УДК 536.24

**А. В. Крамской**, канд. техн. наук **И. Н. Кудрявцев**, канд. физ.-мат. наук **И. А. Самохвал** 

Харьковский национальный университет имени В. Н. Каразина (г. Харьков, e-mail: kudryavtsev@univer.kharkov.ua)

# МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГИДРОГАЗОДИНАМИЧЕСКИХ ПРОЦЕССОВ В ВИХРЕВОЙ ТРУБКЕ

Для описания гидрогазодинамических процессов в вихревой трубке Ранке-Хилша предложена математическая модель, учитывающая основные особенности ламинарных и вихревых течений вязкой жидкости или газа. Математическая модель может быть использована для компьютерного моделирования методом конечных объёмов основных термодинамических и гидрогазодинамических параметров вихревой трубки Ранке-Хилша.

Для опису гідрогазодинамічних процесів у вихровій трубці Ранке–Хілша запропоновано математичну модель, що враховує основні особливості ламінарних і вихрових течій в'язкої рідини чи газу. Математична модель може бути використана для комп'ютерного моделювання методом скінченних об'ємів основних термодинамічних та гідрогазодинамічних параметрів вихрової трубки Ранке–Хілша.

### Введение

Как известно, системные теоретические исследования в области газогидродинамических процессов являются актуальным направлением для разработки и конструирования эффективных теплообменных и теплоразделительных аппаратов в области альтернативной энергетики.

Одним из устройств, которое может использоваться для температурного и структурного разделения гидрогазодинамических потоков, является вихревая трубка Ранке-Хилша (рис. 1) [1–3]. Основные преимущества вихревых трубок заключаются в отсутствии движущихся деталей и относительной простоте конструкции. Однако, несмотря на определенные достижения в теоретических и экспериментальных исследованиях данного устройства (см., напр., [4–11]), единой теории до сих пор не построено и адекватное теоретическое описание особенностей его работы требует дальнейших усилий.

Основная проблема (и, соответственно, основной недостаток) при проектировании вихревых трубок заключается в сложности детального и прогнозированного описания процессов вихреобразования и разделения потоков на холодный и горячий, а также в существенной зависимости теоретических расчетов от применяемых моделей турбулентности.

#### Математическая модель

Вихревая трубка представляет собой устройство, в которое подаётся закрученный поток сжатого газа или жидкости. Для обеспечения закрутки потока подвод рабочего тела выполнен в форме улитки (см. рис. 1). Образовавшийся вихревой поток движется к выходным отверстиям, при этом приосевые слои рабочего тела охлаждаются и вытекают через выходное отверстие диаметром  $D_x$ , а периферийные нагретые вихревые слои – через дросселирующие отверстия. При этом расход рабочего тела регулируется дросселем, а тепловой эффект оценивается по разностям полных температур на входе и выходах вихревой трубки.



Отметим, что в работе [8] приводятся результаты расчётов, выполненные с применением модели турбулентности, однако не приводятся данные о типе выбранной  $k-\omega$  модели, параметрах турбулентности на входе и константах модели. Кроме того, приведенные расчеты не содержат информацию о вихревой структуре потока внутри трубки.

В работе [10] выполнены расчеты для плоской (двухмерной) задачи и для моделей турбулентности k- $\varepsilon$ , а также модели рейнольдсовых напряжений. При этом необходимо отметить, что нагретый периферийный слой имеет существенно трёхмерную структуру и допущение о снижении размерности задачи является необоснованным. Для описания вихревой структуры вблизи стенки отсутствуют данные о параметрах сетки, позволяющие в полной мере рассчитать вихревую структуру как на периферии, так и в ядре потока.

В настоящей работе предложена математическая модель гидрогазодинамических процессов в вихревой трубке Ранке–Хилша [12], основанная на нестационарных пространственных уравнениях Навье–Стокса, осреднённых по Рейнольдсу с *k*– $\omega$  моделью турбулентности [13]

$$\frac{\partial Q}{\partial t} + \frac{\partial (A\xi_x + B\xi_y + C\eta_z)}{\partial \xi} + \frac{\partial (A\eta_x + B\eta_y + C\eta_z)}{\partial \eta} + \frac{\partial (A\zeta_x + B\zeta_y + C\zeta_z)}{\partial \zeta} = 0, \quad (1)$$
  
rge  $Q = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{bmatrix}$  - вектор консервативных переменных; *A*, *B*, *C* – обобщённые вектора, опреде-

ляющие потоки массы, импульса и энергии, которые определяются следующим образом:

$$A = \begin{bmatrix} \rho u \\ \rho u^2 + p - \tau_{xx} \\ \rho u v - \tau_{xy} \\ \rho u w - \tau_{xz} \\ (\rho E + p)u - u\tau_{xx} - v\tau_{xy} - w\tau_{xz} + q_x \end{bmatrix}$$

$$B = \begin{bmatrix} \rho v \\ \rho uv - \tau_{xy} \\ \rho v^2 + p - \tau_{yy} \\ \rho vw - \tau_{yz} \\ (\rho E + p)v - u\tau_{xy} - v\tau_{yy} - w\tau_{yz} + q_y \end{bmatrix}, \qquad C = \begin{bmatrix} \rho w \\ \rho uw - \tau_{xz} \\ \rho vw - \tau_{yz} \\ \rho w^2 + p - \tau_{zz} \\ (\rho E + p)w - u\tau_{xz} - v\tau_{yz} - w\tau_{zz} + q_z \end{bmatrix}.$$

Здесь  $\tau_{ij} = \tau_{mij} + \tau_{Tij}$ ;  $\tau_{mij} = 2\mu_m (S_{ij} - S_{nn}\delta_{ij}/3)$ ;  $\tau_{Tij} = 2\mu_t (S_{ij} - S_{nn}\delta_{ij}/3) - 2\rho k \delta_{ij}/3$ ;  $\tau_{mij}, \tau_{Tij}, \tau_{ij}$  – тензоры ламинарных, турбулентных и эффективных вязких напряжений;  $\mu_m$  и  $\mu_t$  – коэффициенты молекулярной и турбулентной вязкости соответственно;  $q_x = -\lambda \frac{\partial T}{\partial x}$ ;  $q_y = -\lambda \frac{\partial T}{\partial y}$ ;

 $q_z = -\lambda \frac{\partial T}{\partial z}$  – тепловые потоки в соответствующих направлениях;  $\lambda$  – коэффициент теплопроводности. Система уравнений (1) замыкается уравнением состояния.

Для описания вихревых эффектов турбулентности в трубке Ранке–Хилша применим *k*–ю модель турбулентности в формулировке Ментера [14, 15]

$$\frac{\partial U}{\partial t} + \frac{\partial R_i}{\partial x_i} = G - D + L,$$

$$U = \begin{bmatrix} \rho k \\ \rho \omega \end{bmatrix}, \qquad R_i = \begin{bmatrix} \rho k - (\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_i} \\ \rho \omega - (\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_i} \end{bmatrix}, \qquad G = \begin{bmatrix} \tau_{ij} S_{ij} \\ \gamma \frac{\omega}{k} \tau_{ij} S_{ij} \end{bmatrix}$$

$$D = \begin{bmatrix} \beta^* \rho \omega k \\ \beta \rho \omega^2 \end{bmatrix}, \qquad L = \begin{bmatrix} 0 \\ 2(1 - F_1) \frac{\rho \sigma_{\omega 2}}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i} \end{bmatrix},$$

где k – кинетическая энергия турбулентности;  $\omega = \frac{\varepsilon}{k\beta^*}$  – удельная скорость диссипации ча-

стоты турбулентных пульсаций;  $\mu_t = C_{\mu} \frac{\rho k / \omega}{\max[1; \Omega F_2 / (a_1 \omega)]}; C_{\mu} = 1 -$ константа модели турбулентности.

Функции смешивания  $F_1$  и  $F_2$  имеют следующий вид:

$$F_{1} = \tanh[\min(A_{1}; A_{2})]^{4}, \quad A_{1} = \max(B_{1}; B_{2}), \quad A_{2} = \frac{4\rho\sigma_{\omega 2}k}{CD_{k\omega}y^{2}}, \quad CD_{k\omega} = \max\left(2\frac{\rho\sigma_{\omega 2}}{\omega}\frac{\partial k}{\partial x_{i}}\frac{\partial\omega}{\partial x_{i}}; 10^{-20}\right),$$
$$F_{2} = \tanh[\max(2B_{1}; B_{2})]^{2}, \quad B_{1} = \frac{\sqrt{k}}{\beta^{*}\omega y}, \quad B_{2} = \frac{500\mu}{\rho y^{2}\omega}.$$

Коэффициент эффективной вязкости определим как сумму коэффициентов молекулярной и турбулентной вязкости  $\mu = \mu_m + \mu_t$ .

Отметим, что модель турбулентности  $k-\omega$  в формулировке Ментера аналогична по сути  $k-\omega$  модели, предложенной Вилкоксом. Основное отличие составляют дополнительные источниковые члены [13, 16]

$$L = \begin{bmatrix} 0 \\ 2(1 - F_1) \frac{\rho \sigma_{\omega 2}}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i} \end{bmatrix}$$

ISSN 0131–2928. Пробл. машиностроения, 2011, Т. 14, № 6

и несколько иное определение коэффициентов модели при источниковых членах  $\gamma = F_1\gamma_1 + (1 - F_1)\gamma_2$ , аналогичных постоянному коэффициенту  $\alpha$  в модели Вилкокса [14],

$$\beta = F_1\beta_1 + (1-F_1)\beta_2,$$

а также при диффузионных членах

$$\sigma_{k} = F_{1}\sigma_{k1} + (1 - F_{1})\sigma_{k2},$$
  
$$\sigma_{\omega} = F_{1}\sigma_{\omega 1} + (1 - F_{1})\sigma_{\omega 2}$$

и турбулентной вязкости µ<sub>t</sub>.

При этом в SST-модели в ядре применяется k- $\epsilon$  модель, а возле стенки – k- $\omega$  модель.

Вектор констант  $\phi = [\sigma_k; \sigma_{\omega}; \beta; \gamma]$  в SST-модели может быть записан в следующем виде:  $\phi = F_1\phi_1 + (1 - F_1)\phi_2$ , где  $\phi_1$  – вектор в *k*- $\omega$  модели и  $\phi_2$  – вектор в *k*- $\varepsilon$  модели, записанный в *k*- $\omega$  формулировке. Константы модели определяются следующим образом:  $a_1 = 0,31$  (константа Брэдшоу);  $\sigma_{k1} = 0,85$ ;  $\sigma_{k2} = 1,0$ ;  $\sigma_{\omega 1} = 0,5$  (или 2,0);  $\sigma_{\omega 2} = 0,856$  (или 1,168);  $\beta^* = 0,09$ ;  $\beta_1 = 0,075$ ;  $\beta_2 = 0,0828$ ;  $\gamma_1 = 0,553$ ;  $\gamma_2 = 0,44$  [12, 13, 16].

Турбулентное число Прандтля, характеризующее теплообмен в турбулентном потоке, которое определяется по формуле

$$\mathbf{Pr}_T = \frac{c_P \cdot \mu \lambda_T}{\lambda_T},$$

принимаем равным 0,9 (см., напр., [16]).

В качестве уравнения состояния авторами предлагается использовать модифицированное уравнение Пенга–Робинсона, которое достаточно корректно описывает свойства реальных газов и жидкостей.

#### Выводы

Предложена математическая модель, в которой применяются осреднённые по Рейнольдсу уравнения Навье-Стокса, описывающие как ламинарные, так и турбулентные потоки вязкой жидкости или газа в различных направлениях. Для описания вихревых в формулировке Ментера. При этом коэффициент эффективной вязкости определяется как коэффициентов молекулярной И турбулентной вязкости. сумма Предложенная математическая модель позволяет учитывать основные особенности ламинарных и вихревых течений вязкой жидкости или газа и может быть использована для компьютерного моделирования методом конечных объемов основных термодинамических И гидрогазодинамических параметров вихревой трубки Ранке-Хилша.

## Литература

- Ranque G. J. Expériences sur la Détente Giratoire avec Productions Simultanées d'un Echappement d'air Chaud et d'un Echappement d'air Froid / G. J. Ranque // J. de Physique et de Radium. – 1933. – Vol. 7, № 4. – P. 112–115.
- Patent № 1.952.281 US. Method and Apparatus for Obtaining from Fluid under Pressure Two Currents of Fluids at Different Temperatures / G. J. Ranque. – March, 1934.
- Hilsch R. The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process / R. Hilsch // Rev. Sci. Instrum. – 1947. – Vol. 18(2). – P. 108–113.
- 4. *Меркулов. А. П.* Вихревой эффект и его применение в технике / А. П. Меркулов. М.: Машиностроение, 1969. – 183 с.
- Вихревые аппараты / А. Д. Суслов, С. В. Иванов, А. В. Мурашки, Ю. В. Чижиков. –/ М.: Машиностроение, 1985. – 256 с.
- 6. Гуцол А. Ф. Эффект Ранка / А. Ф. Гуцол // Усп. физ. наук. 1997. Т. 167. С. 665–687.
- 7. *Тарунин Е. Л.* Вычислительные эксперименты для вихревой трубки Ранка–Хилша / Е. Л. Тарунин, О. Н. Аликина // Тр. междунар. конф. RDAMM–2001. 2001. Т. 6(2). С. 363–371.
- Bezprozvannyk V. The Ranque-Hilsch Effect: CFD Modeling / V. Bezprozvannykh, H. Mottl // DYCOR Technologies, 17944 – 106A Avenue, Edmonton, AB, Canada T5S1V31.

- 9. *Chengming Gao.* Experimental study on the Ranque-Hilsch vortex tube / Gao Chengming. Eindhoven: Technische Universiteit Eindhoven, 2005. 150 p.
- 10. *Eiamsa-ard S.* Numerical investigation of the thermal separation in a Ranque-Hilsch vortex tube / S. Eiamsa-ard, P. Promvonge // Intern. J. Heat and Mass Transfer. 2007. Vol. 50. P. 821–832.
- 11. Бабенко В. В. Макет вихревых структур течения в вихревой камере / В. В. Бабенко, В. Н. Турик // Прикл. гидромеханика. 2008. Т. 10, № 3. С. 3–19.
- 12. Крамской А. В. Численный метод расчета гидрогазодинамических процессов в вихревой трубке / А. В. Крамской, И. Н. Кудрявцев, И. А. Самохвал // Физико-технические проблемы энергетики и пути их решения 2011: Тез. докл. науч.-техн. конф. – Харьков: Харьков. нац. ун-т им. В. Н. Каразина, 15–16 нояб. 2011. – С. 25.
- 13. Chung T. G. Computational fluid dynamics / T. G. Chung. New York: Cambridge University Press, 2002. 1012 p.
- 14. Wilcox D. C. Turbulence modeling for CFD / D. C. Wilcox. La Canada: DCW Industries, 1994. 460 p.
- Bardina J. E. Turbulence modeling validation, testing, and development / J. E. Bardina, P. G. Huang, T. J. Coakley // NASA TM 110446. – 1997. – 98 p.
- 16. Крамской А. В. Компьютерное моделирование газодинамических процессов методом конечных объёмов : Конспект лекций / А. В. Крамской, И. Н. Кудрявцев, А. И. Пятак. – Харьков: Харьк. нац. автодор. ун-т, 2005. – 36 с.

Поступила в редакцию 10.10.11

УДК 614.8

## Ю. П. Ключка

В. И. Кривцова<sup>\*</sup>, д-р техн. наук

А. И. Ивановский<sup>\*\*</sup>, канд техн. наук

\* Национальный университет гражданской защиты Украины

- (г. Харьков, e-mail: worlon@list.ru; e-mail: apbu@rambler.ru)
- <sup>\*\*</sup> Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (г. Харьков, e-mail: apbu@rambler.ru)

# ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПОЖАРОВЗРЫВООПАСНОСТИ МЕТАЛЛОГИДРИДНОЙ СИСТЕМЫ ХРАНЕНИЯ ВОДОРОДА

Экспериментальным путем получены зависимости изменения давления водорода в патроне с гидридом от времени при его нагревании. Показано, что экспериментальные данные соответствуют теоретическим значениям с отклонением  $\approx 5\%$ .

Експериментальним шляхом отримані залежності тиску водню в патроні з гідридом від часу у разі його нагрівання. Показано, що експериментальні дані відповідають теоретичним значенням з відхиленням  $\approx 5\%$ .

### Постановка проблемы

Одним из способов хранения водорода в автомобиле является хранение в связанном состоянии, в частности, с помощью гидридов интерметаллидов [1]. Наиболее перспективным и изученным является интерметаллид LaNi<sub>5</sub> [2]. Одной из проблем использования этих систем является их пожаровзырывоопасность, обусловленная свойствами водорода и самой системой хранения.

В связи с этим определение изменения характеристик металлогидридного патрона с водородом и времени до его разрушения под воздействием внешнего источника тепла является актуальной задачей.