УДК 621.313.323, 65.002.5-868

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ РОБОТИ ІНДУКЦІЙНОГО ЛІНІЙНОГО ДВИГУНА У ЯКОСТІ ЗБУДЖУВАЧА КОЛИВАНЬ

Голенков Г.М., к.т.н., доц., Бондар Р.П., Макогон С.А. Київський національний університет будівництва і архітектури Україна, 03037, Київ, пр. Повітрофлотський 31, КНУБА, кафедра Електротехніки та електроприводу тел. (044) 241-55-65

Богаєнко М.В., Попков В.С.

Науково-впроваджувальне підприємство "Промелектрообладнання" Україна, 03179, Київ, вул. Ірпінська, 63а/125 тел. (044) 459-52-42

Розглянуті питання, пов'язані із застосуванням різних варіантів обмоток для вібраторів з індукційним лінійним двигуном. Представлено математичну модель з визначення намагнічуючих сил, що розвиваються двигуном при різних типах обмоток, і подано рекомендації щодо їх використання.

Рассмотрены вопросы, связанные с применением различных типов обмоток для вибраторов с индукционным линейным двигателем. Приведена математическая модель по определению намагничивающих сил, развиваемых двигателем при различных типах обмоток, и даны рекомендации к их использованию.

ПОСТАНОВКА ЗАДАЧІ

Найбільш поширені на сьогоднішній день у промисловості дебалансні вібратори. Вони мають ряд недоліків: недовговічність роботи валів і підшипників (що сильно спрацьовуються через нерівномірний розподіл динамічних зусиль і резонансних явищ, які виникають при вмиканні-вимиканні двигуна), а також необхідність у системі синхронізації обертання ексцентриків [1, 2]. Також машини з гідроприводом вимагають: насосну станцію, шланги високого тиску, фільтри, ємність для збереження ро-бочої рідини, що веде до подорожчання установки [3].

У роботах [4, 5] запропоновано конструкції однофазного віброзбуджувача з індукційним лінійним двигуном (ВІЛД) (рис. 1). У даній роботі робиться спроба узагальнити отримані результати і розрахунки.

Рис. 1. Схема ВІЛД у розрізі: 1 – корпус; 2 – статор; 3 – обмотка статора; 4 – збуджувач коливань; 5 – постійні чи електричні магніти; 6 – пружина; 7 – клемна коробка

А. ОДНОФАЗНА СИСТЕМА

Намагнічуюча сила, яка створюється однофазною обмоткою статора [6], змінюється за синусоїдальним законом і дорівнює:

$$F = F_m \cdot \sin(\omega \cdot t). \tag{1}$$

де F_m - максимальна н. с., ампер-виток; ω - кутова швидкість магнітного поля, що біжить, рад/с; *t* - час, с.

Якщо виробити обмотку індуктора з окремих котушок, напрям проходження струму в яких протилежний (рис. 2), то отримаємо систему з пульсуючим магнітним полем:

Рис. 2. Принципова електрична схема однофазної обмотки ВІЛД

Діюче значення намагнічуючої сили визначається як середнє квадратичне за період:

$$F = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} F_{m}^{2} \cdot \sin^{2}(\omega \cdot t) \cdot \partial t} .$$
 (2)

Отже, сумарне значення н. с. пульсуючого магнітного поля (як це видно з графіка функції на рис. 3) буде змінюватися від $-F_m$ до $+F_m$: $F = \pm F_m$. Проінтегрувавши вираз, отримаємо:

$$F = \sqrt{\frac{F_m^2}{2}} = \frac{F_m}{\sqrt{2}} \,. \tag{3}$$

При формуванні коливальної системи однофазного ВІЛД магнітна система вторинного контуру може бути виконана з постійних магнітів чи електромагнітів постійного струму, н. с. яких дорівнює (3).

Рис. 3. Графік пульсуючого магнітного поля для однофазного варіанту включення обмоток

Б. ДВОФАЗНА СИСТЕМА

Можливий варіант живлення обмотки індуктора двофазним струмом, наприклад, фаз A і B. Схема включення обмоток показана на рис. 4. Намагнічуюча сила, яка створюється обмотками A і B, змінюється за синусоїдальним законом:

Рис. 4. Принципова електрична схема двофазної обмотки ВІЛД

 $F_A = F_m \cdot \sin(\omega \cdot t); \tag{4}$

$$F_B = F_m \cdot \sin \cdot \left(\omega \cdot t - 2 \cdot \pi / 3 \right). \tag{5}$$

Для того, щоб визначити значення сумарного вектора н. с., слід знайти суму н. с. кожної обмотки:

$$F = F_A + F_B = F_m \cdot \sin(\omega \cdot t) + F_m \cdot \sin(\omega \cdot t - 2\pi/3) = F_m \cdot (\sin(\omega \cdot t) + \sin(\omega \cdot t - 2\pi/3)) = 2 \cdot F_m \times (6)$$
$$\times \sin\left(\frac{2 \cdot \omega \cdot t - 2 \cdot \pi/3}{2}\right) \cdot \cos\left(\frac{\pi}{3}\right) = F_m \cdot \sin(\omega \cdot t - \pi/3).$$

Отже, сумарне значення н. с. пульсуючого магнітного поля (як це видно з графіка на рис. 5) буде змінюватися від $-F_m$ до $+F_m$: $F = \pm F_m$.

Рис. 5. Графік магнітного пульсуючого магнітного поля для двофазного варіанту включення обмоток

Для визначення діючого значення н. с. обчислимо інтеграл:

$$\int \sin^2(\omega \cdot t - \pi/3) \cdot \partial t = \left[y = \omega \cdot t - \frac{\pi}{3}, t = \frac{y + \pi/3}{\omega} \right] =$$

$$= \int \sin^2 y \cdot \partial \left(\frac{y + \pi/3}{\omega}\right) = \int \frac{1}{\omega} \cdot \sin^2 y \cdot \partial y = \frac{1}{\omega} \times \\ \times \int \frac{1 - \cos(2 \cdot y)}{2} \cdot dy = \frac{1}{\omega} \cdot \left(\frac{1}{2} \cdot y - \frac{1}{4} \cdot \sin(2 \cdot y) + C_1\right) = \\ = \frac{1}{\omega} \cdot \left(\frac{1}{2} \cdot \left(\omega \cdot t - \frac{\pi}{3}\right) - \frac{1}{4} \cdot \sin\left(2 \cdot \left(\omega \cdot t - \frac{\pi}{3}\right)\right) + C_1\right) =$$
(7)
$$= \frac{T}{2\pi} \cdot \left(\frac{1}{2} \cdot \left(\frac{2 \cdot \pi}{T} \cdot t - \frac{\pi}{3}\right) - \frac{1}{4} \cdot \sin\left(2 \cdot \left(\frac{2 \cdot \pi}{T} \cdot t - \frac{\pi}{3}\right)\right) + \\ + C_1\right) = \frac{t}{2} - \frac{T}{8 \cdot \pi} \cdot \sin\left(\frac{4 \cdot \pi \cdot t}{T} - \frac{2 \cdot \pi}{3}\right) + C_2.$$

Діюче значення н. с. дорівнює:

$$F = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} F_m^2 \cdot \sin^2(\omega \cdot t - \pi/3)} \cdot \partial t = \sqrt{\frac{F_m^2}{2}} = \frac{F_m}{\sqrt{2}}.$$
 (8)

В. ДВОФАЗНА СИСТЕМА ІЗ ЗМІНЕНИМ НАПРЯМКОМ СТРУМУ В ОДНІЙ ОБМОТЦІ

Збільшити значення н. с. можна, змінивши напрям струму в одній фазі, наприклад, В. Схему включення обмоток подано на рис. 6.

Рис. 6. Принципова електрична схема двофазної обмотки ВІЛД із зміненим напрямком струму у фазі В

Намагнічуюча сила, яка створюється обмотками А і В["], змінюється за синусоїдальним законом:

$$F_A = F_m \cdot \sin(\omega \cdot t); \tag{9}$$

$$F_{B''} = F_m \cdot \sin(\omega \cdot t - 5 \cdot \pi/3). \tag{10}$$

Знайдемо сумарне значення н. с. обмотки:

$$F = F_A + F_{B''} = F_m \cdot \sin(\omega \cdot t) + F_m \cdot \sin(\omega \cdot t - 5 \times \pi/3) = F_m \cdot (\sin(\omega \cdot t) + \sin(\omega \cdot t - 5 \cdot \pi/3)) = 2 \cdot F_m \times \sin\left(\frac{2 \cdot \omega \cdot t - 5 \cdot \pi/3}{2}\right) \cdot \cos\left(\frac{5 \cdot \pi}{6}\right) = 2 \cdot F_m \cdot \sin\left(\frac{\omega \cdot t}{2} - (11)\right) - \frac{5 \cdot \pi/3}{2} \cdot \left(-\frac{\sqrt{3}}{2}\right) = \sqrt{3} \cdot F_m \cdot \sin(5 \cdot \pi/6 - \omega \cdot t).$$

Отже, сумарне значення н. с. пульсуючого магнітного поля (як це видно з графіка на рис. 7) буде змінюватися від $-\sqrt{3} \cdot F_m$ до $+\sqrt{3} \cdot F_m$: $F = \pm \sqrt{3} \cdot F_m$.

Діюче значення н. с. дорівнює (знаходження цього інтеграла аналогічне попередньому):

$$F = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} 3 \cdot F_m^2} \cdot \sin^2 (5 \cdot \pi/6 - \omega \cdot t) \cdot \partial t = \sqrt{\frac{3}{2}} \cdot F_m. (12)$$

Г. ТРИФАЗНА СИСТЕМА ІЗ ЗМІНЕНИМ НАПРЯМКОМ СТРУМУ В ОДНІЙ ОБМОТЦІ

Сума миттєвих значень струмів трифазної системи ЕРС у кожний момент часу буде дорівнювати нулю. Для того, щоб отримати пульсуюче магнітне поле, достатньо змінити напрям проходження струму в одній з обмоток (у даному випадку фази В) на протилежний. Схема включення обмоток показана на рис. 8.

Намагнічуюча сила, яка створюється обмотками А, В["] і С, змінюється за синусоїдальним законом:

Рис. 8. Принципова електрична схеми трифазної обмотки ВІЛД із зміненим напрямком струму у фазі В

$$F_A = F_m \cdot \sin(\omega \cdot t); \tag{13}$$

 $F_{B''} = F_m \cdot \sin(\omega \cdot t - 5 \cdot \pi/3); \qquad (14)$

$$F_C = F_m \cdot \sin(\omega \cdot t - 4 \cdot \pi/3). \tag{15}$$

Знайдемо сумарне значення н. с. кожної обмотки:

$$F = F_A + F_{B''} + F_C = F_m \cdot \sin(\omega \cdot t) +$$

$$F_m \cdot \sin(\omega \cdot t - 5 \cdot \pi/3) + F_m \cdot \sin(\omega \cdot t - 4 \cdot \pi/3) =$$

$$= \sqrt{3} \cdot F_m \cdot \sin(5 \cdot \pi/6 - \omega \cdot t) + F_m \cdot \sin(\omega \cdot t - 4 \cdot \pi/3) = -4 \cdot \pi/3 = 2 \cdot F_m \cdot \sin(\omega \cdot t - 5 \cdot \pi/3).$$
(16)

Отже, сумарне значення н. с. пульсуючого магнітного поля, (як це видно з графіка функції на рис. 9) буде змінюватися від $-2 \cdot F_m$ до $+2 \cdot F_m$: $F = \pm 2 \cdot F_m$.

Рис. 9. Графік пульсуючого магнітного поля для трифазної обмотки ВІЛД із зміненим напрямком струму у фазі В

Діюче значення н. с. дорівнює:

$$F = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} 4 \cdot F_{m}^{2} \cdot \sin^{2}(\omega \cdot t - 5 \cdot \pi/3) \cdot \partial t} = 2 \cdot F_{m}.$$
 (17)

На рис. 10, 11 подано векторні діаграми струмів

для кожного з варіантів включення обмоток.

Рис. 11. Векторні діаграми для випадків В (а) і Г (б)

ВИСНОВОК

Теоретичний аналіз існуючих електромеханічних систем, проведений з метою покращення їх технікоекономічних показників, показав, що використання одно- та дво- фазних варіантів вібраторів з індукційним лінійним двигуном можливе для малопотужних систем. При цьому створюється незначний перекіс фаз у мережі. При короткочасних режимах роботи можливе використання двофазного варіанту і на більших потужностях. Трифазний варіант рекомендовано для потужних вібраторів.

Системи мають такі значення намагнічуючої сили: однофазна - $\frac{F_m}{\sqrt{2}} \approx 0,7 \cdot F_m$; двофазна без інверсії -

$$\frac{F_m}{\sqrt{2}} \approx 0,7 \cdot F_m$$
, з інверсією - $\sqrt{\frac{3}{2}} \cdot F_m \approx 1,2 \cdot F_m$; трифаз-

на з інверсією - $2 \cdot F_m$.

На даний час тривають вдосконалення конструкції ВІЛД та експериментальні дослідження.

ЛІТЕРАТУРА

- Бауман В.А., Быховский И.И., Гольдштейн Б.Г. Вибрационные машины в строительстве и производстве строительных материалов. - М.: Машиностроение, 1970.
- [2] Савинов О.А., Лускин А.Я. Вибрационный метод погружения свай и его применение в строительстве. М.:-Л.: Госстройиздат, 1960.
- [3] Don C. Warrington. Vibratory and impact-vibration pile driving equipment. Vulcan Iron Works Inc, 1997.
- [4] Голенков Г.М., Макогон С.А. Вибропогружатель с индукционным линейным двигателем. - Харьков.: "Электротехника и электромеханика" №4, 2004.
- [5] Богаєнко М.В., Голенков Г.М., Голуб В.П., Павленко П.В., Попков В.С., Чомкалова І.О. Віброзанурювач. Деклараційний патент на винахід №20031213225 від 17.01.2005.
- [6] Костенко М.П., Пиотровский Л.Н. Электрические машины. В 2-х ч. Ч.2 – Машины переменного тока. Учебник для студентов ВТУЗов. Л. : Энергия, 1973. С. 86-91.

Надійшла 15.09.2005