doi: https://doi.org/10.15407/dopovidi2018.03.104 УДК 546.43'65'824 + 548.312.3

Ю.О. Тітов¹, Н.М. Білявина¹, М.С. Слободяник¹, М.В. Тимошенко¹, В.В. Чумак²

¹Київський національний університет ім. Тараса Шевченка ² Житомирський державний університет ім. Івана Франка E-mail: tit@univ.kiev.ua

Вплив ізовалентного заміщення атомів лантану в BaLa₄Ti₄O₁₅ на будову його шаруватої перовськітоподібної структури

Представлено членом-кореспондентом НАН України М.С. Слободяником

Встановлено умови заміщення атомів La на атоми Nd у шаруватій перовськітоподібній структурі (ШПС) титанату BaLa₄Ti₄O₁₅. Методом рентгенівської дифракції порошку визначено ШПС фази BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ зі ступенем заміщення, близьким до максимального. Аналіз будови ШПС BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ показав, що входження атомів Nd в ШПС BaLa₄Ti₄O₁₅ призводить до збільшення ступеня деформації міжблочних поліедрів (Ba,Ln)1O₁₂ та зменшення довжини міжблочних відстаней (Ba,Ln)1 – 3O1. Обидва фактори дестабілізують ШПС і обмежують область існування твердих розчинів BaLa_{4-x}Nd_xTi₄O₁₅ значенням $x \leq 1,55$.

Ключові слова: титанат $BaLa_4Ti_4O_{15}$, шарувата перовськітоподібна структура, порошкова рентгенівська дифракція.

Наявність у титанатів $A^{II}La_4Ti_4O_{15}$ ($A^{II} = Ba$, Sr, Ca) з шаруватою перовськітоподібною структурою (ШПС) комплексу цінних діелектричних властивостей [1–5] дає підставу віднести їх до перспективних матеріалів мікрохвильової техніки. Зокрема, як показано в [5], для $A^{II}La_4Ti_4O_{15}$ ($A^{II} = Ba$, Sr, Ca) значення $Q \cdot f$ та ε_r знаходяться в діапазонах 16222–50215 ГГц і 44,7–49,1 відповідно, а температурний коефіцієнт резонансної частоти $\tau_f - y$ межах від –13 до –25 ppm/°С.

Одним із шляхів регулювання характеристик оксидних сполук є ізоморфні заміщення атомів у їх структурі. Проте до цього часу синтезовані лише лантанвмісні титанати $A^{II}La_4Ti_4O_{15}$, що обмежує встановлення зв'язків склад — будова ШПС, без знання яких неможливий синтез нових матеріалів на основі $A^{II}La_4Ti_4O_{15}$.

Мета даної роботи — дослідження впливу ізовалентного заміщення атомів лантану в титанаті $BaLa_4Ti_4O_{15}$ по типу $BaLa_{4-x}Nd_xTi_4O_{15}$ на будову ШПС.

Синтез зразків $BaLa_{4-x}Nd_xTi_4O_{15}$ проведено термообробкою при 1570 К шихти спільно осаджених гідроксикарбонатів за методикою, описаною в [6]. Як вихідні використані водні розчини $Ba(NO_3)_2$, $La(NO_3)_3$, $Nd(NO_3)_3$ та $TiCl_4$ марок "хч".

Кристалічна структура $BaLa_{4-x}Nd_xTi_4O_{15}$ визначена методом Рітвельда. Рентгенівські дифракційні спектри полікристалічних зразків записано на дифрактометрі Shimadzu XRD-

© Ю.О.Тітов, Н.М.Білявина, М.С.Слободяник, М.В. Тимошенко, В.В.Чумак, 2018

6000 у дискретному режимі (крок сканування 0,02°, експозиція в точці 7 с, кути $2\theta = 18 - 83^\circ$) на мідному фільтрованому (дуговий графітовий монохроматор перед лічильником) Си K_{α} випромінюванні. Початкова обробка дифрактограм, а також структурні розрахунки проведено з використанням апаратно-програмного комплексу [7].

Результати рентгенівського дослідження кристалічних продуктів термообробки шихти СОГ із співвідношеннями Ва: La: Nd: Ti = 1: (4—x): x: 4 показали, що фази BaLa_{4-x}Nd_xTi₄O₁₅ з ШПС існують при $0 \le x \le 1,55$ (рис. 1). Характер залежності об'ємів елементарних комірок фаз BaLa_{4-x}Nd_xTi₄O₁₅ із ШПС від ступеня заміщення атомів лантану відповідає закону Вегарда, що дає підставу розглядати їх як обмежений ряд твердих розчинів. З перевищенням межі ізоморфного заміщення атомів лантану відбувається розклад фаз з ШПС за схемою

 $BaLa_{4-x}Nd_{x}Ti_{4}O_{15} \rightarrow Ba(La,Nd)_{2}Ti_{3}O_{10} + (La,Nd)_{2}TiO_{5}.$

Виходячи з встановлених умов існування фаз з ШПС в системі BaLa_{4-x}Nd_xTi₄O₁₅, для вирішення поставленої задачі нами було проведено визначення будови ШПС для фази BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ зі ступенем заміщення атомів лантану (x = 1,5), близьким до максимально можливого (x = 1,55).

Індексування дифрактограм одержаного термообробкою шихти спільно осаджених гідроксикарбонатів $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$ показало, що вони задовільно індексуються в тригональної сингонії. Систематика погасань відбиттів, а також нелінійно-оптичні характеристики вказують на належність кристалічної структури $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$ до центросиметричної просторової групи *P*-3*c*1.

Первинну оцінку координат атомів для початкової моделі ШПС фази $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$ проведено за структурними даними для титанату $BaLa_4Ti_4O_{15}$ (пр. гр. *P*-3*c*1) [8]. Близькість факторів атомного розсіювання атомів Ва та La і Nd унеможливило однозначне визначення способу їх розміщення в перовськітоподібних блоках ШПС $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$, тому уточнення її структури проведено в припущенні статистичного розподілу атомів Ва та La і Nd по позиціях у центрі (2a), у проміжній позиції (4d) та на краю блока (4d) (табл. 1). Зіставлення експериментальних і розрахованих для такої моделі структури інтенсивностей показало їх задовільну збіжність. Результати уточнення координатних та теплових параметрів ШПС $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$, а також дифракційні дані наведено в табл. 1, 2 та на рис. 2, 3.

Кристалічна структура $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$ побудована з двовимірних (нескінченних у напрямках осей X і Y) перовськітоподібних блоків завтовшки в чотири шари, з'єднаних вершинами октаедрів TiO₆ (див. рис. 2). Одна п'ята октаедричних позицій у перовськітоподібному блоці вакантна. Безпосередній зв'язок між зовнішньоблочними октаедрами TiO₆ сусідніх перовськітоподібних блоків у ШПС $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$ відсутній. Блоки розділені шаром деформованих кубооктаедрів (Ba,La,Nd)1O₁₂ і утримуються разом за допомогою

Рис. 1. Залежність об'єму елементарних комірок фаз із ШПС складу $BaLa_{4-x}Nd_xTi_4O_{15}$ від ступеня заміщення атомів лантану (значення x)

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2018. № 3

зв'язків — О — (Ba,La,Nd)1 — О —. Таке розташування кубооктаедра (Ba,La,Nd)1O₁₂ обумовлює його найбільший ступінь деформації порівняно з внутрішньоблочними поліедрами (Ba,La,Nd)2O₁₂ і (Ba,La,Nd)3O₁₂ в ШПС BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ (див. табл. 2). З дванадцяти атомів оксигену поліедра (Ba,La,Nd)1O₁₂ дев'ять (шість О1 та три О2) належать до того ж блока, що і атоми (Ba,La,Nd)1, а три атоми оксигену (O1) — до сусіднього блока (див. рис. 3). Координаційний поліедр внутрішньоблочних атомів (Ba,La,Nd)2 і (Ba,La,Nd)3 являє собою деформований кубооктаедр (див. табл. 2). Згідно з даними [8], в ШПС BaLa₄Ti₄O₁₅ має місце впорядкована локалізація великих атомів барію лише у зовнішньоблочних позиціях типу 4d, чим і обумовлений найбільший розмір поліедрів (Ba,La)1O₁₂. Враховуючи ізоструктурність BaLa₄Ti₄O₁₅ та BaLa_{2,5}Nd_{1,5}Ti₄O₁₅, можна припустити аналогічний розподіл атомів Ba та La з Nd в ШПС останнього. На користь цього припущення свідчить найбільше значен-

Puc. 2. Кристалічна структура $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$ у вигляді октаедрів TiO_6 та атомів Ba, La, Nd (кружечки) **Puc. 3.** Будова міжблочної границі в ШПС $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$ у вигляді октаедрів TiO_6 та атомів Ba, La, Nd (сірий кружечок)

Позиція	Атом	Заповнення	X	Y	Ζ
4d	A1	0,2Ba + 0,8Ln	0,66667	0,33333	0,4635(3)
4d	A2	0,2Ba + 0,8Ln	0,33333	0,66667	0,3592(2)
2a	A3	0,2Ba + 0,8Ln	0	0	0,25
4c	Ti1	1	0	0	0,4115(3)
4d	Ti2	1	0,66667	0,33333	0,3027(2)
12g	O1	1	0,856(3)	0,195(2)	0,547(3)
12g	O2	1	0,295(2)	0,093(2)	0,344(2)
6f	O3	1	0,513(2)	0	0,25
Просторова група			<i>P</i> -3 <i>c</i> 1 (№ 165)		
Періоди елементарної комірки, нм			a = 0,55499(5), c = 2,2386(2)		
Незалежні відбиття			138		
Загальний ізотропний В фактор, нм ²			$0,47(4)\cdot 10^{-2}$		
Параметр текстури			τ = 0,83(1), вісь текстури [001]		
Фактор недостовірності			$R_{\rm w} = 0.046$		

Таблиця 1. Структурні дані $BaLa_{2,5}Nd_{1,5}Ti_4O_{15}$

ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2018. № 3

ня середньої довжини відстані ((Ba,La,Nd)1 — O)_{сер} серед таких для міжблочних поліедрів (Ba,La,Nd)O₁₂ в ШПС BaLa_{2.5}Nd_{1.5}Ti₄O₁₅ (див. табл. 2).

Аналіз кристалографічних характеристик фази BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ зі ступенем заміщення атомів лантану, близьким до максимального, та незаміщеного титанату BaLa₄Ti₄O₁₅ показав, що входження в А-позицію ШПС титанату BaLa₄Ti₄O₁₅ менших, ніж атом лантану, атомів неодиму зумовлює такі зміни в її будові:

- значно скорочується довжина міжблочних зв'язків (Ba,Ln)1 –3O1;
- істотно зростає ступінь деформації міжблочних поліедрів (Ba,Ln)1O₁₂ (див. табл. 2).

Зменшення відстані між перовськітоподібними блоками наближає будову двовимірної ШПС до будови тривимірного, термодинамічно більш стабільного перовськіту, а збільшення ступеня деформації міжблочних поліедрів (Ba,La,Nd)1O₁₂ призводить до зростання на-

$BaLa_{2,5}Nd_{1,5}Ti_4O$	15	$BaLa_4T_{i4}O_{15}[8]$		
Відстані	<i>d</i> , нм	Відстані	<i>d</i> , нм	
(Ba,La,Nd)1 – 3O1	0,245(2)*	(Ba,La)1 – 3O1	0,258	
(Ba,La,Nd)1 – 3O1	0,264(2)	(Ba,La)1 – 3O1	0,264*	
(Ba,La,Nd)1 – 3O1	0,293(3)	(Ba,La)1 – 3O1	0,307	
(Ba,La,Nd)1 – 3O2	0,323(3)	(Ba,La)1 – 3O2	0,311	
((Ba,La,Nd)1 – O) _{cep}	0,281	((Ba,La)1 – O) _{cep}	0,285	
Δ (Ba,La,Nd)1O ₁₂	$110\cdot 10^{-4}$	Δ (Ba,La)1O ₁₂	$72\cdot 10^{-4}$	
(Ba,La,Nd)2 –3O1	0,263(2)	(Ba,La)2 – 3O1	0,251	
(Ba,La,Nd)2 –3O2	0,250(2)	(Ba,La)2 – 3O2	0,253	
(Ba,La,Nd)2 – 3O3	0,292(2)	(Ba,La)2 – 3O3	0,292	
(Ba,La,Nd)2 – 3O2	0,310(3)	(Ba,La)2 – 3O2	0,307	
((Ba,La,Nd)2 – O) _{cep}	0,279	((Ba,La)2 – O) _{cep}	0,276	
Δ (Ba,La,Nd)2O ₁₂	$72\cdot 10^{-4}$	Δ (Ba,La)2O ₁₂	$78\cdot 10^{-4}$	
(Ba,La,Nd)3 – 3O3	0,270(2)	(Ba,La)3 – 3O3	0,252	
(Ba,La,Nd)3 – 6O2	0,256(3)	(Ba,La)3 – 6O2	0,271	
(Ba,La,Nd)3 – 3O3	0,285(2)	(Ba,La)3 – 3O3	0,305	
((Ba,La,Nd)3 – O) _{cep}	0,267	((Ba,La)3 – O) _{cep}	0,275	
Δ (Ba,La,Nd)3O ₁₂	$20\cdot 10^{-4}$	Δ (Ba,La)3O ₁₂	$48\cdot 10^{-4}$	
Ti1 – 3O1	0,188(1)	Ti1 – 3O1	0,184	
Ti1 – 3O2	0,209(2)	Ti1 – 3O2	0,214	
(Ti1 – O) _{cep}	0,199	(Ti1 – O) _{cep}	0,199	
$\Delta Ti1O_6$	$28\cdot 10^{-4}$	$\Delta Ti1O_6$	$57\cdot 10^{-4}$	
Ti2 – 3O2	0,203(2)	Ti2 - 3O2	0,191	
Ti2 – 3O3	0,199(1)	Ti2 – 3O3	0,201	
$(Ti2 - O)_{cep}$	0,201	$(Ti2 - O)_{cep}$	0,196	
$\Delta Ti2O_6$	$1\cdot 10^{-4}$	$\Delta Ti2O_6$	$7\cdot 10^{-4}$	

Таблиця 2. Міжатомні відстані (нм) і ступінь деформації (Δ) поліедрів (Ba,Ln)O₁₂ та TiO₆ в кристалічних структурах BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ та BaLa₄T_{i4}O₁₅ [8]

* Міжблочні відстані.

пруженості в міжблочному просторі ШПС. Такий характер структурних змін у будові ШПС фази BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ сприяє дестабілізації ШПС і дає підстави для висновку, що саме ці фактори обумовлюють обмеженість області твердих розчинів BaLa_{4-x}Nd_xTi₄O₁₅ ($0 \le x \le \le 1,55$) з ШПС.

Таким чином, у даній роботі встановлено область існування та природу фаз BaLa_{4-x}Nd_xTi₄O₁₅ з ШПС та визначено будову ШПС фази BaLa_{2,5}Nd_{1,5}Ti₄O₁₅. На підставі аналізу одержаних результатів виявлено характер впливу ізовалентного заміщення атомів лантану в ШПС титанату BaLa₄Ti₄O₁₅ на ступінь деформації міжблочних поліедрів (Ba,Ln)O₁₂ та на довжину міжблочних зв'язків (Ba,Ln) – O.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Sebastian M. T. Dielectric Materials for Wireless Communication. Oxford: Elsevier, 2008. 671 p.
- 2. Lichtenberg F., Herrnberge A., Wiedenmann K. Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type A_nB_nO_{3n+2}, A^IA_{k-1}B_kO_{3k+1} and A_mB_{m-1}O_{3m}. *Progr. Solid State Chem.* 2008. **36**, № 4. P. 253–387. doi: https://doi.org/10.1016/j.progsolidstchem.2008.10. 001
- 3. Pei J., Yue Z., Zhao F., Li W., Gui Z., Li L. Preparation and characterization of citrate sol-gel derived CaLa₄Ti₄O₁₅ microwave dielectric ceramics. *Key Eng. Mater.* 2008. **368-372**. P. 167–169. doi: https://doi.org/10.4028/www.scientific.net/KEM.368-372.167
- 4. Li X., Zheng X., Liang B., Tang D., Zhang X. Synthesis and properties of CaLa₄Ti₄O₁₅ microwave dielectric ceramics. *J. Chin. Ceram. Soc.* 2008. **36**, № 12. P. 1695–1699.
- 5. Jawahar I.N., Santha N.I., Sebastian M.T., Mohanan P. Microwave dielectric properties of MO La₂O₃ TiO₂ (M = Ca, Sr, Ba) ceramics. *J. Mater. Res.* 2002. **17**, № 12. P. 3084–3089.
- 6. Titov Yu.A., Slobodyanik N. S., Polubinskii V. V. Mechanisms for the formation of laminar titanates A^{II}_{n-4}La₄Ti_{n-1}O_{3n} from coprecipitated component systems. *Theor. Exp. Chem.* 2012. **48**, № 3. P. 189–193.
- 7. Марків В.Я., Бєлявіна Н.М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами. *Конструкційні та функціональні матеріали*: Тези доп. Другої міжнар. наук. конф. (Львів, 14—16 жовт. 1997). Львів: Вид-во наук. тов-ва ім. Т.Г. Шевченка, 1997. С. 260—261.
- 8. Teneze N., Mercurio D., Trolliard G., Frit B. Cation-deficient perovskite-related compounds $(Ba,La)_n Ti_{n-1}O_{3n}$ (*n* = 4, 5, and 6): a Rietveld refinement from neutron powder diffraction data. *Mat. Res. Bull.* 2000. **35**, No 10. P. 1603–1614.

Надійшло до редакції 14.07.2017

REFERENCES

- 1. Sebastian, M. T. (2008). Dielectric Materials for Wireless Communication. Oxford: Elsevier.
- 2. Lichtenberg, F., Herrnberge, A. & Wiedenmann, K. (2008). Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type $A_n B_n O_{3n+2}$, $A^I A_{k-1} B_k O_{3k+1}$ and $A_m B_{m-1} O_{3m}$. Progr. Solid State Chem., 36, No. 4, pp. 253-387. doi: https://doi:10.1016/j.progsolidstchem.2008.10.001
- 3. Pei, J., Yue, Z., Zhao, F., Li, W., Gui, Z. & Li, L. (2008). Preparation and characterization of citrate sol-gel derived CaLa₄Ti₄O₁₅ microwave dielectric ceramics. Key Eng. Mater., 368-372, pp. 167-169. doi: https://doi.org/10.4028/www.scientific.net/KEM.368-372.167
- 4. Li, X., Zheng, X., Liang, B., Tang, D. & Zhang, X. (2008). Synthesis and properties of CaLa₄Ti₄O₁₅ microwave dielectric ceramics. J. Chin. Ceram. Soc., 36, No. 12, pp. 1695-1699.
- 5. Jawahar, I. N., Santha, N. I., Sebastian, M. T. & Mohanan, P. (2002). Microwave dielectric properties of MO La₂O₃ TiO₂ (M = Ca, Sr, Ba) ceramics. J. Mater. Res., 17, No. 12, pp. 3084-3089.
- 6. Titov, Yu. A., Slobodyanik, N. S. & Polubinskii, V. V. (2012). Mechanisms for the formation of laminar titanates A^{II}_{*n*-4}La₄Ti_{*n*-1}O_{3*n*} from coprecipitated component systems. Theor. Exp. Chem., 48, No. 3, pp. 189-193.

- 7. Markiv, V. & Belyavina, N. (1997, October). Hardware program complex for research of polycrystalline substances on them diffraction spectra. Proceedings of the 2nd International Scientific Conference of Engineering and Functional Materials, (pp. 260-261), Lviv: Taras Shevchenko Scientific Society (in Ukrainian).
- 8. Teneze, N., Mercurio, D., Trolliard, G. & Frit, B. (2000). Cation-deficient perovskite-related compounds $(Ba,La)_n Ti_{n-1}O_{3n}$ (n = 4, 5, and 6): a Rietveld refinement from neutron powder diffraction data. Mat. Res. Bull., 35, No. 10, pp. 1603-1614.

Received 14.07.2017

Ю.А.Титов¹, Н.Н.Белявина¹, Н.С.Слободяник¹, М.В.Тимошенко¹, В.В.Чумак²

¹ Киевский национальный университет им. Тараса Шевченко

² Житомирский государственный университет им. Ивана Франко

E-mail: tit@univ.kiev.ua

ВЛИЯНИЕ ИЗОВАЛЕНТНОГО ЗАМЕЩЕНИЯ АТОМОВ ЛАНТАНА В ${\rm BaLa}_4{\rm Ti}_4{\rm O}_{15}$ на строение его слоистой перовскитоподобной структуры

Определены условия замещения атомов La на атомы Nd в слоистой перовскитоподобной структуре (СПС) титаната BaLa₄Ti₄O₁₅. Методом рентгеновской дифракции порошка определена СПС фазы BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ со степенью замещения, близкой к максимальной. Анализ строения СПС BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ показал, что вхождение атомов Nd в СПС BaLa₄Ti₄O₁₅ приводит к увеличению степени деформации межблочных полиэдров (Ba,Ln)1O₁₂ и уменьшению длины межблочных расстояний (Ba,Ln)1 – 3O1. Оба фактора дестабилизируют СПС и ограничивают область существования твердых растворов BaLa_{4-x}Nd_xTi₄O₁₅ значение м $x \leq 1,55$.

Ключевые слова: титанат BaLa₄Ti₄O₁₅, слоистая перовскитоподобная структура, порошковая рентгеновская дифракция.

Y.A.Titov¹, N.M. Belyavina¹, M.S.Slobodyanik¹, M.V.Timoschenko¹, V.V.Chumak²

¹ Taras Shevchenko National University of Kiev ² Zhytomyr Ivan Franko State University E-mail: tit@univ.kiev.ua

INFLUENCE OF THE ISOVALENT SUBSTITUTION OF LA ATOMS IN ${\rm BaLa_4Ti_4O_{15}}$ ON THE CONSTITUTION OF ITS SLAB PEROVSKITE-LIKE STRUCTURE

Conditions of the substitution of La for Nd atoms in slab perovskite-like structure (SPS) of the titanate BaLa₄Ti₄O₁₅ are determined. SPS of phase BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ with a degree of replacement close to maximal has been determined by X-ray powder diffraction. The analysis of the constitution of SPS BaLa_{2,5}Nd_{1,5}Ti₄O₁₅ has shown that the insertion of Nd atoms in SPS BaLa₄Ti₄O₁₅ results in an increase of the degree of deformation of interblock polyhedra (Ba,Ln)1O₁₂ and in a decrease of the length of interblock distances (Ba,Ln)1 – 3O1. Both factors destabilize SPS and limit the existence domain of solid solutions of BaLa_{4-x}Nd_xTi₄O₁₅ by the value $x \leq 1.55$.

*Keywords: titanate BaLa*₄*Ti*₄*O*₁₅, *slab perovskite-like structure*, *X-ray powder diffraction*.