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Aim: To show that application of the systemic analysis may significantly improve comparison of different datasets. Different genes 
and proteins may converge on the same functional outputs. A comparison of 2 datasets by only identification names of affected 
molecules may miss that, leading to a conclusion that there is nothing in common for these datasets. Systemic analysis may overcome 
this limitation, by focusing on functions represented by the identification names. Materials and Methods: Datasets were retrieved 
from open sources. Systemic analysis of vascularization features and angiogenesis signature was performed by using Cytoscape 
and its plugs-in. Results: In contrary to the initial statement of the lack of overlap between the vascularization features and the 
angiogenesis genes-signature in renal carcinomas, we observed an intersection on the functional level. Analysis of the networks 
built with identification names of vascularization and angiogenesis datasets showed an intersection, which included potent regula-
tors of vessel formation and growth. Conclusion: Analysis of networks may expose functional links, which may be missed by a direct 
identification names comparison.
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Systemic analysis of experimental data may pre-
vent erroneous conclusions when comparing different 
datasets. Systemic analysis may unveil overlapping 
patterns of genes, which can be missed by comparison 
of genes name by name. Vascularization and angio-
genesis are crucial cancer hallmarks [1, 2]. Recently 
there has been proposed a 14-genes vasculariza-
tion signature to separate good and poor prognosis 
survivors with renal cell carcinomas [3]. The authors 
concluded that there was no overlap with the previously 
reported 48-genes angiogenesis signature [3, 4], 
despite the fact that both signatures refer to angiogen-
esis. This conclusion may be the result of an identifica-
tion name for identification name comparison, which 
could miss functional connections. In a living system, 
different genes, transcripts as well as proteins work 
in a cooperative way to ensure functional responses [5, 
6]. Therefore, different genes and proteins may have 
a similar functional output. Such functional connec-
tions would be unveiled by a systemic analysis [5–8]. 
Systemic analysis focuses on affected functions rather 
than on identification names, and may lead to better 
clinically relevant conclusions.

MATERIALS AND METHODS
The lists of the 14-genes and the 48-genes sig-

natures were used to build networks using the Cyto-
scape tool (version 3.6.0; www.cytoscape.org)  [9]. 
Cytoscape allows building, visualization and analysis 
of networks in different formats. Flexibility of Cyto-
scape in managing of different datasets, options for 
retrieval of information from open source databases 
and for comparison of different networks prompted 
use of this tool in this study. UniProt database was used 
to import a network of nodes and edges built with the 
genes of the signatures. The 14-genes network con-

tained 178 nodes and 303 edges, and the 48-genes 
network contained 836 nodes and 1763 edges. These 
two networks were analyzed in Cytoscape for an in-
tersection. Intersection detected 62 nodes. Retrieved 
shared nodes were further searched in Cytoscape 
for regulators of angiogenesis, migration, vessel and 
endothelial cells.

RESULTS AND DISCUSSION
Re-examination of the published 14-genes vas-

cularization [3] and the 48-genes angiogenesis [4] 
signatures showed that there is an overlap between 
these signatures on the networks level (Figure). An in-
tersection of the corresponding networks retrieved 
62 shared nodes, with the use of the UniProt database. 
Moreover, 17 of these nodes are involved in regula-
tion of angiogenesis, migration and endothelial cell 
functions (the Figure and the Table). The network 
built with the list of 14 genes generated a network 
with 178 nodes and 303 edges. The network built 
with the list of the 48 genes generated a network with 
846 nodes and 1763 edges. The shared 62 nodes and 
the 17 genes of relevance to angiogenesis, migration 
and endothelial cells functions are listed in the Table.

It has to be noted that there are many systems 
biology tools for building and analyzing of networks. 
Here is reported an analysis with the use of Cytoscape, 
as this tool has a well-developed plugs-in (Apps) and 
allows easy retrieval of data from different databases. 
Other tools, such as FunCoup or String, may also 
be used, as long as they retrieve complete datasets. 
To evaluate a completeness of a dataset, the author 
did cross-checks with published reports. This cross-
check shows whether in the network would be retrieved 
interactions described earlier. It would indicate com-
prehensiveness of the coverage of interactions and 
whether the network represents available knowledge. 
If a tool does not retrieve such interactions, it would 
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Figure. Systemic analysis identifies links of the vascularization signature with the angiogenesis genes-signature, which were not 
detectable by a direct comparison. A direct comparison of the 14-genes and 48-genes signatures of vascularization and angioge
nesis did not show an intersection [3, 4]. The analysis of the corresponding networks detects 62 nodes common for the networks. 
There are nodes (in yellow) with relevance to regulation of angiogenesis, migration, vessel formation and endothelial cells. The 
nodes are annotated in the Table
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be advised to change settings of a search or even 
change a tool.

Accessibility and type of databases is another im-
portant point in selection of a tool for network analysis. 
Use of open source databases is advised, as proprie-
tary databases may have restrictions on access to their 
data. Open source databases are often specialized and 
may focus on certain types of molecules (DNA, RNA, 
proteins, metabolites, small molecules), interactions 
(direct, functional, correlations) or species (H.  sa-
piens, M. musculus, D. melanogaster, C. elegance, 
D. rerio, etc) [10]. Therefore, it is advised to ensure that 
the databases used for a network building represent 
types of data which are relevant to a study.

The detected with Cytoscape shared 62 nodes rep-
resent proteins with reported roles in tumorigenesis, 
angiogenesis and stroma formation. Examples are 
Her2, Her4, pp60c-src, stat3, p94-fer and Dapk3 ki-
nases (see Table). Thus, detection of shared nodes 
confirms that the vascularization includes regulators 
of angiogenesis.

Detection of the shared nodes emphasizes the power 
of systemic analysis in unveiling of hidden links. As the old 
saying goes “all roads lead to Rome”, the same is valid 
for cancer — many mechanisms may lead to the same 
result, i.e. tumor vascularization [1, 2]. These cancer-
roads may be traced with systems biology tools, which 
may identify common functional targets. The shared 
nodes represent well-known regulators of angiogenesis 
and vascularization of tumors. For example, Her2, Her4, 
STAT3, SIRT-1 and Src have been reported to regulate 
tumor angiogenesis [11–15]. It has to be noted that these 

shared nodes show functional links to well-known genes 
of relevance for development of renal carcinoma, e.g. 
VHL, VEGFR, HIF, mTOR [11–15]. Moreover, the shared 
nodes represent regulators of functions targeted in treat-
ment of renal carcinoma, such as anti-VEGFR treat-
ments [16]. This confirms an importance of the systemic 
analysis for further clinical applications, as it allows linking 
of diagnostic and prognostic marker signatures with 
pathways targeted in treatments of patients. Thus, the 
signatures of angiogenesis and vascularization do have 
a functional overlap, but to detect it, a network analysis 
has to be applied.

CONCLUSIONS
Network-based analysis may detect functional 

similarities between seemingly not intersecting data
sets. A network-based analysis is rooted in the sys-
temic character of tumorigenesis, and it unveils how 
different genes and proteins may regulate the same 
functions. This study may be used as a template for 
an analysis of intersections for other datasets.
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