Iapanensvne npozpamysannsn. Poznodineni cucmemu i mepesici

UDC 519.172

PARALLEL IMPLEMENTATION OF ITALIANO'S INCREMENTAL
ALGORITHM FOR DYNAMIC UPDATING THE TRANSITIVE CLOSU RE

A.S. Nepomniaschaya

Institute of Computational Mathematics and Matheca&Geophysics,
Siberian Division of Russian Academy of Sciences,
630090, Novosibirsk, Russia, pr. Lavrentieva, 6,
Fax: (383) 330 8783; Phone: (383) 330 8994.
E-mail: anep@ssd.sscc.ru

The transitive closure (or reachability) problemaimlirected graph consists in finding whether thera path between any two vertices. In
this paper, we first study the problem of paraigion of Italiano's algorithm for dynamic updaithe transitive closure after inserting a
new arc into the graph represented as a listasf. dro this end, by means of the data structuse fiiroposed in [9], Italiano's incremental
algorithm is represented in a natural way on a ofl@n associative parallel processor with veftimacessing (the STAR-machine).
Associative version of ltaliano's incremental aitjon is given as procedure InsertArc for the STABRefmne. We prove correctness of this
procedure and evaluate its time complexity. We atsopare implementations of Italiano's incremealgbrithm and its associative version
and present the main advantages of the associais®n.

IpoGieMa TpaH3UTHBHOTO 3aMbIKaHUs (MM JOCTHXKHMOCTH) B OPHEHTHPOBAHHOM Tpade COCTOUT B ONPEASICHHH TOr0, CYIECTBYET JIH
IMyTh MEXIy JIOOBIMH ABYMs BepIIMHAMU. B 1maHHOU cTaThe BIIEpBBIC HCCIEMYeTCS 3aJada MAapajUICIbHOH pealu3aluyl aaropHTMa
HWranssHo U AUHAMUYECKOH 00paOOTKH TPaH3UTUBHOTO 3aMBIKAHHS IOcIe Jo6aBiIeHus K rpady HOBOI mAyru mis ciydas, Koraa rpad
3ajaercst B Buje crucka ayr. C 9Toi Lenbio ¢ IOMOLIBIO CTPYKTYPBI JaHHBIX, BIIEPBBIE NPESAIOKEHHOM B padoTe [9], HHKpeMeHTAIbHBII
anropuT™ MTanbsHo ecTecTBEHHBIM 00pa3oM MPECTaBIIeTCS Ha MOAEIH aCCONHATHBHOIO MapalIelbHOrO IPOIEccopa ¢ BePTHKAIBHOM
obpabotkoit nanubx (STAR- Mammue). AcconnaTnBHasE BEPCHS HHKPEMEHTAIBHOTO aaroputMa UTanbsHO 3a1aeTcst B BUAC MPOLEAYPEI
InsertArc nns STAR- mamusbl. J[oka3biBaeTcs KOPPEKTHOCTh 3TOW NPOLEAYPhl U OLICHHBACTCS €€ BPEMEHHAs CIOXXHOCTb. Taxske
TIPOBOJUTCS CPABHEHHE BBIIOMHEHUS HHKPEMEHTANFHOIO alNropuT™Ma MTanbsHo U ero acCOIMaTUBHON BEPCHH U MPUBOISITCS OCHOBHBIC
MIPEHMYIIECTBA ACCOLHATUBHOI BEPCUH.

Introduction

In many applications, graphs are subject to discadtanges, such as insertions and deletions ofsedge
vertices. The goal of a dynamic algorithm is to atedefficiently the solution of a problem after dymic changes rather
than to recompute the entire graph from scratch &aw. An algorithm is calleflilly dynamicif the update operations
include both insertions and deletions of edgesestices, and it is callegartially dynamicif only one type of an
update, either insertions or deletions, is allowkgartially dynamic algorithm is calleédcrementalif it supports only
insertions, while it is calledecrementaif it supports only deletions.

The transitive closure problem in a directed gr&lwith n vertices andn edges consists in finding whether
there is a path between any two verticesGinin the fully dynamic transitive closure problendaected graph is
updated under an intermixed sequence of edge imsgredge deletions, and two types of queridoaeanquery for
verticesi andj that returngesif there is a path fromtoj andno otherwise, and pathquery that returns an actual path
fromi toj if it exists.

We focus on incremental algorithms for the tramsitclosure problem. The first incremental algorithvas
given by Ibaraki and Katoh [1]. Their algorithm €sO(n®) time over any sequence of insertions. For a sezpiefm
insertions, Italiano [2] and La Poutr'e and Leeu&rimproved this estimation td(mn), time, wherem is the number
of edges in the final graph. In [3], Yellin propdsan incremental algorithm for bounded degree gragtich requires
O(dnt) time for m insertions, wherel is the maximum outdegree of the final graph arfdis the number of edges in
the final transitive closure graph. All of thesga@ithms perform a Boolean query @(1) time. The incremental
algorithm of La Poutr'e and Leeuwen [3] does npipsut a path query but other above-mentioned alyos perform a
path query in time proportional to the length of ffath.

In [4], Frigioni et al. presented an experimentatly of a group of dynamic algorithms for the tiiéime closure.
In particular, the authors proposed a variant alidho's algorithms [2, 5], calledtal-Gen whose decremental part
applies to a general graph and any sequence ofdelgtons take®(m’) worst-case time. As shown in [4], in the case
of path queries, Italiano's incremental algorithmswpractically always the fastest among the dynaigorithms of
Yellin, La Poutr'e and Leeuwen, Ital-Gen, and admmized algorithm of Henzinger and King [6], whiler dense
directed acyclic graphs (DAGS) Italiano's decremakalgorithm was better than the other algorithRm. sparse DAGS,
the other algorithms including Ital-Gen are faskemn Italiano's decremental algorithm.

In [7], we proposed a data structure for implemmemntin a natural way Italiano's decremental algaritfor
updating the transitive closure on associativecfmtent addressable) parallel processors. Suclchitegture is mainly
oriented to solve non-numerical problems. We siteulbe run of associative parallel systems withie@r processing

© A.S. Nepomniaschaya, 2008
ISSN 1727-4907I1po6semu nporpamyBanns. 2008 Ne 2-3. Cneuianvnuii eunyck 97

Iapanensvne npozpamysanns. Poznodineni cucmemu i mepesici

by means of the STAR-machine [8]. Following Fo$83r time complexityof an algorithm is measured by counting all
elementary operations of the STAR-machine (its asiterps) performed in the worst case.

In this paper, we provide an associative versiontalfano's incremental algorithm for dynamic updgtthe
transitive closure. The associative version ofdtad's incremental algorithm is given as a procethsertArc, whose
correctness is proved. We show that on the STARRmac this procedure tak€3(nlog n) time per an insertion. We
also obtain that the associative algorithm perfoBuslean and path queries in the same time asi@b incremental
algorithm. Finally, we compare implementations t#liano's incremental algorithm and its associatreesion and
enumerate the main advantages of the associatis®ue

1. A model of associative parallel machine

Here, we propose a short description of the mddal.defined as an abstract STAR-machine of tHd[Btype
with the vertical data processing [8]. It consistshe following components:

e asequential control unit (CU), where programs sgalar constants are stored;
e an associative processing unit consisting single-bit processing elements (PES);
* a matrix memory for the associative processing unit

The CU passes an instruction to all PEs in one afritme. All active PEs execute it in parallel vehinactive
PEs do not perform it. An activation of a PE deseod the data.

Input binary data are loaded in the matrix memarthe form of two-dimensional tables in which edeita item
occupies an individual row and it is updated byedidated processing element. The rows are numiissedtop to
bottom and the columns — from left to right. Botloav and a column can be easily accessed. Somestaidy be
loaded in the matrix memory.

An associative processing unit is representet aartical registers each consistingpbits. Vertical registers
can be regarded as a one-column array. The bitrcwof the tabular data are stored in the registhish perform the
necessary Boolean operations.

Its run is described by means of the language SBAIRg an extension of Pascal. Let us briefly cassitie
STAR constructions needed for the paper. To siraula¢ data processing in the matrix memory, wedade types
word, slice, andtable. Constants for the typetice andword are represented as a sequence of symbols ofttf@, 4&
enclosed within single quotation marks. The typse andword are used for the bit column access and the bit row
access, respectively, and the typble is used for defining the tabular data. Assume #mgtvariable of the typslice
consists op components which belong to {0, 1}. For simplicigf us callslice any variable of the typsglice

Now we present some elementary operations anddicpte for slices.

Let X, Y be variables of the typsice andi be a variable of the typeteger. We use the following operations:

SET(Y) sets all components of to '1';

CLR(Y) sets all components &fto '0";

Y(i) selects thé-th component oY;

FND(Y) returns the ordinal numbenof the first (or the uppermost) '1' 6f

STEPY) returns the same result as FNPand then resets the first found '1' to '0".

It should be noted that operations SEJT§nd CLRY) are used as a separate statement. The operbiting)
and STEPY) are used as the right part of the assignmergrsgit while the operatior{i) can be used both in the left
part and in the right part of the assignment statgm

In the usual way, we introduce the predicate SO¥IBOd the bitwise Boolean operatioXsandY, X or Y, not
Y, X xor.

Note that the predicate SOMB(and all operations for the tyéiceare also performed for the typerd.

We will also employ the bitwise Boolean operatitvegween a variabley of the typeword and a variabléy of
the typeslice,where the number of bits w coincides with the number of bits Ya

Let T be a variable of the tygable. We employ the following elementary operations:

ROW(,T) returns the-th row of the matrixT;
COL(j,T) returns its-th column.

Remark 1.
Note that the STAR statements are defined in theesmanner as for |Pascal. We will use them later fo
presenting our procedures.

2. Preliminaries

Let us present some notions being used in the paper

Let G = (V, E) be adirected graph(digraph) with the set of vertic&& {1, 2,nt and the set of directed edges
(arcs)E. We assume thg¥/| = n,and|E| = m.

An arce fromi toj is denoted bye = (i, j), where the vertekis theheadof e (or father and the vertex s its
tail (or son.

98

Iapanensvne npozpamysannsn. Poznodineni cucmemu i mepesici

A sequence of aras, &, ..., & is apathfrom the head o& to the tail ofe if the tail ofg is the head o4 ., for
1<i< k1.

A vertexv is reachablefrom u if there is a directed path fromto v (u-v path). In such a caseis called an
ancestorof v andv is called adlescendantf u.

Thetransitive closureof a directed grapt = (V, E) is a directed grap8* = (V, E*) such that an arau(v) 0 E*
if and only if the vertex is reachable from in G.

A spanning tre€T, is a connected acyclic subgraph®fwith the root vertexu that cointains all descendants
of u.

3. ltaliano’s incremental algorithm for updating the transitive closure

We first recall the data structure proposed byidtal [2] to support the efficient insertion of aiosa digraph
and the Boolean and the path queries.

For every vertexu 00 V, Desgu] is a spanning tree with the roat The transitive closure of a grajh is
represented as a set of Aksqu]. In addition, an < n matrix of pointerdndexis maintained which allows fast access
to vertices in these trees. This matrix is defiasdollows. Its every componelmtdeXi, j] points to the vertekin the
spanning tre®esdi] if j O Desdi] and it is a\ull pointer otherwise.

Now we explain the main idea of Italiano's incretaéalgorithm.

Let a new arg/ = (i, j) be added to a digragh. The data structure is updated only if there isprevious path
from itoj. Insertion of an arc may create new paths fromaarmogestor of the vertex to any descendant of the verfex
if there was no previous path framo j in G. In this case, the spanning ti@esdr] is maintained taking into account
the descendants pand ther-th row of the matrixndex Namely, the common vertices in the tr@esdr] and Desgj]
are deleted from the copy Desdj]. Then the pruned copy @fesdj] is linked to the vertekin Desdr].

A Boolean query for verticeisand] is performed inO(1) time by checkindgndeXi, j]. If every vertex in each
spanning tree is provided with an additional paintethe parent, then a path query is carried guhbans of a bottom-
up traversal iDesdi] from| to the rooi and it take®(l) time, wherd is the length of - j path.

4. Associative version of Italiano's incremental gorithm

In this section, a graph is represented as asgmtiat matriced_eft and Right where every arcu(v) occupies
an individual row, and O Leftandv [0 Right.

To design the associative version of Italiano'santental algorithm, we use the following data stres first
proposed in [7]:

e an association of matricekeft and Rightand a global slic&, where positions of arcs belonging@oare
marked with '1';

< an nx logn matrixCode whose every-th row saves the binary representation of theewert

e an mx n Boolean matrixirans whose every-th column saves by '1' the positions of arcs itgilog to the
spanning tred;;

e annxn Boolean matridNodes whose every-th column saves by '1' the positions of vertited belong to
the spanning tre€.

Let us enumerate the following two properties ofrfnasNodesandTrans

Fact 1 In everyi-th row of the matrixNodes the roots of spanning trees that include théexer are marked
with '1'.

Fact 2 In everyi-th row of the matrixirans the roots of all spanning trees that includeateewritten in the-th
row of the graph representation are marked with '1'

Let an arci(j) be added to the grajih Let a spanning tre€ include the vertexand not include the vertgx
We first present the associative parallel algorithat updates the spanning tigeafter adding the arg,(j) to the graph
G. It performs the following steps.

Stepl. By means of a slice, sd@y save positions of vertices from the spanning Tiebat do not belong td,.
Then add these vertices to theh column of the matridodes.

Step2. For every vertep # j selected by '1' in the slicg& determine the position of an arc frdinentering this
vertex and include this arc inf.

On the STAR-machine, this algorithm is implemerdsd procedur€hangeTree
Now we propose the associative parallel algorithat updates the graph after adding the arp.(It runs as
follows.

Stepl. Include the position of the ari |) into the association of matricesft andRight

Step2. Determine the roots of trees that include theexda and do not include the vertg¢xLet such roots be
marked with '1" in a row, say.

Step3. Include the position of the arngj) into those spanning trees of the maffranswhose roots correspond
to '1"in the rowww.

99

Iapanensvne npozpamysanns. Poznodineni cucmemu i mepesici

Step4. Whilew does not consist of zeros, save the positiohits leftmost bit '1'. Then set '0" in th¢h bit of w.
Further update the spanning tfeéy means of the associative algorithm proposedeabo
On the STAR-machine, this algorithm is implemerdsdh procedurisertArc .

5. Implementation of the associative version of l{&ano's incremental algorithm on the
STAR-machine

In this section, we present the proced@langeTreeandInsertArc and prove their correctness.

We first consider the procedufghangeTreethat maintains a spanning tree after insertingea arc to the
graph.

Now we propose the following procedure.

procedure ChangeTree(Right: table; Code: tablentgger; var Nodes: table;
var Trans: table);
/* The spanning tree, Twill be updated after inserting the arc (i,j) intee graph. */
var X1,X2,Y: slice(Left);
Z7,71,72,73: slice(Nodes);
g,p: integer;
v: word(Code);
1. Begin Z1:= COL(r,Nodes); Z2:= COL(j,Nodes);
2. Z3:=Z1 and Z2;
I* The slice Z3 saves the vertices belonging tosih@nning tree [Tand the spanning treg. T/
3. Z:=Z2 and (not Z3);
* The slice Z saves vertices fromthat will be included into the spanning tree*T
4. Z1:=71or Z,
5 COL(r,Nodes):= 71;
[* The new vertices for the spanning treeale added to the matrix Nodes. */
6. Z(j):="0"
/* The vertex j is deleted from the slice Z. */
7. Y:= COL(r,Trans);
[* The slice Y saves positions of arcs frop*T
8. X1:= COL(j,Trans);
* The slice X1 saves positions of arcs from*T
9. while SOME(Z) do

10. begin q:=STEP(2); v:= ROW(q,Code);
11. MATCH(Right,X1,v,X2);

12. p:= FND(X2);

13. Y(p):="1";

/* We include into the slice Y the arc from thetpgosition of the graph representation
that enters the vertex g. */

14. end;
15. COL(r,Trans):=Y;
16. End;

Proposition 1 Let a directed graph G be given as associatiamaifices Left and Right along with the global
slice X, and its transitive closure be given asriarix Trans. Let matrices Code and Nodes begilsm. Let an arc
(i,j) be added to the spanning tree Met Z be a slice that saves by '1' vertices ftbm spanning tree; That do not
belong to T. Then after performing the procedure ChangeTtae,vertices from the slice Z are added to the r-th
column of the matrix Nodes and positions of arcsrT; entering vertices from Z are added to the r-thucwl of the
matrix Trans.

Proof (Sketch) We prove this by contradiction. Let all condittoof proposition 1 be performed. However,
there is such a vertexd T, thats O T, and after execution of the proced@bangeTreewe obtain the following two
properties:

1) the spanning tre& does not include the vertaxthat is, thes-th bit of ther-th column in the matridNodesis
equal to '0';

2) the arc, entering the vertexdoes not belong td;, that is, the position of the arc frofpentering the vertex
is marked with '0' in the-th column of the matriXrans

We will prove that these properties contradictxeaition of the procedu@hangeTree

Let us assume that the first property is correcte ©@an immediately check that after performingdide2, the
sliceZ3 saves by '1' the vertices that belongd;tandT;. Sinces L1 T,, we obtain thaZ3(s) ='0'". After performing line
3, the vertices fror; not belonging tdl, will be marked with '1' in the slicg. Since by the assumptiari] T; ands O
T,, we obtain thaZ(s) = '1". Therefore after fulfilling line 4, we obtain thzZi(s) ='1'. Hence after performing line 5,
the s-th bit in ther-th column of the matridNodesis equal to '1". Since the execution of lines 6dbés not change the

100

Iapanensvne npozpamysannsn. Poznodineni cucmemu i mepesici

matrix Nodes we obtain the contradiction with the assumptitvatts [1 T, after execution of the procedure
ChangeTree

Now we assume that the second property is corfdtr performing lines 7-8, the slicé saves the spanning
tree T, and the sliceX1 saves the spanning trég Let us analyze the execution of the cycle in Bnéor g=s. After
performing lines 10-12, we determine the positfionf an arc, say, entering the vertexin T;. Since every vertex in a
tree has a unique father, we mark the positiopwith '1' in the slice¥. Obviously, after fulfilling line 15, the position
of y entering the vertegin T; will be marked with '1' in the spanning trée It contradicts to the second property.

This completes the proof.

If an arc {, j) is inserted into the graph, we maintain all spagrtrees that include the vertéxand do not
include the vertex

Now, we provide the following procedure.

procedure InsertArc(Code: table; i, j: integer; laft, Right: table; var X: slice(Left);
var Trance: table; var Nodes: table);
[* Here, the arc (i,j) will be included into thevgin graph. */
var w,wl,w2: word(Nodes);
v1,v2: word(Code);
r.k: integer;
1. Begin v1:=ROW(i,Code); v2:= ROW(j,Code);
2. k:=FND(notX); X(k):="1"
3. ROW(K,Left):=vl; ROW(k,Right):= v2;
/* The arc (i,j) is written in the k-th row ofatrices Left and Right. */
4. wl1l:=ROW(i,Nodes); w2:= ROW(j,Nodes);
5. w:=wland(notw2);
/* The word w saves by '1' the roots of trdest will be changed after inserting
the arc (i,j) into the graph. */
6. ROW(k,Trans):=w;
/* The arc (i,j) is simultaneously included intd siees marked with ‘1" in w. */
7. while SOME(w) do

8. begin r:= STEP(w);

9. ChangeTree(Right,Code,r,j,Nodes, Trans);
10. end;

11.End;

Proposition 2. Let a directed graph G be given as associatianatrices Left and Right along with the global
slice X, and its transitive closure be given asrfarix Trans. Let matrices Code and Nodes begilsm. Let an arg
=(i,j) be inserted into the graph G. Then, afterfgening the procedure InsertArc, the positiontod arcy is marked
with '"1" in the slice X. Moreover, every spanninge that includes the vertex i and does not ireltiee vertex j is
updated as shown in Proposition 1.

Proof (Sketch) We prove this by induction on the number of spag treed in the matrixTransbeing changed
after insertion of the arginto the graplG.

Basisis checked fol = 1. After performing lines 1 — 3, we determine fhasition of the row in the graph
representation, whesewill be written, and mark it with '1" in the slieé

In view of Fact 1, after fulfilling lines 4-5, thew w saves the roots of spanning trees that will bexged after
includingy in G. In view of Fact 2, after performing line 6, thee g is simultaneously included into all spanning trees
whose roots are marked with '1'wn Sincel =1, the cycle in line 7 performs only once. Here, fivst determine the
rootr of a spanning tree that will be updated (line 8)c8 the position of the afchas been included intG, we can
apply the procedur€hangeTree After its execution, the updated spanning Tewill be written in ther-th column of
the matrixTransand the updated set of its vertices will be wnitite ther-th column of the matrizNodes

Step of induction Let the assertion be true foe 1 spanning trees being changed after inseftimgo G. We
will prove it for I+1 spanning trees. By analogy with the basis gaforming lines 1 — 6, the ar¢, {) has been
included into the graph representation, its pasitias been marked with '1' in the slighe roww saves roots of trees
being changed after insertingnto G, and the arg has been included into all spanning trees whosts mare marked
with 1" inw. By the inductive assumption, after maintaining finstl spanning trees, whose roots are marked with '1' in
w, the changed trees will be written in the corresponding colunmighe matrixTrans and the changed sets of their
vertices will be written in the corresponding cohsmof the matrixNodes Since there is a single bit '1' W we
determine the root of the last{ 1)-th spanning tree and maintain it by mean$iefiirocedur€hangeTree

This completes the proof.

Now we evaluate time complexity of the procedinsertArc.

To this end, we have to determine the total nundfevertices being updated after inserting an ar¢h
transitive closure. In view of performing the prdoee ChangeTree at most all vertices of a subtree rooted at #ile t
of the inserted arc are updated. Therefore theepiareInsertArc takesO(nlog n) time per an insertion, where the

101

Iapanensvne npozpamysanns. Poznodineni cucmemu i mepesici

factor log n appears due to the use of the basic procelA&@CH . One can check that space complexity of the
procedurdnsertArc is O(mn) bits.

On the STAR-machine, a Boolean query for verticasdj is carried out irD(1) time by checking thieth bit of
thei-th column in the matriNodes A path query for verticeisand] is performed by means of a bottom-up traversal in
the spanning tre&; from the verteX to the rooti using the procedum@ATCH . It takesO(llogn) time, wherd is the
length of the path.

Let us compare two implementations.

« ltaliano's incremental algorithm checks all veriée each spanning tree to determine whether liidtes the
vertexi and does not include the vertexThe associative version simultaneously determthesroots of trees that
include the vertexand do not include the vertgx

» To determine the vertices from the spanning ffe¢hat should be added f, Italiano's incremental
algorithm checks whether any vertex frdirbelongs toT,. The associative version simultaneously determihese
vertices fromT; that should be added 1.

» To perform a path query, for every verfei every spanning tree, Italiano's incrementabatgm uses an
additional pointer to its parent. The associatieesion determines the parent of any vertex by medirthe basic
procedureMATCH .

» To link the pruned copy dbesj] and the vertex in DesKr], Italiano's incremental algorithm updates the
spanning tre®esKr] and the matrixndex The associative version determines the positfcang arc from the pruned
copy ofTj in the graph representation and includes it intortth column of the matriXrans Moreover, the positions
of the new vertices are included into the p-th ooiwf the matriXNodes

Conclusions

We have proposed a natural and efficient implemimtaof Italiano's incremental algorithm for dynami
updating the transitive closure on the STAR-maclhiaging no less tham PEs. The associative version of Italiano's
incremental algorithm is represented as procethgertArc whose correctness is proved. We have obtainedhisat
procedure take®(nlogn) time per an insertion assuming that each micpostehe STAR-machine takes one unit of
time. Space complexity of this procedur@®ignn) bits.

We have also compared implementations of Italiansemental algorithm and its associative versaoil
enumerated the main advantages of the associageon.

We are planning to design associative versionsotif baliano's algorithms for dynamic updating thensitive
closure for the case when the given graph is repted as an adjacency matrix.

1. Ibaraki T., Katoh NOn—line computation of transitive closure forgira // Information Processing Letters. — 1983. 46/.— P. 95-97.

2. G. F. Italiana Amortized efficiency of a path retrieval dateausture // Theoretical Computer Science. — 1986. 48/(2-3). — P. 273-281.

3. La Poutr'e J.A., van Leeuwen Nlaintenance of transitive closure and transitieduction of graphs // Proc. Workshop on Graph—Téteor
Conceps in Computer Science. Lecture Notes in Céeni3cience, Springer—Verlag, Berlin. — 1988. —\3d4. — P. 106-120.

4. Frigioni D., Miller T, Nanni U. i ar An experimental study of dynamic algorithms faredted graphs // Proc. of the European Symp. on
Algorithms, Algorithms—ESA'98, Lecture Notes in Qauter Science. — 1998. — V. 1461. — P. 368-380.

5. ltaliano G.F.Finding paths and deleting edges in directed acgchphs // Information Processing Letters. — 1988o0l. 28. — P. 5-11.

6. Henzinger M.R., King VFully dynamic biconnectivity and transitive closu/ Proc. 36th IEEE Symposium on Foundations om@uter
Science (FOCS'95). — 1995. — P. 664—672.

7. Nepomniaschaya A.Associative version of Italiano's decrementabetgm for the transitive closure problem // Pro€.9—th Intern. Conf.
PaCT 2007, Pereslavi-Zalessky, Russia, Septemler2B07. Lecture Notes in Computer Science, Sprifgerlag, Berlin. — 2007. — Vol.
4671. — P. 442-452.

8. Nepomniaschaya A.3.anguage STAR for associative and parallel conmtmrtawith vertical data processing // Proc. of tiiernational
Conference "Parallel Computing Technologies". /8cientific, Singapure. —1991. — P. 258 — 265.

9. Foster C.C Content Addressable Parallel Processors. — Nawk: Xan Nostrand Reinhold Company, 1976.

102

