Н.Н. Бондина, В.М. Михайлов

ПРИБЛИЖЕНИЕ ИМПУЛЬСНОЙ ПРОВОДИМОСТИ СИСТЕМЫ ТОНКИЙ СОЛЕНОИД – ВНЕШНЯЯ ПРОВОДЯЩАЯ ОБОЛОЧКА

Отримано формулу для визначення імпульсної провідності системи в наближенні рівномірного розподілу вихрових струмів по товщині оболонки. Зроблено оцінку похибок наближення на основі аналізу та розрахунків.

Получена формула для определения импульсной проводимости системы в приближении равномерного распределения вихревых токов по толщине оболочки. Сделана оценка погрешностей приближения на основе анализа и расчетов.

ВВЕДЕНИЕ

В электротехнике, например, при электромагнитном экранировании или в магнитно-импульсной обработке металлов [1], используют длинные тонкие цилиндрические проводящие оболочки, внутри которых расположен соосный соленоид (рис. 1). При проектировании таких систем возникает необходимость установления связи между током i(t), протекающим через соленоид, и падением напряжения на нём u(t). В случае тонкого соленоида представляем падение напряжения в таком виде [2]:

$$u(t) = u_r(t) + u_{\mathbf{ch}}(t), \qquad (1)$$

где $u_r(t)$ и $u_{\phi}(t)$ — падения напряжения, обусловленные соответственно омическими потерями в соленоиде и магнитным полем в непроводящих областях и проникновением электромагнитного поля в оболочку.

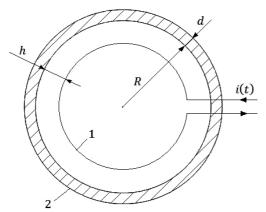


Рис. 1. Расчётная конструкция системы соленоид – внешняя оболочка: 1 – соленоид, 2 - оболочка

В отсутствие поверхностного эффекта первое слагаемое (1) выражается при помощи закона Ома через омическое сопротивление соленоида r_s . Для нахождения второго слагаемого (1) используем операторную проводимость системы без учёта потерь в соленоиде $Y_{\phi}(p)$. Тогда изображения по Лапласу тока и второго слагаемого (1) согласно закону Ома связаны таким соотношением:

$$I(p) = Y_{\phi}(p)U_{\phi}(p). \tag{2}$$

Закону Ома в операторной форме (2) при известном токе соответствует во временной области интегральное уравнение Вольтерра 1-го рода [3]

$$\int_{0}^{t} u_{\Phi}(\tau) y_{\Phi}(t - \tau) d\tau = i(t), \qquad (3)$$

где $y_{\phi}(t)$ — импульсная проводимость, являющаяся оригиналом операторной проводимости $Y_{\phi}(p)$.

Из (3) видно, что импульсная проводимость $y_{\phi}(t)$, являясь ядром интегрального уравнения, играет исключительную роль при анализе переходного процесса в цепи источника и системы соленоид — внешняя оболочка.

Для дальнейшего анализа примем следующие основные допущения: соблюдаются условия квазистационарности; магнитное поле в зазоре между соленоидом и оболочкой и внутри соленоида однородно; волна электромагнитного поля в стенке оболочки является плоской; оболочка неподвижна и имеет постоянные удельную электропроводность γ и абсолютную магнитную проницаемость μ . Толщина оболочки d << R (R — внутренний радиус, рис. 1), длина — b, равная длине соленоида. Соленоид имеет w витков из относительно тонкого провода. Известная формула для расчёта импульсной проводимости такой системы имеет вид [2]

$$y_{\Phi}(t) = \frac{1}{L_0} [1 + 2\frac{S_0}{S_h} \sum_{k=1}^{k=\infty} a_k \exp(-\frac{y_k^2}{d^2 \mu \gamma} t)],$$
 (4)

где L_0 – внешняя индуктивность уединённого соленоида,

$$L_0 = \mu_0 w^2 S_0 / b$$
,

 S_0 и S_h — площади поперечного сечения отверстия соленоида и зазора между соленоидом и оболочкой; y_k — корни трансцендентного уравнения

$$y_k \operatorname{tg} y_k = C_h;$$

$$C_h = 2\mu_r \frac{d}{R} \left(1 + \frac{S_0}{S_h} \right),$$
(5)

 $\mu_r = \mu / \mu_0$, μ_0 – магнитная постоянная;

$$a_k = (1 + C_h + C_h^{-1} y_k^2)^{-1}. (6)$$

В основе формулы (4) лежит точная переходная функция напряжённости магнитного поля внутри соленоида [4], поэтому в рамках принятых допущений она является точной. Расчёты показывают, что в случае тонких оболочек ряд быстро сходится всюду, за исключением небольшого промежутка времени в начале процесса, и для обеспечения требуемой точности достаточно ограничиться первым его членом. Однако применение этой формулы затрудняется необходимостью решения трансцендентного уравнения (5).

ПЕРВОЕ ПРИБЛИЖЕНИЕ ИМПУЛЬСНОЙ ПРОВОДИМОСТИ

Согласно методике [2] изображение по Лапласу падения напряжения $u_{\phi}(t)$ представляем в таком виде:

$$U_{\oplus}(p) = pw\mu_0 S_0 H_0(p),$$
 (7)

где $H_0(p)$ — изображение по Лапласу напряжённости магнитного поля в отверстии соленоида.

В отличие от формулы (4) для нахождения $H_0(p)$ используем переходную функцию напряжённости магнитного поля в отверстии соленоида первого приближения, для которого $\mu_r \frac{d}{R} << 1$ [4]. Изображение по Лапласу

$$H_0(p) = \frac{I(p)w}{b} \left[1 - \frac{S_0}{S_0 + S_h} \cdot \frac{p}{p + 1/\tau^{(1)}} \right]$$

подставляем в (7) и вначале находим операторную проводимость первого приближения

$$Y_{\phi}^{(1)}(p) = \frac{1}{L_0} (1 + \frac{S_0}{S_h}) \frac{p + \frac{1}{\tau^{(1)}}}{p[p + \frac{1}{\tau^{(1)}} (1 + \frac{S_0}{S_h})]}, \tag{8}$$

а затем – искомую импульсную проводимость первого приближения

$$y_{\phi}^{(1)}(t) = \frac{1}{L_0} \left[1 + \frac{S_0}{S_h} \exp(-(1 + \frac{S_0}{S_h}) \frac{t}{\tau^{(1)}}) \right], \tag{9}$$

где $\tau^{(1)}$ — постоянная времени первого приближения,

$$\tau^{(1)} = \mu_0 \gamma dR / 2 .$$

Сравнивая (4) и (9), прежде всего отметим, что предельные значения функций $y_{\Phi}(t)$ и $y_{\Phi}^{(1)}(t)$ при $t{=}0$ и $t{\to}\infty$ (учтено ранее полученное тождество $\sum_{k=1}^{k=\infty} a_k = 1/2$ [2]) одинаковы. Для более детального

сравнения, учитывая быструю сходимость, ограничимся первым членом ряда в формуле (4). Получим:

$$y_{\Phi}(t)\Big|_{1} = \frac{1}{L_{0}} \left[1 + 2\frac{S_{0}}{S_{h}} a_{1} \exp(-\frac{y_{1}^{2}}{d^{2} u \gamma} t) \right].$$
 (10)

Сопоставляя формулы (9) и (10), видим, что они тождественны при выполнении двух условий:

$$y_1/(d^2\mu\gamma) = (1 + \frac{S_0}{S_h})/\tau^{(1)};$$
 (11)

$$a_1 = 1/2. (12)$$

Если в уравнении (5) принять $tg y_1 \approx y_1$, то получаем первое приближение первого корня

$$y_1^{(1)} \approx \sqrt{2\mu_r \frac{d}{R} (1 + \frac{S_0}{S_h})}$$
 (13)

Нетрудно убедиться, что условие (11) удовлетворяется, если в нём принять $y_1=y_1^{(1)}$. В табл. 1 сделано сравнение y_1 и $y_1^{(1)}$ при $\mu_r=1$ и различных значениях d/R и h/R (h — ширина непроводящего зазора между соленоидом и оболочкой, рис. 1).

Из табл. 1 следует, что погрешность первого приближения y_1 минимальна при d/R=0.025 и h/R=0.293 (~1,7%) и максимальна при d/R=0.1 и h/R=0.05 (~32%). Она возрастает с увеличением d/R и уменьшением h/R соответственно из-за увеличения и усиления влияния неравномерности распределения тока по толщине оболочки.

Таблица 1 Точные (в числителях) и первого приближения (в знаменателях) значения первого корня трансцендентного уравнения (5)

d/R	h/R					
	0,05	0,1	0,2	0,293		
0,025	0,66032	0,49154	0,36427	0,31105		
	0,71611	0,51299	0,37268	0,31623		
0,05	0,86829	0,66761	0,50385	0,43284		
	1,01274	0,72548	0,52705	0,44721		
0,1	1,08447	0,87647	0,68292	0,59324		
	1,43223	1,02598	0,74536	0,63246		

В табл. 2 приведены значения a_1 , рассчитанные по формуле (6) при $\mu_r=1$ и различных отношениях d/R и h/R. Видим, что тенденции изменения отклонения a_1 от ½ согласно условию (12) такие же, как и погрешности первого приближения y_1 : это отклонение возрастает с увеличением d/R и уменьшением h/R, достигая очень больших величин (при d/R=0,1 и h/R=0,05 - ~45%).

Таблица 2 Значения a_1 (в числителях) и их отклонения от ½ в процентах (в знаменателях)

d/R	h/R					
	0,05	0,1	0,2	0,293		
0,025	0,42318	0,45844	0,47750	0,48367		
	15,4	8,3	4,5	3,3		
0,05	0,36222	0,42138	0,45627	0,46800		
	27,6	15,7	8,7	6,4		
0,1	0,27589	0,35940	0,41753	0,43863		
	44,8	28,1	16,5	12,3		

В табл. З сделано сравнение точных и первого приближения безразмерных значений импульсной проводимости системы соленоид — внешняя оболочка в различные моменты времени при $\mu_r = 1$. Использованы следующие безразмерные и базисные величины:

$$y_{\Phi}^* = y_{\Phi} / y_{\delta}; \qquad y_{\Phi}^{(1)*} = y_{\Phi}^{(1)} / y_{\delta}; \qquad t^* = t/t_{\delta};$$

$$y_{\delta} = [L_0(1 + \frac{S_h}{S_0})]^{-1}; \quad t_{\delta} = R^2 \mu_0 \gamma.$$

Для контроля сходимости расчёты по точной формуле (4) выполняли при числе членов ряда n=1, 5, 10. При d/R=0.025, 0.05 и $t^*\geq 0.001$ достаточно было ограничиться n=1, а при d/R=0.1 - несколькими членами ряда.

Для $h/R = 1 - 1/\sqrt{2} \approx 0,293$ при t = 0 напряженности магнитного поля в зазоре и в отверстии соленоида равны по модулю [5], а величина $y_{\varphi}^*(0) = 4$ минимальна [2].

Таблица 3

Точные ($y_{\Phi}^{*}(t^{*})$) и первого приближения ($y_{\Phi}^{(1)*}(t^{*})$)

значения импульсной проводимости

	* t*	d/R = 0.025		$\frac{d}{R} = 0.05$	
h/R					
		$y_{\phi}^*(t^*)$	$y_{\Phi}^{(1)*}(t^*)$	$y_{\phi}^*(t^*)$	$y_{\Phi}^{(1)*}(t^*)$
0,05	0	11,3644	11,3644	11,3644	11,3644
	0,001	5,4289	5,6230	6,6175	7,9130
	0,002	3,2588	3,0955	5,1732	5,6230
	0,003	2,1786	1,9830	4,1147	4,1036
	0,004	1,6409	1,4932	3,3320	3,0955
	0,005	1,3733	1,2776	2,7530	2,4267
	0,010	1,1161	1,1108	1,4722	1,2776
	0,020	1,1080	1,1080	1,1259	1,1108
0,293	0	4,0000	4,0000	4,0000	4,0000
	0,001	3,6572	3,7043	3,7381	3,8462
	0,002	3,4195	3,4523	3,6115	3,7043
	0,003	3,2159	3,2376	3,4951	3,5733
	0,004	3,0416	3,0546	3,3871	3,4523
	0,005	2,8922	2,8987	3,2870	3,3406
	0,010	2,4114	2,4038	2,8848	2,8987
	0,020	2,0875	2,0815	2,4182	2,4038

Представляем операторную проводимость $Y_{\Phi}^{(1)}(p)$, выраженную формулой (8), в виде суммы простых дробей [6]. Получим:

$$Y_{\Phi}^{(1)}(p) = \frac{1}{pL_0} + \frac{1}{pL_h + r^{(1)}},$$
 (14)

где
$$L_h = \mu_0 S_h w^2 / b$$
; $r^{(1)} = \frac{2\pi R}{\gamma db} w^2$.

Формулам (1) и (14) соответствует схема замещения, показанная на рис. 2.

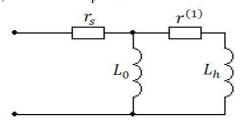


Рис. 2. Схема замещения первого приближения системы соленоид – внешняя оболочка

Точная схема замещения системы соленоидвнешняя оболочка состоит из бесконечного числа параллельных звеньев [2], причем первое звено такое же, как и в схеме первого приближения (см. рис.2), а параметры остальных равны

$$L_{k} = \frac{1}{2a_{k}} L_{0} \frac{S_{h}}{S_{0}}, \qquad (15)$$

$$r_k = L_k \frac{y_k^2}{d^2 \mu \gamma},$$
 (16)
 $k = 1, 2,$

Принимая в формулах (15), (16) k=1, а также используя условия (11), (12), получаем $L_1 \approx L_h$, $r_1 \approx r^{(1)}$. Заметим, что схема первого приближения имеет только два параллельных звена, а величина $r^{(1)}$ равна

электрическому сопротивлению оболочки постоянному току, умноженному на квадрат числа витков соленоила.

ЗАКЛЮЧЕНИЕ

- 1. Первое приближение импульсной проводимости системы тонкий соленоид внешняя проводящая оболочка $y_{\Phi}^{(1)*}(t^*)$, основанное на допущении равномерного распределения вихревых токов в оболочке, имеет точные предельные значения при $t{=}0$ и $t{\to}\infty$.
- 2. В начале переходного процесса ($t^* \le 0{,}005$) значения $y_{\Phi}^{(1)*}(t^*)$ имеют максимальные погрешности из-за фактического неравномерного распределения вихревых токов. Они уменьшаются с увеличением h/R и в случае очень тонких оболочек ($d/R = 0{,}025$) составляют несколько процентов, а при $d/R = 0{,}05$ и $h/R = 0{,}05$ достигают~20% (табл. 3). То же относится и к схеме замещения первого приближения.
- 3. Влияние рассматриваемых погрешностей первого приближения на точность расчетов переходных процессов может быть существенно меньше, поскольку оно зависит также от параметров остальных элементов контура.

СПИСОК ЛИТЕРАТУРЫ

- 1. Белый И.В., Фертик С.М., Хименко Л.Т. Справочник по магнитно-импульсной обработке металлов.— Харьков: изд. объед. "Вища школа", 1977.—168 с.
- 2. Михайлов В.М. Импульсная проводимость системы соленоид внешняя оболочка // Электронное моделирование. 2000. Т.22, №3. С. 73-84.
- 3. Краснов М.Л. Интегральные уравнения. (Введение в теорию) . М.: "Наука", 1975. 304 с.
- 4. Витков М.Г. Импульсное возбуждение магнитного поля внутри цилиндрического экрана // Журнал технической физики. 1965. N 10. С. 1786-1790.
- 5. Новгородцев А.Б., Шнеерсон Г.А. Переходные процессы и электродинамические усилия в системе соленоид замкнутый экран // Тр. Ленингр. политехн. ин-та. 1966. № 273. С. 139-151.
- 6. Конторович М. И. Операционное исчисление и процессы в электрических цепях.— М.: "Сов. Радио", 1975.—320 с.

Поступила 20.06.2009

Бондина Нина Николаевна, к.т.н., доц. Национальный технический университет "Харьковский политехнический институт" Украина, 61002, Харьков, ул. Фрунзе, 21, НТУ "ХПИ", кафедра "Вычислительная техника и программирование", тел. (057) 707-60-19

Михайлов Валерий Михайлович, д.т.н., проф. Национальный технический университет "Харьковский политехнический институт" У краина, 61002, Харьков, ул. Фрунзе,21, НТУ "ХПИ", кафедра "Инженерная электрофизика", тел. (057) 707-60-52