УДК 541.183: 541.182.8: 544.723 БИТЕМПЛАТНЫЙ СИНТЕЗ И СТРУКТУРНО-АДСОРБЦИОННЫЕ ХАРАКТЕРИСТИКИ МЕЗОПОРИСТЫХ ЦЕОЛИТОВ, ПОЛУЧЕННЫХ НА ОСНОВЕ АІ-АЭРОСИЛОВ

К.Н. Хоменко¹, Г.И. Жуков¹, Ю.И. Горников², В.В. Брей¹

¹Институт сорбции и проблем эндоэкологии Национальной академии наук Украины ул. Генерала Наумова 13, 03164 Киев-164 ²Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова, 17, 03164 Киев-164

Предложен метод одностадийного битемплатного синтеза мезопористых цеолитсодержащих материалов на основе Al-аэросилов, исследована кинетика их образования и структурно-текстурные свойства. Полученные материалы охарактеризованы методами ИК-спектроскопии, рентгенографии и адсорбции азота. Показано, что образование цеолитных структур (до ~25%) не сопровождается разрушением мезофазной структуры и происходит в стенках мезопор.

A method has been proposed of the one-stage bitemplate synthesis of mesoporous zeolite containing materials on the basis of Ti-aerosil (Ti-MZ), also the kinetics is studied of their formation and texture features. The materials obtained have been characterized by methods of IR-spectroscopy (FTIR), X-ray diffraction (XRD) and adsorption of nitrogen. Formation of the zeolite structures (till ~25%) is not accompanied with the destruction of mesophase structure and happens in the mesopores walls.

Введение

Упорядоченные мезопористые материалы (OMM – Ordered Mesoporous Material или MMS – Mesoporous Molecular Sieves) с однородномезопористой матрицей (типа MCM-41, MCM-48) могли бы успешно работать в каталитических процессах с участием больших молекул, таких как крекинг высокомолекулярных фракций нефти, однако их применение ограничивается недостаточной кислотностью и низкой гидротермальной стабильностью [1]. Применение цеолитов в индустриальном катализе ограничивается малым размером микропор (каналов) и вследствие этого медленной внутрикристаллической диффузией.

Возможность создания мезопористых материалов с цеолитоподобным порядком в стенках мезопор (мезопористых цеолитов), которые могли бы объединить преимущества обоих типов материалов, с использованием разных подходов была проверена в работах [2 – 8]. В каждой из этих работ получали материалы с лучшей гидротермальной стабильностью и повышенной кислотностью по сравнению с высокоупорядоченными MMS типа MCM-41. Однако было показано, что образование цеолитной фазы в упорядоченных мезопористых материалах сопровождается разрушением мезопористой структуры. В работе [8] на примере синтезов микро/мезопористых материалов с использованием в качестве темплата для образования мезопористой структуры PLURONIC Р показано, что образование упорядоченных мезопористых материалов с кристаллическими областями цеолитной структуры в стенках мезопор возможно, если стенки мезопор имеют толщину порядка 4 – 8 нм. Цель данной работы – изучение кинетики образования цеолитной фазы

Химия, физика и технология поверхности. 2007. Вып 13. С.136-144 136 в аморфной алюмосиликатной мезофазе в гидротермальных условиях битемплатного одностадийного синтеза.

Экспериментальня часть

Образцы пористого Al-содержащего кремнезема (Al-MZ) синтезировались с использованием в качестве источников SiO₂ и Al₂O₃ Al-аэросилов (Хлорвинил, Калуш, Украина) с массовой долей Al₂O₃ 3,0 – 7,3 %. В качестве темплатов применяли бромид цетилтриметиламмония (CTABr) (99,9%, Aldrich) для образования мезопористой матрицы и бромид тетрапропиламмония (TPABr) (> 99 %, Merck) для образования цеолитной структуры. Соотношение компонентов в исходной реакционной смеси соответствовало формуле (в молях):

 $SiO_2 \cdot x Al_2O_3 \cdot 0.2 CTABr \cdot 0.06 TPABr \cdot 0.2 NaOH \cdot 30 H_2.$

Рассчитанное количество темплатов TPABr и CTABr последовательно при перемешивании растворялось в водном растворе NaOH. В полученный раствор добавлялся Al-аэросил и смесь состаривалась при комнатной температуре в течение 48 ч. Синтез проводили в статичных условиях при температуре 413 К и времени гидротермальной обработки (ГТО) от 0 до 200 ч. Конечный продукт отфильтровывался, промывался дистиллированной водой, высушивался при 378 К и прокаливался при 853 К в течение 5 ч для удаления темплата. Отжиг темплатов приводит к образованию пористой структуры. Как видно из рис. 1, этот процесс происходит в три стадии. Пик на кривой DTG при 513 К связаны с разложением CTABr. Пики выше 573 К с максимумами при 623 и 773 К связаны с разложением и сгоранием TPABr и продуктов распада CTABr. Отжиг темплатов оканчивается при 833 К.

Рис. 1. Дериватограмма образца Al-MZ (Si/Al = 20, ГTO = 24 ч).

Дифрактограммы исследуемых образцов регистрировали на дифрактометре ДРОН-4-07 в излучении Cu K_{α} линии анода с Ni фильтром в отраженном пучке с геометрией съемки по Брэггу-Брентано. Доступ к малоугловой области осуществлялся с помощью дополнительно установленных коллимирующих щелей перед образцом и счетчиком.

ИК-спектры отражения в области $1200 - 400 \text{ см}^{-1}$ записывали на спектрофотометре Perkin-Elmer Spectrum One FT-IR Spectrometer.

Изотермы адсорбции азота были получены на приборе 2405 N Micromeritics по стандартной процедуре после вакуумной обработки при 623 К. Эти изотермы исполь-

зовали для традиционного анализа. Они включают вычисление удельных поверхностей БЭТ ($A_{\text{БЭТ}}$) в обычно используемой области P/P₀ = 0,05...0,3 с предположением для посадочной площадки азота в адсорбированном монослое $\omega = 0,162 \text{ нм}^2$. Распределения размеров пор рассчитаны методом ВЈН. Полные объемы порового пространства (V_s) получены из адсорбционных значений при относительном давлениии P/P₀ = 0,95 в предположении плотности азота в адсорбированной стадии, равной 34,67 см³/моль, т.е. нормальной плотности жидкого азота при той же температуре. Полученные в этой работе изотермы и стандартная изотерма [9] были использованы для построения сравнительных графиков, из которых по методу [10] были рассчитаны такие текстурные характеристики, как общая удельная поверхность (A_{Σ}), удельная поверхность мезопор (A_{Me}), внешняя поверхность частиц мезофазы (A_{ext}), объем мезопор (V_{Me}), средний диаметр мезопор (d_{Me}) и объем микропор (V_{mk}).

Результаты и их обсуждение

С целью изучения кинетики формирования цеолитной структуры в мезопористой матрице был синтезирован ряд образцов алюмокремнеземов при соотношении Si/Al = 20 и времени ГТО 9; 23; 31; 72; 96; 119 и 143 ч.

Алюмосиликатные MMS по составу подобны цеолитам, но имеют разупорядоченную (аморфную) структуру стенок. Условия синтеза Al-MMS и цеолитов принципиально отличаются лишь структурообразующими агентами (темплатами). При использовании в качестве темплатов катионов алкилтриметиламмония C_nH_{2n-1}N⁺(CH₃)₃ со значениями $n \le 6$ формируется цеолит ZSM-5 с характерной регулярной кристаллической структурой, а при значениях *n* от 8 до 16 в тех же условиях вместо кристаллических фаз образуются мезофазы, сохраняющие структуру неорганического каркаса после удаления темплата. И MMS, и цеолиты силикатного состава формируются из растворимых форм SiO₂ – первичных структурных групп (ПСГ), образующихся при рН 8 – 11. Это преимущественно анионные олигомеры – кольца 3R и 4R из 3 или 4 тетраэдров SiO₂ (R – знак кольца) и их сдвоенные формы D3R и D4R (D – знак сдвоенного кольца) с малым содержанием мономеров и димеров [11]. Наиболее эффективное взаимодействие достигается при участии ионогенных ПАВ (темплатов) (S⁺) и ионных форм неорганического материала (I) за счет кулоновских сил, которые возникают между противоположно заряженными ионами S⁺ и I⁻. Именно по механизму S⁺I⁻ происходит формирование наиболее широко изученных силикатных MMS, сохраняющих стабильность при температурах до 973 К. Взаимодействие высокомолекулярных темплатов (S⁺) с кремний-кислородными олигомерами (I) приводит к быстрому формированию MMS с частично упорядоченной мезофазной структурой уже при комнатной температуре. Гидротермальная обработка и последующая термообработка способствует полимеризации и повышению упорядоченности в области "дальнего порядка" (ориентации мезопор) при сохранении аморфной структуры стенок [12].

Формированию кристаллической фазы цеолита предшествует относительно долгий индукционный период. За время индукционного периода взаимодействие ПСГ с темплатом приводит к образованию вторичных структурных групп (ВСГ), которые являются элементами структуры синтезируемого цеолита. При концентрации ВСГ выше некоторой критической начинается быстрая кристаллизация.

При битемплатном синтезе исходный гель формируется в присутствии структурообразующих реагентов как для образования мезофазы, так и для цеолита. Материалом для образования цеолита служит уже хорошо сформировавшаяся мезофаза. Структурноадсорбционные свойства пористого материала в значительной степени определяются параметрами мезофазной структуры, образовавшейся до начала кристаллизации цеолита, и здесь очень важную роль играет толщина стенок. В силикатных MCM-41 толщина стенок обычно находится в пределах 0,8 - 1,0 нм и соответствует размеру 3 - 4 тетраэдров SiO₂. Образование цеолитной структуры в таком материале закономерно сопровождается разрушением мезофазной структуры, потому что элементарная ячейка цеолита (~2 нм для структур типа MFI) больше толщины стенок. В случае, если толщина стенок в MMS соизмерима или больше элементарной ячейки цеолита, то на начальном этапе кристаллизации формирование цеолитных нанодоменов происходит без разрушения мезофазной, а после удаления темплата – мезопористой структуры. Как было показано ранее [14], толщина стенок между мезопорами в алюмосиликатных MMS, полученных из алюмоаэросилов ~2 нм.

Предварительное тестирование полученных материалов проводили методом ИКспектроскопии в области 1200 – 400 см⁻¹, которая является традиционным методом исследования структуры силикатов [13]. На рис. 2 показаны FTIR спектры отражения мезопористого Al-MMS [14] и синтезированных битемплатным методом за разное время образцов Al-MZ (Si/Al = 20). Критерием образования цеолитной фазы служит наличие двух полос поглощения – в области 440 – 480 см⁻¹ и 550 см⁻¹. Первая полоса относится к внутренним колебаниям алюминий- и кремний-кислородных тетраэдров, она есть и в чистом кремнеземе и отвечает деформационным колебаниям Si–O–Si связи. Полоса поглощения в области 550 см⁻¹ относится к сдвоенным пятичленным кольцам тетраэдров в структуре цеолитов и отсутствует в аморфных кремнеземах и алюмокремнеземах. Появление полосы поглощения 550 см⁻¹ после 9 ч гидротермальной обработки и увеличение ее интенсивности с увеличением времени ГТО свидетельствует об относительном увеличении количества кристаллической фазы.

Рис. 2. FTIR спектры Al-MMS-*1* и образцов Al-MZ (Si/Al=20) с разным временем ГТО: 2 - 9, 3 - 23, 4 - 96, 5 - 143 (ч).

Данные ИК-спектроскопии подтверждаются результатами рентгенографических исследований. На рис. 3 показаны дифрактограммы отожженных образцов Al-MZ (время ГТО 24 ч) с разным содержанием алюминия. Три максимума в области малых углов (рис. 3, *a*) свидетельствуют об упорядоченном расположении мезопор с несовершенной гексагональной упаковкой. Структурные параметры исследованных образцов приведены в табл. 1. Увеличение содержания алюминия сопровождается незначительным увеличением степени кристалличности (K, %) и межплоскостных расстояний (d, Å). Дифрактограммы в области больших углов, показанные на рис. 3, δ , свидетельствуют о наличии

цеолитной структуры типа MFI. Образование цеолита в этих условиях не сопровождается разрушением мезопористой структуры.

Рис. 3. Дифрактограммы порошкообразных образцов Al-MZ с разным содержанием Алюминия: *1* – 3 %; *2* – 4 %; *3* – 7,25 %. *а* – малые углы, *б* – большие углы.

На рис. 4 представлены дифрактограммы высушенных и отожженных образцов пористого алюминийсодержащего кремнезема в зависимости от времени предварительной ГТО. Увеличение времени ГТО сопровождается снижением интенсивности малоугловых максимумов и уменьшением межплоскостных расстояний, как это показано на рис. 4, a и в табл. 1. Периодичность мезопористой структуры нарушается при времени ГТО больше 100 ч. Одновременно алюмокремнеземная матрица переходит из аморфного состояния в частично кристаллическое, как это показано на рис. 4, δ и в табл. 1. Степень кристалличности рассчитывалась по отношению площади рентгенограммы под пиками, относящимися к кристаллической фазе к общей площади. Она достигает величины 67 – 69 % и после 96 ч ГТО практически не меняется.

Рис. 4. Дифрактограммы порошкообразных образцов Al-MZ с разным временем ГТО (ч): *1* – 9, *2* – 23, *3* – 31, *4* – 72, *5* – 96, *6* – 119, *7* – 143.

Для расчета текстурных параметров из изотерм адсорбции и рентгенографических данных использовался сравнительный метод [10], который является модификацией *t*-метода и *a_s*.-метода [15]. Параметры элементарной решетки идеальной гексагональной упаковки цилиндров (α_0) представляли в виде суммы диаметра мезопоры (d_M) и толщины стенки мезофазы (h_W): $\alpha_0 = d_{Me} + h_W$. Средний диаметр мезопор рассчитывали по формуле: $d_{Me} = 4V_{Me}/A_{Me}$.

Таблица 1. Структурные	параметры
образцов Al-M	IZ с разным

содержанием алюминия					
Al_2O_3 ,	2θ,	d,	К,		
%	град	А	%		
	2,38	37,12			
3	4,34	20,36	27		
	6,26	14,12			
	2,18	40,52			
4	4,16	21,25	25		
	6,18	14,30			
	2,12	41,67			
7,25	4,12	21,45	29		
	6,12	14,44			

T	TO		
Время,	2θ,	d,	К,
Ч.	град	Α	%
	2,03	43,52	
9	3,98	22,20	
	6,18	14,30	
	2,2	40,16	
23	4,18	21,14	26
	6,25	14,14	
	2,22	39,79	
31	4,18	21,14	33
	6,3	14,03	
72	2,3	38,41	50
12	4,4	20,08	50
06	2,3	38,41	69
90	4,34	20,36	00
119	-		69
143	-		67

Таблица 2. Ст	руктурные	е парамет	гры образ-
ЦОН	B Al-MZ c	разным	временем

На рис. 5 приведены изотермы адсорбции-десорбции азота для синтезированных битемплатным методом прокаленных образцов Al-MZ после 9, 23, 31, 72 и 96 ч гидротермальной обработки и для сравнения синтезированного монотемплатным методом мезопористого образца Al-MMC, а на рис. 6 распределение пор по размерам, рассчитанное методом BJH из десорбционных ветвей изотерм азота для образцов Al-MZ(96) и мезопористого Al-MMC. На рис. 7 показаны построенные на основе изотерм адсорбции сравнительные графики для образцов Al-MZ(9) и Al-MZ(96), которые дают возможность рассчитать объемы микропор и мезопор [10].

Рис. 5. Изотермы адсорбции-десорбции азота на Al-MMS-3 и образцах Al-MZ с разным временем ГТО: *1* – 9, *2* – 23, *4* – 31, *5* – 72, *6* – 96 (ч).

Рис. 6. Распределение пор по методу ВЈН для образцов Al-MMS (a) и Al-MZ(96) (б).

В табл. 3 приведены результаты традиционного анализа адсорбционных данных методами БЭТ и ВЈН: $A_{\text{БЭТ}}$, V_{S} , $d_{\text{ср}}$, $d_{\text{ВЈH}}$. В табл. 4 приведены текстурные параметры образцов, рассчитанные сравнительным методом с использованием стандартной изотермы адсорбции азота [9] и, полученные из рентгеноструктурных данных, значения α_0 и толщины стенки между мезопорами (h_{W}).

Рис. 7. Сравнительные графики для экспериментальных изотерм: *a* – Al-MZ(9), *б* – Al-MZ(96)

Таблица 3. Результаты традиционного анализа экспериментальных данных

Образец (ГТО ц)	$A_{\rm БЭТ}$,	$V_{\rm S},$	$d_{ m ef}$,	$d_{ m BJH},$	$d_{100},$
ооразец (110, 4)	M^2/Γ	см ³ /г	HM	HM	Ă.
Al-MMC(24)	887	1,023	4,616	2,92	43,78
Al-MZ(9)	843	0,897	4,83	3,04	43,52
Al-MZ(23)	841	0,99	4,71	3,05	40,16
Al-MZ(31)	861	1.008	4,68	3,05	39,79
Al-MZ(72)	648	0,670	4,14	2,76	38,41
Al-MZ(96)	531	0,523	3,94	2,74	38,41

Из табл. 4 следует, что по численным значениям текстурных параметров и по характеру их зависимости от времени гидротермальной обработки изученные образцы Al-MZ можно разделить на три группы. К первой относится образец Al-MZ(9), для кото-

рого наблюдаются относительно высокие значения V_{Me} и d_{Me} мезопор и h_{W} . Время ГТО – 9 ч – очевидно недостаточно для упорядочения спонтанно образованной (первичной) мезофазы за время старения исходного геля. Дефектность стенки (ее толщина) обусловлена незавершенной конденсацией SiOH-групп между соседними кремний-кислородными тетраэдрами, которая требует их соответствующей взаимной ориентации. Увеличение времени ГТО должно способствовать оптимальной взаимной ориентации кремний-кислородных тетраэдров и увеличению степени поликонденсации соседних SiOH-групп. Следствием таких относительно медленных преобразований является уменьшение толщины стенок между мезопорами.

Габлица 4. Анализ	текстурных	характеристик	образцов	Al-MMS	И	Al-MZ	С
использ	ованием сравн	ительных график	ЮВ				

Образец (ГТО, ч)	$A_{\Sigma}, M^2/\Gamma$	$A_{\text{ext}},$ M^2/Γ	$A_{\text{Me}},$ M^2/Γ	$V_{\text{Me}}, \\ \text{cm}^{3}/\Gamma$	$V_{\rm Mk},$ cm ³ / Γ	<i>d</i> _{Me} , нм	<i>α</i> ₀ , Å	h _W , Å
Al-MZ(9)	910	86	824	0,716	0	3,476	50,25	15,49
Al-MZ(23)	897	100	797	0,649	0	3,257	46,37	13,8
Al-MZ(31)	870	101	769	0,616	0	3,203	45,95	13,92
Al-MZ(72)	604	109	497	0,429	0,007	-	44,35	9,85
Al-MZ(96)	456	73	383	0,448	0,037	-	44,35	-

Ко второй группе относятся образцы Al-MZ(23) и Al-MZ(31), сохраняющие высокоорганизованную мезопористую структуру, имеющие признаки образования цеолитных доменов по рентгенографическим характеристикам, но согласно адсорбционным данным в них отсутствуют микропоры.

К третьей группе относятся образцы Al-MZ(72) и Al-MZ(96), для которых характерно появление микропор. Это свидетельствует, с учетом рентгеноструктурных данных, об образовании отдельной высокоорганизованной цеолитной фазы типа MFI.

При переходе от второй группы к третьей и увеличении времени ГТО уменьшается общая удельная поверхность, поверхность и объем мезопор. Этот процесс проходит не монотонно, а сопровождается скачкообразным изменением этих параметров при образовании отдельной цеолитной фазы типа MFI (табл. 4). Аналогичная картина наблюдается и при анализе адсорбционных данных традиционным методом (табл. 3). Эти результаты показывают, что одновременно с формированием цеолитной микропористой структуры проходит процесс разрушения стенок мезопор и образование пор большего размера, чем и объясняется увеличение среднего диаметра пор.

Изучение процесса формирования пористой структуры алюмокремнезема, получаемого в условиях битемплатного синтеза позволило установить, что на начальном этапе преобразования аморфной алюмокремнеземной матрицы в цеолитную наличие характерных рефлексов в области больших и малых углов указывает на образование в мезопористой структуре кристаллических блоков, с размерами слишком маленькими для четкого разделения рентгеновских максимумов. Сравнение дифрактограмм Al-MZ и цеолита ZSM-5 приводит к выводу, что эти кристаллические области имеют MFI-структуру, подтвержденную ИК-спектроскопическими исследованиями. Дифрактограммы в области малых углов синтезированных при одинаковых условиях образцов Al-MMS и Al-MZ свидетельствуют об образовании цеолитных структур (до ~25 %) которое не сопровождается разрушением мезофазной структуры и происходит в стенках мезопор. Увеличение времени ГТО сопровождается формированием высококристаллической цеолитной структуры в алюмокремнеземной матрице, ростом микропористости и разрушением мезопористой структуры. Процесс образования цеолитной матрицы практически оканчивается за 90 ч при степени кристалличности ~70 %, а полное разрушение мезопористой структуры в этих условиях происходит за ~100 ч ГТО.

Литература

- 1. Taguchi A., Schith, F. Ordered mesoporous materials in catalysis // Micropor. Mesopor. Mater. 2005. V. 77. P. 1 45.
- Investigation of Synthesizing MCM-41/ZSM-5 Composites / L. Huang, W. Guo, P. Deng, Z. Xue, Q. Li // Phys. Chem. B. – 2000. – V. 104, № 2. – P. 2817 – 2823.
- 3. Karlsson A., Stocker M., Schmidt R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 lice phases by a mixed template approach // Micropor. Mesopor. Mater. 1999. V. 27, № 2. P. 181 186.
- 4. On D.T., Kaliaguine S. Large Pore Meesoporous Materials with Semi-Crystalline Zeolitic Frameworks // Angew. Chem. Int. Ed. 2001. V. 40, № 3. P. 3248 3251.
- Direct Observation of Nanorange Ordered Microporo-sity within Mesoporous Molecular Sieves / J. Liu, X. Zhang, Y. Han, F.S. Xiao // Chem. Mater. – 2002. – V. 14, № 3. – P. 2536 – 2542.
- AIITQ-6 and TiITQ-6: Synthesis, Characteri-sation, and Catalytic Activity / A. Corma, U. Diaz, M.E. Domine, V. Vornes // Angew. Chem. Int. Ed. – 2000. – V. 39, № 2. – P. 1499 – 1501.
- 7. Kalliaguine S., On D.T. Mesoporous zeolitic material with microporous crystalline mesopore walls / US Patent № 6 669 924, 2003.
- Mesoporous silica with short-range MFI structure / S.P. Naik, A.S.T. Chiang, R.W. Thompson, F.C. Huang, H.-M. Kao // Micropor. Mesopor. Mater. – 2003. – V. 60. – P. 213 – 224.
- 9. Karnaukhov A.P., Fenelonov V.B., Gavrilov V.Yu. Study of the effect of suface chemistry and adsorbent texture on adsorption isotherms by comparative method // Pure Appl. Chem. 1989. V. 61. № 11. P. 1913 1920.
- 10. Fenelonov V.B., Romannikov V.N., Derevyankin Z.Yu. Mesopore size and surface area calculations for hexagonal mesophases (types MCM-41, FSM-16, etc.) using low-angle XRD and adsorption data // Micropor. Mesopor. Mater. 1999. V. 28, № 1. P. 57 72.
- Pelster S.A., SchraderW., Schuth F. Monitoring Temporal Evolution of Silicate Species during Hydrolysis and Condensation of Silicates Losingmass Spectrometry // J. Amer. Chem. Soc. – 2006. – V. 128. – P. 4310 – 4317.
- 12. Особенности формирования и гидротермальная стабильность ориентированных мезопористых материалов (ОММ) нового класса адсорбентов и катализаторов / В.Б. Фенелонов, М.С. Мельгунов, Л.А. Соловьев, С.Д. Кирик // Х Межд. конф. Теоретические проблемы химии поверхности, адсорбции и хроматографии. М., 2006. С. 60 68.
- Плюснина И.И. Инфракрасные спектры силикатов. М.: Изд-во Моск. ун-та, 1967. 188 с.
- Synthesis and characterization of mesoporous materials prepared on the basis of Al-aerosil / K.M. Khomenko, E.I. Oranskaya, G.I. Zhukov, R. Leboda, V.V. Brei // IX Ukrainian-Polish Symp. Sadomierz-Golejow, Poland, 2005 Sept. 5-9
- 15. Gregg, S.J., Sing, K.S.W. Adsorption, Surface Area and Porosity. L.: Acad. Press, 1982. 226 p.