УДК 621.315.14 : 621.396.96

ЭЛЕКТРОТЕРМИЧЕСКАЯ СТОЙКОСТЬ ИЗОЛИРОВАННЫХ ПРОВОДОВ И КАБЕЛЕЙ К ВОЗДЕЙСТВИЮ БОЛЬШИХ ИМПУЛЬСНЫХ ТОКОВ МОЛНИИ

Баранов М.И., д.т.н. НИПКИ «Молния» Национального технического университета «Харьковский политехнический институт» Украина, 61013, г. Харьков, ул. Шевченко, 47, НИПКИ «Молния» НТУ «ХПИ» Тел. (0572) 40-08-41, Факс (0572) 40-01-33, E-mail: nipkimolniya@kpi.kharkov.ua

Приведено результати досліджень з перевірки при прямому ударі блискавки (ПУБ) електротермічної стійкості ізольованих проводів і кабелів, що знаходяться під дією першої компоненти імпульсного струму блискавки з часовими параметрами 2/50 мкс. Визначено мінімально допустимі та критичні перерізи мідних та алюмінієвих жил (екранів) проводів (кабелів) з полівінілхлоридною, резиновою та поліетиленовою ізоляцією з умов їх електротермічної стійкости і електричного вибуху при ПУБ в залежності від амплитуди імпульсного струму блискавки 2/50 мкс. Отримано середні по перерізу жил (екранів) досліджуємих проводів (кабелів) чисельні значення гранично допустимої та критичної щільностей імпульсного струму блискавки 2/50 мкс.

Приведены результаты исследований по проверке при прямом ударе молнии (ПУМ) электротермической стойкости изолированных проводов и кабелей, испытывающих воздействие первой компоненты импульсного тока молнии с временными параметрами 2/50 мкс. Определены минимально допустимые и критические сечения для алюминиевых и медных жил (экранов) проводов (кабелей) с поливинилхлоридной, резиновой и полиэтиленовой изоляцией по условиям их электротермической стойкости и электрического взрыва при ПУМ в зависимости от амплитуды импульсного тока молнии 2/50 мкс. Получены усредненные по сечению жил (экранов) исследуемых проводов (кабелей) численные значения предельно допустимой и критической плотностей импульсного тока молнии 2/50 мкс.

ВВЕДЕНИЕ

При прямом ударе молнии (ПУМ) в технические объекты, размещенные в околоземной атмосфере, на земле или под землей, в последних возникает комплекс сложных электромагнитных, электротермических и электромеханических процессов, приводящих, как правило, к дестабилизации (сбою) в работе их основных устройств и систем жизнеобеспечения или к необратимым явлениям, вызывающим выход из строя объектов в целом с катастрофическими последствиями. Это прежде всего относится к летательным аппаратам (ЛА) и силовым электроэнергетическим объектам (ЭЭО) [1,2,5,7,18]. Для ЛА и ЭЭО и поныне актуальной остается проблема повышения степени их молниезащиты, для решения которой необходима как разработка и создание усовершенствованных защитных устройств от ПУМ, так и уточненной нормативно-технической документации, направленных в комплексе на обеспечение безопасности полетов ЛА, работы ЭЭО и обслуживающего персонала, предохранение объектов авиационно-космической техники и электроэнергетики от возможных возгораний, взрывов и разрушений, сопровождающих обычно ПУМ. При этом одной из важных задач, решаемой в рамках указанной проблемы, является проверка проводов, кабелей и шин ответственных электрических цепей радио- и электротехнического оборудования защищаемых от ПУМ объектов на электротермическую стойкость к воздействию больших импульсных токов (БИТ) молнии, характеризующихся амплитудами в десятки и сотни килоампер и длительностями в десятки (сотни) микросекунд [4,7,17,18]. Как известно, под электротермической стойкостью изолированных проводов и кабелей при ПУМ понимается способность последних противостоять действию температуры нагрева их проводниковых и изоляционных материалов, вызванной воздействием на них импульсного тока

молнии, без нарушения работоспособного состояния кабельно-проводниковой продукции в целом [3,4]. Заметим, что аналогичную задачу требуется решать при лабораторных и натурных испытаниях ЛА и ЭЭО на молниестойкость с помощью высоковольтных электрофизических установок (ВЭФУ), моделирующих прямые эффекты молнии [5,7,8], в случае когда генераторы импульсных напряжений и токов ВЭФУ с емкостными накопителями энергии (ЕНЭ) подключаются к испытываемым объектам изолированными проводами или кабелями. Знание электротермической стойкости проводов (кабелей) к импульсным сильноточным воздействиям при ПУМ позволяет на стадии разработки ЛА или ЭЭО правильно выбирать кабельно-проводниковую продукцию, устанавливаемую в опасные электрические цепи защищаемых объектов и повышать надежность их функционирования в условиях электрически активной земной атмосферы.

Известные расчетные методики, приведенные в [8,10,12], для проверки на электротермическую стойкость электрических аппаратов и проводников к аварийным токам короткого замыкания (КЗ) промышленной частоты 50 Гц и токам молнии позволяют выполнять только грубую оценку рассматриваемой стойкости проводов (кабелей) к ПУМ, при которой их импульсный нагрев оказывается существенно заниженным и не отражающим реального теплового состояния проводника и его изоляции при ПУМ [4].

Целью данной статьи является разработка уточненной инженерной методики для оценки при ПУМ электротермической стойкости и выбора минимально допустимых и критических сечений одно– и многожильных проводов (кабелей) с медными и алюминиевыми жилами (экранами) и поливинилхлоридной (ПВХ), резиновой (Р) и полиэтиленовой (ПЭ) изоляцией, испытывающих воздействие импульсного тока молнии.

ПОСТАНОВКА ЗАДАЧИ И ПРИНЯТЫЕ ДОПУЩЕНИЯ

Рассмотрим прямолинейный провод (кабель) с твердой изоляцией, по круглой немагнитной металлической жиле (экрану) которого в продольном направлении протекает импульсный ток молнии $i_L(t)$, приближенно описываемый во времени t следующим выражением:

$$i_L(t) = \beta_L I_m \sum_{k=1}^{2} (-1)^{k+1} \cdot \exp(-\alpha_k t),$$
 (1)

где I_m - амплитуда первой компоненты импульса тока молнии; α_k - коэффициенты формы первой компоненты импульса тока молнии ($\alpha_1 \approx 0.76 / \tau_p$; $\alpha_2 \approx 2.37 / \tau_f$); τ_f , τ_p - соответственно длительность фронта и длительность первой компоненты импульса тока молнии, определяемые между уровнями 0,1-0,9 и на уровне 0,5 от его амплитуды;

 $\beta_L = \left[(\alpha_1 / \alpha_2)^{\alpha_1 / (\alpha_2 - \alpha_1)} - (\alpha_1 / \alpha_2)^{\alpha_2 / (\alpha_2 - \alpha_1)} \right]^{-1}$ нормирующий коэффициент.

Следует отметить, что согласно результатам наземных натурных испытаний ЛА на молниестойкость [5] в соединительных электрических цепях их бортового оборудования наводимые импульсы напряжения (тока) имеют сложную форму, в которой можно выделить три основные составляющие: повторяющую по форме первую компоненту воздействующего на металлическую обшивку ЛА импульса тока молнии вида (1), ее производную и высокочастотную. Кроме того, результаты расчетов наведенных импульсных напряжений и токов в экранированных коаксиальных кабелях связи при ПУМ в их металлический экран, выполненные с учетом влияния нестационарного поверхностного эффекта в экране, свидетельствуют о том, что протекающие в этом случае по жиле и экрану, нагруженных на обоих концах кабеля на свое волновое сопротивление, импульсные токи практически повторяют апериодическую форму тока молнии [17]. В связи с этим использование в дальнейших расчетах исходного выражения (1) представляется достаточно обоснованным и более того необходимым на этапе разработки практических рекомендаций по экспертной оценке при ПУМ электротермической стойкости и дальнейшему выбору на стадии проектирования ЛА и ЭЭО сечений изолированных проводов (кабелей), предназначенных для работы в их ответственных сетях и схемах испытаний ЛА и ЭЭО на молниестойкость. Заметим, что в настоящее время в странах СНГ при имитации в лабораторных условиях ПУМ и проведении испытаний радио- и электротехнического оборудования ЛА и ЭЭО на молниестойкость первая компонента импульсного тока молнии характеризуется следующими нормированными амплитудновременными параметрами (АВП) [7,8]: I_m=200кА; $τ_f / τ_p = 2/50$ мкс; $α_1 = 1,529 \cdot 10^4 c^{-1}$; $α_2 = 1,188 \cdot 10^6 c^{-1}$; $\beta_I = 1,072.$

Примем, что для удельной электропроводимости γ_i материала жилы (*i*=1) или экрана (*i*=2) провода (кабеля) справедлива следующая аналитическая зависимость [6]:

$$\gamma_i = \gamma_{0i} / (1 + \theta_i^*) , \qquad (2)$$

где γ_{0i} - удельная электропроводимость материала жилы (экрана) провода (кабеля) до воздействия на него ПУМ при температуре окружающей среды θ_0 , равной $\theta_0 = 20^{0}$ С (для алюминия $\gamma_{0i} = 3,61 \cdot 10^{7}$ См/м; для меди $\gamma_{0i} = 5,81 \cdot 10^{7}$ См/м [6]); $\theta_i^* = \theta_i / \theta_{bi}$; $\theta_i = \theta_{ti} - \theta_0$ – превышение температуры материала жи-

лы (экрана) провода (кабеля); θ_{ti} - температура материала жилы (экрана) провода (кабеля) после воздействия на него ПУМ; $\theta_{bi} = 1/C_{0i} \cdot \beta_{0i}$ - базисное превышение температуры материала жилы (экрана) провода (кабеля) (для алюминия $\theta_{bi} = 172, 4^{0}$ С; для меди $\theta_{bi} = 194, 2^{\circ} C [6]); C_{0i} = d \cdot \overline{C_{0i}}$ - удельная теплоемкость, отнесенная к единице объема материала жилы (экра-(для на) провода (кабеля) алюминия $C_{0i} = 2,7 \cdot 10^{6}$ Дж/м^{3.0}С; для меди $C_{0i} = 3,92 \cdot 10^{6}$ Дж/м^{3.0}С [6]); d- плотность материала жилы (экрана) провода (кабеля); С_{0i} - удельная теплоемкость, отнесенная к единице массы материала жилы (экрана) провода (кабеля); $\beta_{0i} = \alpha_{0i} / C_{0i}$ - тепловой коэффициент удельной электропроводимости материала жилы (экрана) провода (кабеля) (для алюминия $\beta_{0i} = 2,14 \cdot 10^{-9} \text{ м}^3 / \text{Дж};$ для меди $\beta_{0i} = 1,31 \cdot 10^{-9} \text{м}^3$ /Дж [6]); α_{0i} - температурный коэффициент удельной электропроводимости материала жилы (экрана) провода (кабеля).

Отметим, что согласно экспериментальным данным в интервале от 0⁰С до температуры плавления θ_{im} материала жилы (экрана) провода (кабеля) соотношение (2) аппроксимирует температурную зависимость удельной электропроводимости γ_i для алюминия и меди с погрешностью не более 5% [6]. Учитывая практически адиабатический характер протекающих при ПУМ в материале жилы (экрана) провода (кабеля) ЛА и ЭЭО электротермических процессов, влиянием теплоотдачи с поверхностей жилы (экрана) и их твердой изоляции и теплопроводности их проводниковых и изоляционных материалов на импульсный нагрев исследуемых проводов (кабелей) пренебрегаем [3,4].

КРИТЕРИЙ ЭЛЕКТРОТЕРМИЧЕСКОЙ СТОЙКОСТИ ПРИ ПУМ ИЗОЛИРОВАННЫХ ПРОВОДОВ И КАБЕЛЕЙ

Считаем, что при ПУМ электротермическая стойкость рассматриваемых проводов (кабелей) лимитируется их предельно допустимым кратковременным превышением температуры θ_{ik} , зависящим от степени снижения механической прочности материала жилы (экрана) и тепловых условий работы изоляции проводов (кабелей) при импульсном кратковременном нагреве последних током молнии. Принимая, что значение θ_{ik} соответствует известной предельно

допустимой кратковременной температуре θ_{ikd} изолированных проводов (кабелей) при их кратковременном нагреве током КЗ промышленной частоты 50 Гц [12] в безразмерном виде получаем:

$$\theta_{ik}^* = \theta_{ikd}^* - \theta_0^*, \qquad (3)$$

где $\theta_{ik}^* = \theta_{ik} / \theta_{bi}$; $\theta_{ikd}^* = \theta_{ikd} / \theta_{bi}$; $\theta_0^* = \theta_0 / \theta_{bi}$.

Согласно [12] значение предельно допустимой кратковременной температуры θ_{ikd} для изолированных проводов (кабелей) с медными и алюминиевыми жилами (экранами) и ПВХ и Р изоляцией, широко используемых в низко- и высоковольтных бортовых электрических цепях (БЭЦ) ЛА и силовых электрических цепях (СЭЦ) ЭЭО [1,11], составляет величину $\theta_{ikd} = 150^{\circ}$ С. Тогда из (3) при $\theta_0 = 20^0 C$ следует, что для указанных выше проводов (кабелей) с медными жилами $\theta_{ik}^* = 0,67,$ а с алюминиевыми – $\theta_{ik}^* = 0,75$. Для изолированных проводов (кабелей) с медными и алюминиевыми жилами (экранами) и ПЭ изоляцией (θ_{ikd} =120⁰C), широко применяемых в сильноточных разрядных цепях (СРЦ) ВЭФУ, приемно-передающих трактах антеннофидерных устройств ЛА, кабельных линиях электропередачи (КЛЭП) и связи (КЛС) ЭЭО [8,11], нормированные значения предельно допустимых кратковременных превышений температуры θ_{ik}^* при $\theta_0 = 20^{\circ}$ С составляют соответственно $\theta_{ik}^* = 0,51$ и 0,58.

В качестве критерия, определяющего электротермическую стойкость изолированных проводов (кабелей) ЛА и ЭЭО к воздействию ПУМ, выбираем следующее условие:

$$\theta_i^* \le \theta_{ik}^* \,. \tag{4}$$

Из (4) следует, что при известных значениях θ_{ik}^* проверка изолированных проводов (кабелей) на электротермическую стойкость к воздействию БИТ молнии сводится к расчету безразмерного превышения температуры θ_i^* материала их жил (экранов) за время действия ПУМ.

В [4] было показано, что при ПУМ задача о нахождении решения линейного неоднородного дифференциального уравнения для нормированного превышения температуры θ_i^* в материале круглого сплошного (трубчатого) металлического провода с переменной удельной электропроводимостью $\gamma_i(\theta_i)$ при начальном условии вида $\theta_i^*(0)=0$ представляет собой задачу Коши, решение которой применительно к рассматриваемой расчетной электротепловой модели может быть записано в следующем виде:

$$\theta_{i}^{*} = \exp\left(\frac{2J_{ci}}{\mu_{0}\gamma_{0i}h_{ci}^{2}}\right) - 1, \qquad (5)$$

где $J_{ci} = \int_{0}^{\tau_p} \delta_{zi}^2(r,t) dt$ – интеграл тока при ПУМ для жилы (экрана) изолированного провода (кабеля);

 $\delta_{zi}(r,t)$ – плотность аксиального тока молнии в жиле (экране) провода (кабеля); *r*– текущий радиус жилы (экрана) провода (кабеля); $h_{ci} = (2/\mu_0\beta_{0i})^{0.5}$ – характеристическая напряженность импульсного азимутального магнитного поля тока молнии (для алюминия $h_{ci} = 2,467 \cdot 10^7 \text{A/m}$; для меди $h_{ci} = 3,422 \cdot 10^7 \text{A/m}$ [6]); $\mu_0 = 4\pi \cdot 10^{-7} \Gamma$ н/м – магнитная постоянная.

Для сравнения с вышеуказанным решением (5) приведем решение одномерного теплового уравнения (6) из [4] при постоянной удельной электропроводимости $\gamma_i = \gamma_{0i}$ материала жилы (экрана) изолированного провода (кабеля), испытывающего воздействие ПУМ:

$$\theta_i^* = \frac{2J_{ci}}{\mu_0 \gamma_{0i} h_{ci}^2} \,. \tag{6}$$

На рис.1 приведены нормированные зависимости превышения поверхностной температуры θ_i^* для изолированных проводов (кабелей) с медными (кривые 2,4) и алюминиевыми (кривые 1,3) сплошными жилами (экранами) от интеграла тока молнии J_{ci}, рассчитанные соответственно по формулам (5) и (6). Пунктирными прямыми 5 и 6 на рис.1 изображены безразмерные значения предельно допустимых кратковременных превышений поверхностной температуры $\theta_{i}^{*} = \theta_{ik}^{*}$ для медных жил (экранов) проводов и кабелей с ПВХ, Р и ПЭ изоляцией соответственно, а пунктирными прямыми 7 и 8- безразмерные температуры $\theta_{im}^* = (\theta_{im} - \theta_0)/\theta_{bi}$ плавления для алюминия $(\theta_{im} = 658^{\circ}C)$ и меди $(\theta_{im} = 1083^{\circ}C)$ соответственно [6]. Из принятой зависимости (2) для γ_i от θ_i^* следует, что при достижении точки плавления для алюминиевой жилы (экрана) провода или кабеля будет выполняться равенство $\gamma_{0i} / \gamma_i = 4,7,$ а для медной – $\gamma_{0i} / \gamma_i = 6,47$. Пунктирные прямые 9 и 10 на рис.1 отражают предельные значения интеграла тока $J_{ci} = J_{si}$, при которых начинаются фазовые переходы в материалах жилы (экрана) провода (кабеля). Отметим, что для алюминия $J_{si}=0,32\cdot10^{17}\text{A}^2\cdot\text{с}\cdot\text{м}^{-4}$, а для меди $J_{si}=0.89\cdot10^{17}\text{A}^2\cdot\text{c}\cdot\text{m}^{-4}$ [6].

Из кривых 1-4 на рис.1 видно, что расчеты импульсного нагрева при ПУМ жил (экранов) изолиро-

ванных проводов и кабелей по формуле (6), фактически используемой в известных работах [8,10] по молниестойкости и не учитывающей влияние безразмерного превышения температуры θ_i^* на значения удельной электропроводимости γ_i их материала, могут приводить к значительным погрешностям (десяткам и сотням процентов) при определении θ_i^* .

Для интеграла тока J_{ci} электротермически стойких к ПУМ изолированных проводов и кабелей должно выполняться следующее условие:

$$J_{ci} \le J_{cik} , \qquad (7)$$

где J_{cik} – интеграл тока при ПУМ для жилы (экрана) провода (кабеля), безразмерное превышение поверхностной температуры материала которых равно $\theta_i^* = \theta_{ik}^*$.

Из (5) следует, что для изолированных проводов и кабелей с ПВХ и Р изоляцией и сплошных медных жил (экранов) $J_{cik} = 2,19 \cdot 10^{16} \text{A}^2 \cdot \text{с} \cdot \text{M}^{-4}$, а для алюминиевых – $J_{cik} = 0,77 \cdot 10^{16} \text{A}^2 \cdot \text{c} \cdot \text{M}^{-4}$. Для изолированных проводов и кабелей с ПЭ изоляцией и сплошными медными жилами (экранами) $J_{cik} = 1,76 \cdot 10^{16} \text{A}^2 \cdot \text{c} \cdot \text{M}^{-4}$, а с алюминиевыми – $J_{cik} = 0,63 \cdot 10^{16} \text{A}^2 \cdot \text{c} \cdot \text{M}^{-4}$. Пунктирные прямые 11 и 12 на рис.1 как раз и соответствуют рассматриваемым значениям интеграла тока J_{cik} для исследуемых проводов и кабелей с ПЭ, ПВХ и Р изоляцией и сплошными медными жилами (экранами).

Из кривых на рис.1 видно, что для того, чтобы при ПУМ материал жилы (экрана) изолированного провода или кабеля оставался в твердом состоянии необходимо выполнение следующего условия:

$$J_{ci} \le J_{si} . \tag{8}$$

Такой подход позволил в свое время автору выполнить расчетные оценки при ПУМ предельно допустимых «сверху» кратковременных токовых нагрузок для круглых неизолированных алюминиевых и медных проводов [19], которые могут быть использованы для выбора токоведущих частей сильноточных цепей моделирующих молнию ВЭФУ с крайне ограниченным сроком службы.

Выполним приближенную оценку превышения поверхностной температуры θ_{ip}^* для расщепленной жилы одно– и многожильных изолированных проводов (кабелей) с учетом данных расчета по формуле (5) превышения поверхностной температуры θ_i^* для круглой сплошной жилы провода (кабеля) эквивалентного поперечного сечения $S_{j'}$. Рассмотрим случай резкого скин-эффекта, когда круглая жила одно– и многожильных изолированных проводов (кабелей) выполнена с высоким коэффициентом заполнения металлом поперечного сечения, а глубина проникновения Δ_i магнитного поля тока молнии в материал жилы существенно меньше ее поперечных размеров, т.е. $b/\Delta_i = b(\pi f_k \mu_0 \gamma_{0i})^{0.5} >> 1$, где $f_k \approx 0.4/\tau_f$ [4,6] – граничная частота в спектре импульса тока молнии

(при длительности фронта импульса тока $\tau_f = 2$ мкс значение частоты равно $f_k = 200$ кГц, а глубина проникновения поля в медь составляет величину $\Delta_i = 0,147$ мм); b – радиус жилы провода (кабеля).

Тогда в соответствии с формулой (4.38) из [6] отношение безразмерных превышений поверхностных температур для сплошной и расщепленной немагнитных жил круглого поперечного сечения из идентичного материала одно- и многожильных изолированных проводов (кабелей) ЛА или ЭЭО с импульсным током молнии в адиабатическом приближении может быть записано в виде:

$$\frac{\theta_i^*}{\theta_{ip}^*} = \frac{H_{si}^2(t)}{H_{sip}^2(t)},\tag{9}$$

где $H_{si}(t)$, $H_{sip}(t)$ – напряженности азимутального

импульсного магнитного поля тока молнии соответственно на наружной поверхности сплошной и расщепленной на отдельные проволоки жилы провода (кабеля).

Учитывая (9) и эквивалентность импульсных токовых нагрузок при ПУМ для сплошной и расщепленной жил, для нормированного превышения поверхностной температуры расщепленной жилы одно– и многожильных изолированных проводов (кабелей) окончательно находим:

$$\theta_{ip}^* = \theta_i^* \cdot \frac{nd_p^2}{D_p^2}, \qquad (10)$$

где n, d_p - соответственно число и диаметр проволок в расщепленной жиле; D_p - наружный диаметр расще-

пленной жилы; θ_i^* – превышение поверхностной температуры для круглой сплошной жилы эквивалентного поперечного сечения $S_{y} = n S_n$, определенное по формуле (5); $S_n = \pi d_p^2 / 4$ – поперечное сечение проволоки в расщепленной жиле.

Расчеты θ_{in}^* по формуле (10) для расщепленной

медной жилы, например, радиочастотного кабеля РК 50-9-11, с использованием параметров ее расщепления, приведенных в [11], свидетельствуют о том, что поверхностная температура расщепленной жилы рассматриваемого кабеля будет примерно на 23% меньше, чем поверхностная температура для его сплошной круглой жилы эквивалентного сечения S_{ψ} .

Для проверки достоверности полученных результатов расчета импульсного нагрева материала жилы (экрана) изолированного провода (кабеля) сравним значения безразмерного превышения поверхностной температуры θ_i^* для сплошной круглой жилы изолированного провода (кабеля), рассчитанные по предлагаемой методике и с помощью известной формулы (10.85) из [9]. Известная аналитическая зависимость для приближенного расчета в установившемся режиме превышения поверхностной температуры скин-слоя массивного круглого соленоида (сплошного витка) за первый полупериод разрядного тока ЕНЭ ВЭФУ в принятых нами обозначениях применительно к круглой сплошной жиле провода (кабеля) с апериодическим импульсом тока молнии амплитудой I_m имеет вид:

$$\theta_i^* = \frac{I_m^2}{4\pi b^2 h_{ci}^2} \,. \tag{11}$$

Заметим, что область применения формулы (11) ограничена таким нагревом, когда изменение удельной электропроводимости у_i материала проводника из-за его нагрева токовым импульсом невелико [9]. Выполняя эти ограничения, для сплошной медной жилы Ø5мм радиочастотного кабеля РК 75-33-17 [11] при І_m=100 и 200кА по известной формуле (11) получаем, что превышения поверхностной температуры жилы при рассматриваемых токовых воздействиях будут соответственно равны $\theta_i^* = 0,108$ (21,1°C) и 0,434 (84,4[°]C). Расчеты по предложенной формуле (5) для данного случая показывают, что превышения поверхностной температуры жилы принимают соответственно значения равные $\theta_i^* = 0.095$ (18,6°C) и 0.308 (60°С). Расхождения примерно равные 11 и 28% между сопоставляемыми значениями превышения поверхностной температуры θ_i^* в исследуемой жиле могут быть объяснены принятыми в [9] допущениями (ограничениями) и приближенным характером формулы (11), при которых не учитывается процесс перехода части тока с приповерхностных более нагретых слоев жилы в ее более глубокие и менее нагретые слои. Данный процесс перераспределения импульсного тока будет приводить к определенному снижению поверхностной температуры жилы и соответственно к уменьшению указанных расхождений.

Из (4)–(6), (10) и представленных на рис.1 зависимостей видно, что расчетная оценка электротермической стойкости изолированных проводов (кабелей) ЛА и ЭЭО к воздействию БИТ молнии в итоге сводится к определению значений интеграла тока J_{ci} для их проводящих жил (экранов) с заданными геометрическими и электрофизическими характеристиками.

ОПРЕДЕЛЕНИЕ ИНТЕГРАЛА ТОКА ПРИ ПРЯМОМ УДАРЕ МОЛНИИ И ПРЕДЕЛЬНО ДОПУСТИМЫХ КРАТКОВРЕМЕННЫХ ТОКОВЫХ НАГРУЗОК ДЛЯ ИЗОЛИРОВАННЫХ ПРОВОДОВ И КАБЕЛЕЙ

На рис.2 приведены зависимости интеграла тока J_{ci} для экранированного провода низкого напряжения БПВЛЭ с медной жилой Ø7,35мм (кривая 1) и медным экраном (кривая 4) и ПВХ изоляцией, используемого в БЭЦ авиационной техники [11], от значений амплитуды I_m импульса тока молнии 2/50 мкс. Там же представлены значения интеграла тока J_{ci} для радиочастотных кабелей типа РК со сплошной ПЭ изоляцией и медными жилами (экранами) [11], применяемых в СРЦ ВЭФУ, БЭЦ ЛА и КЛС ЭЭО: РК 75-33-17 (для жилы, кривая 2), РК 50-13-15 (для жилы, кривая 3). РК 50-9-11 (для экрана, кривая 5) и РК 75-

13-17 (для жилы, кривая 6). Расчеты интеграла тока J_{ci} для указанных кабелей и провода БПВЛЭ были выполнены по формулам (5) и (10) применительно к поверхностям скин-слоев их жил (экранов) с учетом результатов численного решения нестационарной нелинейной электротепловой задачи для немагнитного сплошного (трубчатого) провода, испытывающего воздействие ПУМ с токовым импульсом 2/50 мкс [3]. Пунктирные прямые 7 и 8 на рис.2 соответствуют значениям интеграла тока J_{cik} для проводов (кабелей) с медными жилами (экранами) и ПЭ (кривая 7), ПВХ и Р (кривая 8) изоляцией. Пунктирная прямая 9 отражает предельное значение интеграла тока J_{si} для медных жил (экранов). Позициями I, II, III на рис.2 и 3 обозначены соответственно жила, экран и изоляция провода (кабеля).

Приведенные на рис.2 зависимости позволяют при известных значениях амплитуды I_m воздействующего импульса тока молнии определить расчетные значения интеграла тока J_{ci} для рассматриваемых кабелей РК и провода БПВЛЭ. Далее зная J_{ci} , по кривой 2 на рис.1, формулам (5) и (10) находим при ПУМ безразмерные превышения поверхностной температуры θ_i^* и θ_{ip}^* для сплошной или расщепленной жилы (экрана) провода (кабеля) и для проверки их на электротермическую стойкость сопоставляем согласно (4) полученные значения θ_i^* и θ_{ip}^* с заданным безразмерным предельно допустимым кратковременным превышением температуры θ_{ik}^* .

Кривые 1-8 на рис.2 позволяют также выполнить расчетные оценки при ПУМ предельно допустимых «снизу» кратковременных токовых нагрузок I_{mk} для исследуемых кабелей РК и провода БПВЛЭ с медными жилами (экранами). При этом токовые нагрузки I_{mk} соответствуют на рис.2 точкам пересечения сплошных кривых 1-6 и пунктирных прямых 7, 8. Так, согласно кривой 4 на рис.2 для медного экрана прово-

да БПВЛЭ с внешним Ø11,2мм [11] при ПУМ предельно допустимой «снизу» кратковременной токовой нагрузкой I_{mk} является грозовой импульс тока 2/50 мкс амплитудой равной $I_m = I_{mk} = 174$ кА. Максимальное значение плотности тока молнии δ_{z2} при этом вблизи внутренней поверхности экрана провода БПВЛЭ составляет величину 0,35·10¹¹ А/м². Для сплошной медной жилы Ø2мм кабеля РК 75-13-17 [11] (кривая 6 на рис.2) при ПУМ рассматриваемая токовая нагрузка равна $I_{mk} = 71$ кА. В этом случае вблизи наружной поверхности медной жилы амплитуда плотности тока молнии δ_{z1} достигает значения около 0,58·10¹¹ А/м², что соответствует скорости ввода плотности тепловой энергии в медную жилу примерно равной 0,69·10¹⁴ Дж/м³·с.

Для сравнения полученных численных данных относительно плотности тока молнии δ_{zi} с известными отметим, что в изолированных проводах и кабелях при их продолжительной работе в электрических цепях ЭЭО плотность тока промышленной частоты 50Гц составляет до 10^7 A/m², для сетевого плавкого предохранителя в режиме плавления и медного провода при K3 в промсети для кратковременного режима работы – до 10^9 A/m², а для электрически взрываемого синусоидальным затухающим током в разрядной цепи ВЭФУ с ЕНЭ медного провода – до 10^{11} A/m² [14-16, 20].

ОПРЕДЕЛЕНИЕ МИНИМАЛЬНО ДОПУСТИМОГО И КРИТИЧЕСКОГО СЕЧЕНИЙ ДЛЯ ИЗОЛИРОВАННЫХ ПРОВОДОВ И КАБЕЛЕЙ ПРИ ПУМ

Примем, что до воздействия ПУМ изолированные провода (кабели) были электрически полностью загружены и максимальная температура их жил (экранов) была равна длительно допустимой температуре θ_{id} . Известно, что для рассматриваемых проводов и кабелей ЛА и ЭЭО с ПВХ, Р и ПЭ изоляцией $\theta_{id} = 65^{\circ}$ С [12]. Считая, что при воздействии первой компоненты импульса тока молнии $i_L(t)$ жила (экран) провода (кабеля) нагревается до предельно допустимой кратковременной температуры θ_{ikd} для минимально допустимого поперечного сечения S_{im} жилы (экрана) изолированных проводов (кабелей) по условиям их электротермической стойкости к воздействию БИТ молнии получаем:

$$S_{im} = \frac{J_d^{0,5}}{C_{im}},$$
 (12)

где $J_d = \int_0^{\tau_{p1}} i_L^2(t) dt$ – интеграл действия импульсного

тока молнии; $C_{im} = (J_{cik} - J_{cid})^{0.5}$; J_{cid} – интеграл тока молнии для проводов (кабелей), превышение поверхностной температуры материала жилы (экрана) которых составляет $\theta_i = \theta_{id} - \theta_0$.

Из расчетов по формуле (5) при $\theta_0 = 20^{\circ}$ С значений интеграла тока J_{cid} следует, что для проводов (кабелей) с ПВХ, Р и ПЭ изоляцией и алюминиевых

сплошных жил (экранов) $J_{cid} = 0,32 \cdot 10^{16} \text{A}^2 \cdot \text{с·м}^4$, а для медных– $J_{cid} = 0,88 \cdot 10^{16} \text{A}^2 \cdot \text{с·m}^4$. В табл. 1 указаны численные значения коэффициентов C_{im} для проводов (кабелей) со сплошными медными и алюминиевыми жилами (экранами) и ПВХ, Р и ПЭ изоляцией при $\theta_0 = 20^{0}$ С. Из анализа полученных значений для C_{im} и их сравнения с известными в области молниезащиты коэффициентами C_{ti} для голых проводов [4] следует, что для сплошных медных жил (экранов) проводов (кабелей) разница между рассматриваемыми коэффициентами достигает 40%, а для алюминиевых– 30%.

			Таблица 1
Наимено- вание изо- ляции в проводах (кабелях)	Наимено- вание ма- териала жил (экра- нов) про- водов (ка- белей)	Значение коэффици- ента C_{im} , 10^8 $A \cdot c^{1/2} \cdot m^{-2}$	Значение коэффици- ента D_{ik} , 10^8 $A \cdot c^{1/2} \cdot m^{-2}$
ПВХ, Р	Медь	1,14	4,31
	Алюминий	0,67	3,25
ПЭ	Медь	0,93	4,31
	Алюминий	0,55	3,25

В табл. 2 с достаточной для практических целей точностью приведены приближенные численные данные для интеграла действия J_d импульсного тока молнии 2/50 мкс в зависимости от его амплитуды I_m . При этом в расчетном выражении для J_d принималось, что τ_{p1} =500 мкс. Точные численные данные для интеграла действия J_d импульсного тока молнии 2/50 мкс могут быть вычислены по формуле (15) из [4].

Амплитудное значение импульса тока молнии <i>I_m</i> , кА	Значение интеграла действия импульса тока молнии J_d , $A^2 \cdot c$
1,0	0,361·10 ²
5,0	9,04·10 ²
10,0	3,61·10 ³
20,0	1,45.104
30,0	3,25·10 ⁴
50,0	9,04·10 ⁴
70,0	1,77.105
100,0	3,61.105
150,0	8,13·10 ⁵
200,0	1,45.106
250,0	2,26.106
300,0	$3,25 \cdot 10^{6}$

На рис.3 изображены рассчитанные при ПУМ по формуле (12) зависимости для минимально допусти-

мых сечений S_{im} изолированных проводов и кабелей с ПВХ, Р и ПЭ изоляцией соответственно с медными (сплошные кривые 1,2) и алюминиевыми (сплошные кривые 3,4) сплошными круглыми жилами (экранами) от амплитуды I_m импульса тока молнии 2/50 мкс. Пунктирные прямые 1-4 на рис.3 отражают рассматриваемые зависимости S_{im} в функции от амплитуды I_m при отсутствии первоначальной токовой загрузки в проводах (кабелях), т.е. при $J_{cid}=0$. Из данных рис.3 легко определяются усредненные по сечению S_{im} сплошных жил (экранов) изолированных проводов (кабелей) предельно допустимые амплитудные значения плотности $\delta_{zcm} = I_m/S_{im}$ импульсного тока молнии 2/50 мкс.

Отметим, что вносимая в этом случае погрешность в определение при ПУМ значений δ_{zcm} для медных жил (экранов) при $S_{im} \leq 5$ мм² и алюминиевых

жил (экранов) при $S_{im} \leq 7$ мм² не превышает 1%. Это подтверждается результатами теоретических исследований автора по установлению для грозового импульса тока вида (1) границ применимости расчетной электротепловой модели с равномерным распределением импульсного аксиального тока по поперечному сечению круглого цилиндрического проводника [13].

В табл. 3 приведены численные значения δ_{zcm} для рассматриваемых проводниковых и изоляционных материалов проводов (кабелей). Полученные значения для предельно допустимой плотности δ_{zcm} импульсного тока молнии в изолированных проводах и кабелях ЛА и ЭЭО с ПЭ и ПВХ, Р изоляцией оказываются для сплошных медных жил (экранов) соответственно на 39 и 27%, а для алюминиевых – на 31 и 16% меньше соответствующих известных для ПУМ предельно допустимых значений плотности тока молнии δ_{zid} в неизолированных проводах [4].

Исходя из условия электрического взрыва (ЭВ) проводника [6], для критического поперечного сечения *S*_{*ik*} жилы (экрана) изолированных проводов (кабелей) при ПУМ получаем:

$$S_{ik} = \frac{J_d^{0,5}}{D_{ik}} \,, \tag{13}$$

где $D_{ik} = (J_{vi} - J_{cid})^{0.5}$ – коэффициент, численные значения которого для исследуемых проводов (кабелей) при $\theta_0 = 20^{0}$ С приведены в табл. 1; J_{vi} – критическое значение интеграла тока J_{ci} (для алюминия $J_{vi} = 1,09 \cdot 10^{17} \text{A}^2 \cdot \text{с·m}^4$, а для меди $J_{vi} = 1,95 \cdot 10^{17} \text{A}^2 \cdot \text{с·m}^4$ [6]).

Таблица 3

Наименование изоляции в про-	Наименование материала жил (экранов) проводов (кабелей)	Амплитудное значение плотности импульсного тока молнии 2/50 мкс в сплошных жилах (экранах) изолированных проводов и кабелей ЛА и ЭЭО	
водах (кабелях)		Предельно допустимое δ_{zcm} , кА/мм ²	Критическое δ_{zik} , кА/мм ²
ПВХ, Р	Медь	19	73
	Алюминий	11	53
ПЭ	Медь	16	73
	Алюминий	9	53

На рис.3 прямые 5 и 6 отражают рассчитанные по формуле (13) зависимости для критических сечений S_{ik} исследуемых проводов (кабелей) соответственно со сплошными медными и алюминиевыми жилами (экранами) от амплитуды I_m тока молнии. Из (13) и представленных на рис.3 результатов расчета S_{ik} следует, что при протекании по изолированным проводам (кабелям) первой компоненты грозового импульса тока 2/50 мкс амплитудой I_m =200кА для алюминиевых жил (экранов) явление абляции [3] и их ЭВ [6] будут наблюдаться при $S_{ik} \leq 3,7$ мм² (прямая 6), а для медных (прямая 5) – при $S_{ik} \leq 2,8$ мм². Заметим, что при абляции, характеризующейся расплавлением и испарением поверхностного слоя проводника, и для электрически взрывающейся при ПУМ жилы (экрана) провода или кабеля достигается температура кипения и парообразное состояние их металла. В этом случае для меди $\gamma_{0i} / \gamma_i = 15,7$, а для алюминия $\gamma_{0i} / \gamma_i = 10,8$. Согласно прямой 5 на рис.3 явление ЭВ сплошной медной жилы $Ø1,13\text{мm}^2$ радиочастотного кабеля РК 75-7-15 или расщепленной медной жилы сечением 1мм² провода БПВЛЭ внешним Ø3,8мм [11], испытывающих воздействие БИТ молнии, будет наблюдаться примерно при амплитуде $I_m = 73$ кА первой компоненты импульсного тока молнии с временными параметрами 2/50 мкс.

На основании анализа полученных результатов установлено, что при абляции и ЭВ металлических жил (экранов) изолированных проводов (кабелей) ЛА и ЭЭО, вызванных воздействием ПУМ с рассматриваемыми АВП, усредненные по сечению S_{ik} амплитудные значения критической плотности $\delta_{zik} = I_m / S_{ik}$ импульсного тока молнии 2/50 мкс для медных жил (экранов) составляют δ_{zik}≥73кА/мм², а для алюминиевых – δ_{zik}≥53кА/мм². Из приведенных в табл. 3 данных видно, что при ПУМ отношение критических плотностей δ_{zik} кратковременных импульсных токовых нагрузок $i_L(t)$ в медных и алюминиевых жилах (экранах) проводов и кабелей численно равно примерно 1,37, что весьма близко к известному соотношению между плотностями тока в медных и алюминиевых жилах (экранах) при длительно допустимых токовых нагрузках промышленной частоты 50Гц в проводах (кабелях) ЭЭО с ПВХ, Р и ПЭ изоляцией, численно равному в среднем 1,33 [11].

выводы

1. Предложена уточненная инженерная методика по проверке на электротермическую стойкость изолированных одно- и многожильных проводов и кабелей ЛА и ЭЭО к воздействию ПУМ, сопровождающегося протеканием по металлическим жилам и экранам проводов (кабелей) БИТ молнии микросекундной длительности.

2. Определены минимально допустимые S_{im} и критические S_{ik} поперечные сечения для алюминиевых и медных жил (экранов) проводов и кабелей с ПВХ, Р и ПЭ изоляцией по условиям их электротермической стойкости и электрического взрыва при ПУМ в зависимости от амплитуды I_m импульсного тока молнии с временными параметрами 2/50 мкс.

3. Показано, что при ПУМ усредненные предельно допустимые амплитудные значения плотности δ_{zcm} импульсного тока молнии 2/50 мкс в проводах и кабелях с ПВХ и Р изоляцией для сплошных медных жил (экранов) составляют не более 19кА/мм², для алюминиевых – не более 11кА/мм², а с ПЭ изоляцией соответственно не более 16 и 9кА/мм².

4. Установлено, что при явлении абляции и электрического взрыва при ПУМ сплошных металлических жил (экранов) изолированных проводов и кабелей усредненные критические амплитудные значения плотности δ_{zik} импульсного тока молнии 2/50 мкс для медных жил (экранов) составляют не менее 73кА/мм², а для алюминиевых – не менее 53кА/мм².

ЛИТЕРАТУРА

- [1] Авакян Г.О., Бабинов М.Б., Борисов Р.К., Ларионов В.П. Воздействие молнии на бортовое оборудование летательных аппаратов// Известия АН СССР. Энергетика и транспорт.-1990.-№5.-С.101-107.
- [2] Базелян Э.М., Горин Б.Н., Левитов В.И. Физические и инженерные основы молниезащиты.-Л.: Гидрометеоиздат, 1978.-223с.

- [3] Баранов М.И., Бондина Н.Н. Нестационарные электромагнитные и тепловые процессы в цилиндрических проводниках при воздействии на них тока молнии// Электричество.-1992.-№10.-С.9-15.
- [4] Баранов М.И. Термическая стойкость неизолированных проводов при прямом ударе молнии// Технічна електродинаміка.-1997.-№6.-С.9-15.
- [5] Борисов Р.К., Григорьев О.А., Ларионов В.П. Методы испытания бортового оборудования летательных аппаратов на молниестойкость// Электричество.-1993.-№7.-С.21-27.
- [6] *Кнопфель Г.* Сверхсильные импульсные магнитные поля.-М.: Мир, 1972.-391с.
- [7] Колиушко Г.М., Кравченко В.И., Ларионов В.П., Борисов Р.К., Прохоров Е.Н. Методы испытания радиоэлектронного и электротехнического оборудования на молниестойкость// Известия вузов СНГ. Энергетика.-№9-10.-1992.-С.45-50.
- [8] Кравченко В.И. Грозозащита радиоэлектронных средств.-М.: Радио и связь, 1991.-264с.
- [9] Техника больших импульсных токов и магнитных полей/ Под ред. В.С. Комелькова.-М.: Атомиздат, 1970.-472с.
- [10] Техника высоких напряжений/ Под общей ред. Д.В. Разевига.-М.: Энергия, 1976.-488с.
- [11] Электрические кабели, провода и шнуры: Справочник/ Н.И. Белоруссов, А.Е. Саакян, А.И. Яковлева: под ред. Н.И. Белоруссова. М.: Энергоатомиздат, 1988.-536с.
- [12] Электротехнический справочник. Производство и распределение электрической энергии/ Под ред. И.Н. Орлова и др.- М.: Энергоатомиздат, т.3, кн. 1, 1988.-880с.
- [13] Баранов М.И Сравнение двух моделей для электротепловых расчетов цилиндрических проводников при воздействии на них больших импульсных токов// Технічна електродинаміка.-1999.-№3.-С.14-19.
- [14] Лебедев С.В. О механизме электрического взрыва металла// Теплофизика высоких температур.-1980.-т.18.-№2.-С.273-278.
- [15] Герасимов Л.С., Икрянников В.И. Температурная неустойчивость металлического проводника при высоких плотностях тока// Электричество.-1993.-№8.-С.54-60.
- [16] Баранов М.И., Бондина Н.Н., Бочаров В.А. Моделирование нелинейной электротепловой задачи для цилиндрических изотропных токопроводов электрофизических установок при получении больших импульсных токов// Технічна електродинаміка.-1998.-№4.-С.19-22.
- [17] Баранов М.И., Бондина Н.Н., Кравченко В.И. Расчет наведенных напряжений и токов в кабелях связи при прямом ударе молнии в их оболочку// Технічна електродинаміка.-2000.-№1.-С.14-18.
- [18] Uman M.A. Natural and artificially-initiated lightning and lightning test standards// Proceeding of the IEEE.-1988.-Vol. 76.-№12.-p.1548-1565.
- [19] Baranov M.I. Estimation of ultimate current loadings for cylindric conductors being influenced by the lightning current// Proceeding of the 9th International Symposium on High Voltage Engineering. Graz, Austria, 1995.-Vol.6.p.6805-1–6805-4.
- [20] Баранов М.И., Бондина Н.Н., Даценко В.П. Математическое моделирование нестационарной нелинейной электротепловой задачи для цилиндрических токопроводов силовых электроустановок при коротком замыкании// Технічна електродинаміка.-2002.-№6.-С.8-12.

Поступила 25.01.03