулярным водородом исследованы объемно-манометрическим методом (0,1 – 5,0 МПа; 470 – 670 К). Ультразвуковую обработку нанокристаллических порошков 2*H*-WS₂ и 2*H*-MoS₂ выполняли на усовершенствованной установке УЗВД-6 (резонансная частота – 18 кГц, удельная акустическая мощность – 0,5 – 10 Вт·см⁻², защитная среда – аргон) в кавитационных режимах в различных жидких средах (вода, этиловый спирт, ацетон, ацетонитрил).

Результаты и их обсуждение

Разработанные нанотехнологии позволяют получать в достаточно больших количествах нанокристаллические порошки 2H- MCh_2 с экстремально малыми средними размерами анизотропных наночастиц (~1 нм). Рентгеновские исследования показали, что полученные нанокристаллические образцы 2H- MCh_2 гомогенны по химическому составу (MoS₂, WS₂, MoSe₂, WSe₂), типу слоистой структуры (2H-MoS₂, что характерно для микронных порошков и монокристаллов), типу наноструктур (слоистые наноструктуры), средним размерам анизотропных наночастиц и не содержат примесей посторонних, в том числе рентгеноаморфных, фаз и других наноструктур.

Установлено, что средние размеры анизотропных наночастиц 2*H*-*MCh*₂ (*M*=Mo, W; *Ch*=S, Se) взаимосвязаны (для кристаллографических направлений [013] и [110]) и возрастают с повышением температуры отжига: 820 - 1120 K для 2*H*-MoS₂, 2*H*-MoSe₂; 650 - 1075 K – 2*H*-WS₂, 2*H*-WSe₂. Средние размеры анизотропных наночастиц эффективно регулируются в широких пределах: 2*H*-MoS₂ – $d_{[013]} = 2,7(2)...4,7(2)$ нм, $d_{[110]} = 8,5(4)...53(3)$ нм; 2*H*-WS₂ – $d_{[013]} = 2,7(2)...8,0(5)$ нм, $d_{[110]} = 7,9(4)...123(8)$ нм; 2*H*-MoSe₂ – $d_{[013]} = 4,8(3)...44(3)$ нм, $d_{[110]} = 17,9(1,1)...50(3)$ нм; 2*H*-WSe₂ – $d_{[013]} = 4,5(3)...41(2,5)$ нм, $d_{[110]} = 18,7(1,2)...82(5)$ нм (рис. 1, 2). Для частиц 2*H*-MoSe₂ переход от нанокристаллических к микронным размерам (>200 нм) происходит в интервале температур отжига 950 – 1020 К.

Параметры элементарных ячеек **a**, **c**, а также их соотношение **c**/**a** для слоистых наноструктур 2*H*-*M*Ch₂ коррелируют со средними размерами наночастиц в указанных направлениях. В ряде случаев параметры элементарных ячеек наноструктур 2*H*-WCh₂ **a**, **c**, их отношение **c**/**a** близки к аналогичным значениям для микронных порошков 2*H*-WCh₂, а для наноструктур 2*H*-MoS₂ – превышают аналогичные значения для микронных порошков 2*H*-WCh₂, в 2*H*-MoS₂ (см., например, [7]). В частности, наблюдается

тенденция к увеличению параметра элементарной ячейки **a** наноструктур 2*H*-WS₂ и экспоненциальное уменьшение параметра **c** при возрастании $d_{[013]}$ и $d_{[110]}$. Для относительно малых значений $d_{[013]}$ (2,7(2)...8,0(5) нм) и $d_{[110]}$ (7,9(4)...24(2) нм), отмечено линейное уменьшение параметра **c** при увеличении наночастиц 2*H*-WS₂. В случае наноструктур 2*H*-MoS₂ с увеличением $d_{[013]}$ возрастает параметр **a** и линейно уменьшается параметр **c**. Имеется также тенденция к увеличению параметра элементарной ячейки **a** наноструктур 2*H*-MoS₂ и экспоненциальному уменьшению параметра **c** при возрастании $d_{[110]}$. Для наноструктур 2*H*-MoSe₂ наблюдается уменьшение параметров **a** и **c**, для 2*H*-WSe₂ – параметр **a** практически не изменяется, параметр **c** уменьшается при возрастании $d_{[013]}$ и $d_{[110]}$. При увеличении средних размеров наночастиц 2*H*-MSe₂ в направлениях [013] и [110] соотношение параметров их ячеек **c/a** падает.

Рис. 1. Зависимости средних размеров наночастиц 2*H*-WS₂ и 2*H*-MoS₂ в направлениях [013] $d_{I013I}(a)$ и [110] $d_{I110I}(b)$ от температуры отжига *T*.

С целью разупорядочения наноструктуры $2H-MS_2$ были подвержены мощному ультразвуковому воздействию в различных жидких средах (ацетоне, спирте, воде, ацетонитриле, а также в водном растворе КОН с концентрацией 5 моль/л). Установлено, что после ультразвуковой обработки (кавитационные режимы) в жидких средах наноструктуры 2H-WS₂ характеризуются большей стабильностью в процессах разупорядочения в сравнении с 2H-MoS₂ (табл. 1, 2). Наноструктры 2H-WS₂ после ультразвуковой обработ-

ки становятся более разупорядоченными в сравнении с исходными наноструктурами: атомы W статистически занимают тригонально-призматические пустоты с координатами (1/3, 2/3, 1/4), характерные для идеальной структуры типа 2*H*-MoS₂ (\approx 80 %) и (0, 0, 1/4), присущие позициям переходного металла в структурах типа 2*H*-TaS₂ (\approx 20 %) (табл. 2). В отличие от этого наноструктуры 2*H*-MoS₂ после ультразвуковой обработки имеют очень высокий уровень разупорядоченности, близкий к наблюдаемому в рентгеноаморфном состоянии.

По данным рентгеновских исследований параметр **a** элементарной ячейки 2H-MoS₂ после обработки ультразвуком увеличивается, параметр **c** уменьшается, средние размеры наночастиц 2H-MoS₂ в направлении [013] возрастают несущественно, в направлении [110] – не изменяются в сравнении с аналогичными величинами для исходных наночастиц 2H-MoS₂. В случае 2H-WS₂ параметр **a** элементарной ячейки уменьшается, параметр **c** практически не изменяется после ультразвуковой обработки 2H-WS₂ в растворе КОН и увеличивается после ультразвуковой обработки в других жидких средах, размеры наночастиц 2H-WS₂ в направлении [013] возрастают, в направлении [110] – не изменяются в сравнении с исходными для наночастиц 2H-WS₂.

Исследования процессов интеркаляции наноструктур $2H-MS_2$ молекулярным водородом (внедрения в значительных количествах в межслоевое пространство наноструктур, где действуют слабые ван-дер-ваальсовые силы, или вследствие специфических физико-химических свойств водорода – непосредственно в слои наноструктур) показали, что интеркаляция водорода в слоистые наноструктуры 2H-WS₂ происходит более интенсивно, чем в случае 2H-MoS₂. В результате интеркаляции наноструктур 2H-WS₂ и 2H-MoS₂ молекулярным водородом (0,1 – 5,0 МПа; 470 – 670 К) синтезированы нанокристаллические водородные интеркаляционные фазы H_x WS₂ (0 < $x \le 1,55$) и H_x MoS₂ (0 < $x \le 0,45$) с различными уровнями атомной разупорядоченности (рис. 3).

Рис. 3. Кинетические зависимости интеркаляции водорода в слоистые наноструктуры: 1 – 2*H*-WS₂ (**a**=0,31565(4) нм, **c**=1,2480(5) нм, *d*_[013]=3,8(3) нм, *d*_[110]=17(1) нм), (5 МПа, 610 К); 2 – 2*H*-MoS₂ (**a**=0,3136(1) нм, **c**=1,258(1) нм, *d*_[013]=2,7(2) нм, *d*_[110]=9,4(6) нм), (5 МПа, 670 К).

		Параметры элементарной		Кристаллографическое		Кристаллографическое	
Соединение	Среда	ячейки, нм		направление [013]		направление [110]	
	ультразву- ковой обработки	а	c	Полуширина	Средний	Полуширина	Средний
				рентгеновских	размер	рентгеновских	размер
				рефлексов	наночастиц	рефлексов	наночастиц
				Нw, рад	<i>d</i> _[013] , нм	Нw, рад	$d_{[110]}, { m HM}$
2H-MoS ₂ ⁽¹⁾	этиловый	0,3153(1)	1,255(1)	0,05990	2,7(2)	0,01706	10,4(4)
	спирт				/->		
	ацетон	0,3150(1)	1,254(1)	0,05564	2,9(2)	0,01796	9,8(4)
	вода	0,3148(2)	1,251(2)	0,06020	2,7(2)	0,01731	10,3(4)
2H-MoS ₂ ⁽²⁾	ацетонитрил	0,3153(3)	1,249(3)	0,04257	3,8(3)	0,01623	10,9(7)
2H-WS ₂ ⁽¹⁾	этиловый спирт	0,31471(1)	1,2361(1)	0,01310	12,5(4)	0,00829	21,3(8)
	ацетон	0,31500(2)	1,2403(3)	0,01834	8,9(4)	0,00897	19,7(7)
	вода	0,31479(1)	1,2365(2)	0,01544	10,6(4)	0,00831	21,3(8)
2H-WS ₂ ⁽²⁾	ацетонитрил	0,31518(2)	1,2394(2)	0,01285	12,7(8)	0,00838	21,1(1,3)

Таблица 1. Результаты рентгеновских исследований наноструктур 2*H*-MoS₂ и 2*H*-WS₂ после ультразвуковой обработки.

Примечания: излучение, длина волны – Cu, 0,154185 нм; порошковый дифрактометр; разупорядоченность наноструктур – незначительная; исходные нанокристаллические 2*H*-MoS₂: 1 – \mathbf{a} =0,31601(1) нм, \mathbf{c} =1,22984(6) нм, $d_{[013]}$ =2,7(2) нм, $d_{[110]}$ =9,4(6) нм; 2 – \mathbf{a} =0,3135(1) нм, \mathbf{c} =1,258(1) нм, $d_{[013]}$ =2,9(2) нм, $d_{[110]}$ =10,4(6) нм; исходные нанокристаллические 2*H*-WS₂: 1 – \mathbf{a} =0,3165(4) нм, \mathbf{c} =1,2480(5) нм, $d_{[013]}$ =3,8(3) нм, $d_{[110]}$ =17,4(1,1) нм; 2 – \mathbf{a} =0,31540(3) нм, \mathbf{c} =1,2372(3) нм, $d_{[013]}$ =6,7(4) нм, $d_{[110]}$ =24(2) нм.

Кристаллографические	Среда ультразвуковой обработки					
параметры	этиловый спирт	ацетон	вода	ацетонитрил		
Полуширина рефлексов Нw, рад,						
направление – [013]	0,01310	0,01834	0,01544	0,01285		
Средний размер частиц в						
направлении [013] <i>d</i> _[013] , нм	12,5(4)	8,9(4)	10,6(4)	12,7(8)		
Полуширина рефлексов Нw, рад,						
направление – [110]	0,00829	0,00897	0,00831	0,00838		
Средний размер частиц в						
направлении [110] <i>d</i> [110], нм	21,3(8)	19,7(7)	21,3(8)	21,1(1,3)		
Параметры элементарной						
ячейки, нм:						
a	0,31471(1)	0,31500(2)	0,31479(1)	0,31518(2)		
с	1,2361(1)	1,2403(3)	1,2365(2)	1,2394(2)		
Объем элементарной ячейки, нм ³	0,10603(2)	0,10658(4)	0,10612(2)	0,10662(3)		
Рентгеновская плотность, г·см ⁻³	7,7662	7,726(3)	7,760(2)	7,723(2)		
2 θ , sin θ/λ (max)	144,20; 0,617	144,20; 0,617	144,20; 0,617	139,11; 0,608		
Фактор расходимости $R_{intensity}$	0,1465	0,2043	0,1489	0,1849		
Направление текстурированости	[100]; 0,162(6)	[100]; 0,190(6)	[100]; 0,145(4)	[001]; 1,62(4)		
	$W_1 - (1/3, 2/3, 1/4);$	$W_1 - (1/3, 2/3, 1/4);$	$W_1 - (1/3, 2/3, 1/4);$	$W_1 - (1/3, 2/3, 1/4);$		
KOODHHISTLI STOMOD (V. V. Z)	$W_2 - (0, 0, 1/4);$	$W_2 - (0, 0, 1/4);$	$W_2 - (0, 0, 1/4);$	$W_2 - (0, 0, 1/4);$		
	S - (1/3, 2/3,	S - (1/3, 2/3, 2/3)	S - (1/3, 2/3, 2/3)	S - (1/3, 2/3,		
	0,6190(4))	0,6184(5))	0,6258(4))	0,6149(7))		
Bacanannocti (W. W.)	$W_1 - 0,832(4) W;$	$W_1 - 0,864(4) W;$	$W_1 - 0,792(3) W;$	$W_1 - 0,976(5) W;$		
Sacchenhoerb (W1, W2)	$W_2 - 0,168(4) W$	W ₂ – 0,136(4) W	$W_2 - 0,208(3) W$	$W_2 - 0,024(5) W$		
Расстояние, нм:						
$W_1 - S$	0,2434(4)	0,2444(4)	0,2380(3)	0,2473(6)		
$W_1 - W_2$	0,36340(1)	0,36373(2)	0,36349(1)	0,31518(2)		

Таблица 2. Результаты рентгеновских исследований наноструктур 2*H*-WS₂ после ультразвуковой обработки.

Примечания: исходный нанокристаллический 2*H*-WS₂ – см. примечания табл. 1; метод анализа – полнопрофильный (метод Ритфельда); пространственная группа – P6₃/mmc; структурный тип – 2*H*-MoS₂ / 2*H*-TaS₂.

При интеркаляции водородом (0,1 МПа; 630 – 670 К) обработанных ультразвуком в различных жидких средах слоистых наноструктур $2H-MS_2$ образуются гомогенные нанокристаллические интеркаляционные фазы H_xMoS_2 (0< $x \le 0,29$) и H_xWS_2 (0< $x \le 0,46$), при этом процессы интеркаляции не достигают состояния равновесия (рис. 4).

При интеркаляции предварительно обработанных ультразвуком наноструктур 2*H*-MoS₂ и 2*H*-WS₂ при 5,0 МПа (670 и 630 К, соответственно) равновесие достигается (рис. 5), в результате образуются водородные интеркаляционные нанофазы H_x MoS₂ (0 < $x \le 0,43$) и H_x WS₂ (0 < $x \le 0,32$).

Вышеуказанные отличия в кинетике интеркаляции водородом слоистых наноструктур 2H-MoS₂ и 2H-WS₂ и конечных содержаниях водорода в синтезированных интеркаляционных нанофазах свидетельствуют о значительном влиянии разупорядоченности реальных наноструктур на процессы и механизмы интеркаляции.

Рис. 4. Кинетические зависимости интеркаляции водорода в слоистые наноструктуры 2*H*-WS₂ (**a**=0,31565(4) нм, **c**=1,2480(5) нм, $d_{[013]}$ =3,8(3) нм, $d_{[110]}$ =17(1) нм), (*a*) и 2*H*-MoS₂ (**a**=0,3136(1) нм, **c**=1,258(1) нм, $d_{[013]}$ =2,7(2) нм, $d_{[110]}$ =9,4(6) нм), (*b*) после ультразвуковой обработки в различных жидких средах (1 – спирте, 2 – воде, 3 – ацетоне), (0,1 МПа; 630 К и 670 К, соответственно).

Рис. 5. Кинетические зависимости интеркаляции водорода в слоистые наноструктуры 2*H*-WS₂ (**a**=0,31565(4) нм, **c**=1,2480(5) нм, $d_{[013]}$ =3,8(3) нм, $d_{[110]}$ =17(1) нм), (*a*) и 2*H*-MoS₂ (**a**=0,3136(1) нм, **c**=1,258(1) нм, $d_{[013]}$ =2,7(2) нм, $d_{[110]}$ =9,4(6) нм), (*б*) после ультразвуковой обработки в различных жидких средах (*1* – ацетоне, *2* – спирте, *3* – воде), (5 МПа; 610 К и 670 К, соответственно).

Выводы

1. Синтезированы нанокристаллические слоистые дихалькогениды d-переходных металлов 2H- MCh_2 (M=Mo, W; Ch=S, Se) с экстремально малыми средними размерами анизотропных наночастиц (~1 нм). Нанокристаллические 2H- MCh_2 гомогенны по химиическому составу, типам слоистой структуры (2H-MoS₂) и наноструктур (слоистые наноструктуры), средним размерам анизотропных наночастиц и не содержат примесей посторонних, в том числе рентгеноаморфных, фаз и др. наноструктур.

2. Разупорядочение реальных слоистых наноструктур дихалькогенидов *d*-переходных металлов существенно влияет на их структурно-чувствительные физико-химические свойства в топохимических реакциях интеркаляции водородом.

Литература

- 1. Schöllhorn R. Intercalation systems as nanostructured functional materials // Chem. Mater. 1996. V. 8, № 8. P. 1747 1757.
- 2. O'Hare D. Inorganic intercalation compounds. In: Inorganic Materials / Ed. D.W. Bruce, O'Hare. L.: Wiley, 1996. P. 172 254.
- 3. Jorther J., Rao C.N.R. Nanostructured advanced materials. Perspectives and directions // Pure Appl. Chem. 2002. V. 74, № 9. P. 1491 1506.
- 4. Куликов Л.М. Интеркаляционные системы на основе слоистых дихалькогенидов *d*-переходных металлов: нанотехнология и перспективы // Наносистемы, наноматериалы и нанотехнологии. – 2004. – Т. 2, Вып. 2. – С. 401 – 416.
- 5. Tenne R. Inorganic nanotubes and fullerene-like nanopaticles // Nature Nanotechnology. 2006. P. 103 111.
- Akselrud L.G., Grin Yu., Pecharsky V.K. Use of the CSD program package for structure determination from powder data // Proc. II Europ. powder diffraction conf. Pt. 1.– Enschede, The Netherlands: Trans. Tech. Pub. – 1993. – P. 335 – 340.
- Lieth R. M. A., Terhell J. C. J. M. Transition metal dichalcogenides // Preparation and crystal growth of materials with layered structures. – Dordrecht – Boston: D. Reidel Publ. Co., 1977. – P. 141 – 223.