

The effects of structural rigidity of the liquid rocket engine chamber with a high-expansion nozzle on the characteristics of the thrust-vector control are assessed. A simplified mathematical model is developed. For the model developed the effects of the amplitude-frequency characteristics of the swinging combustion chamber of an engine are estimated under forced harmonic vibrations. It is shown that the chamber of combustion under consideration can appear as a reasonably rigid chamber without inducing a significant interference for thrust vector control at swinging frequency of 10 Hz or less. However, there is a possibility of a significant effect of rigidity of the swinging drive and that of the outlet of an uncooled section mouth for the engine nozzle on the above process.





1 – 6, 1, , . 1 [8, 9].

| 1 -                |          |      |      |       |       |       |      |
|--------------------|----------|------|------|-------|-------|-------|------|
|                    | . 1      | 1    | 2    | 3     | 4     | 5     | 6    |
| ζ                  | -        | 0    | 0,18 | 0,286 | 0,346 | 0,353 | 1,34 |
| D                  | ,        | 0,18 | 0,18 | 0,076 | 0,157 | 0,16  | 0,8  |
| $\cdot \cdot 10^5$ | $EI_x$ , | 12   | 14   | 1,7   | 12,5  | 4,6   | 340  |



(z = 0,28 - 0,3),



z = 0,35 .













$$(t) = \sin(t + 0).$$
(1)

$$L = T + (\cdot) - V', \qquad (2)$$
$$V' = V + M (R \cdot f) - \frac{1}{2} I \omega^2,$$

$$T = \frac{1}{2} \left\{ m_1 (x_1 \dot{\varphi}_1)^2 + m_2 [(l + x_2) \dot{\varphi}_1 + x_2 \dot{\varphi}_2]^2 \right\};$$
  

$$f = 0;$$
  

$$V = \frac{1}{2} (c_1 \varphi_1^2 + c_2 \varphi_2^2);$$
  

$$l = m_1 x_1^2 + m_2 (l + x_2)^2;$$
  

$$(\cdot ) = \omega \left\{ m_1 x_1^2 \dot{\varphi}_1 + m_2 (l + x_2) [(l + x_2) \dot{\varphi}_1 + x_2 \dot{\varphi}_2] \right\}.$$
  

$$\delta A = -P l \varphi_2 \delta \varphi_1$$
  

$$Q_1 = -P l \varphi_2, \quad Q_2 = 0.$$
  

$$(2)$$
  

$$L = \frac{1}{2} \left\{ m_1 (x_1 \dot{\varphi}_1)^2 + m_2 [(l + x_2) \dot{\varphi}_1 + x_2 \dot{\varphi}_2]^2 \right\} + \frac{1}{2} \left\{ m_1 x_1^2 \dot{\varphi}_1 + m_2 (l + x_2) [(l + x_2) \dot{\varphi}_1 + x_2 \dot{\varphi}_2]^2 \right\} - \frac{1}{2} (c_1 \varphi_1^2 + c_2 \varphi_2^2) + \frac{\omega^2}{2} [m_1 x_1^2 + m_2 (l + x_2)^2]$$

1 2, ,

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\varphi}_i}\right) - \frac{\partial L}{\partial \varphi_i} - Q_i = 0, \quad i = 1, 2$$

$$\ddot{\varphi}_{1} = -\ddot{\varphi}(t) + a_{11}\varphi_{1} + a_{12}\varphi_{2}; \\ \ddot{\varphi}_{2} = + a_{21}\varphi_{1} + a_{22}\varphi_{2}, \end{cases},$$
(3)

$$\begin{aligned} \mathbf{a}_{11} &= -\frac{\mathbf{c}_1}{m_1 x_1^2}; \quad \mathbf{a}_{12} = \frac{\mathbf{c}_2 \xi_2 - PI}{m_1 x_1^2}; \quad \mathbf{a}_{21} = -\xi_2 \mathbf{a}_{11}; \quad \mathbf{a}_{22} = -\frac{\mathbf{c}_2}{m_2 x_2^2} - \xi_2 \mathbf{a}_{12}; \\ \xi_2 &= \frac{I + x_2}{x_2}. \end{aligned}$$

(1),  
$$\ddot{\varphi} = -A\Omega^2 \sin(\Omega t + \theta_0), \qquad (4)$$

$$t = 0; \quad \theta_0 = \frac{\pi}{2}; \quad \phi_1 = \phi_2 = 0; \quad \dot{\phi}_1 = \dot{\phi}_2 = 0.$$
 (5)

(1),

[12].

,

(1)  

$$\phi_{11} = A_1 \sin(\Omega t + \theta_0); \quad \phi_{21} = A_2 \sin(\Omega t + \theta_0),$$
(6)

(3)

$$A_{1} = -A\Omega^{2}(a_{22} + \Omega^{2})/D; \quad A_{2} = A\Omega^{2}a_{21}/D;$$
  
$$D = (a_{11} + \Omega^{2})(a_{22} + \Omega^{2}) - a_{12}a_{21}.$$
 (7)

-

-

$$s^{4} - (a_{11} + a_{22})s^{2} + a_{11}a_{22} - a_{12}a_{21} = 0$$
(8)
(8)

$$\mathbf{s}_{i} = \pm i \sqrt{\frac{1}{2}} |\mathbf{a}_{11} + \mathbf{a}_{22} \pm \sqrt{(\mathbf{a}_{11} - \mathbf{a}_{22})^{2} + 4\mathbf{a}_{12}\mathbf{a}_{21}}|.$$
[12]

$$\varphi_{10} = \sum_{i=1}^{4} \alpha_i \boldsymbol{e}^{\mathbf{s}_i t}; \quad \varphi_{20} = \sum_{i=1}^{4} \beta_i \boldsymbol{e}^{\mathbf{s}_i t}, \quad (10)$$

$$\begin{aligned} \alpha_{i}, \beta_{i}, i = 1, ..., 4, \\ \alpha_{i}(a_{11} - s_{i}^{2}) + \beta_{i}a_{12} = 0; \quad \alpha_{i}a_{21} + \beta_{i}(a_{22} - s_{i}^{2}) = 0. \end{aligned}$$
(11)  
$$t = 0 \quad (5), (6) \quad (10) \\ \sum_{i=1}^{4} \alpha_{i} + A_{1} = 0; \quad \sum_{i=1}^{4} \beta_{i} + A_{2} = 0; \quad \sum_{i=1}^{4} \alpha_{i}s_{i} = 0; \quad \sum_{i=1}^{4} \beta_{i}s_{i} = 0, \\ \beta_{i} \quad (11) \\ \sum_{i=1}^{4} \alpha_{i} = -A_{1}; \sum_{i=1}^{4} \alpha_{i}s_{i}^{2} = -a_{11}A_{1} - a_{12}A_{2}; \sum_{i=1}^{4} \alpha_{i}s_{i} = 0; \sum_{i=1}^{4} \alpha_{i}s_{i}^{3} = 0. \end{aligned}$$
(12)  
$$, \quad s_{2} = -s_{1}, s_{4} = -s_{3}, \\ (12) \quad , \quad \alpha_{1} = \alpha_{2} = \alpha_{1}^{*}/2, \alpha_{3} = \alpha_{4} = \alpha_{2}^{*}/2, \\ \alpha_{1}^{*} \quad \alpha_{2}^{*}: \\ \alpha_{1}^{*} = \frac{-(a_{11} - s_{3}^{2})A_{1} - a_{12}A_{2}}{a_{11} + a_{22}}; \quad \alpha_{2}^{*} = \frac{(a_{11} - s_{1}^{2})A_{1} + a_{12}A_{2}}{a_{11} + a_{22}}. \end{aligned}$$
(13)

$$\beta_{1}^{*} = \frac{-(a_{22} - s_{3}^{2})A_{2} - a_{21}A_{1}}{a_{11} + a_{22}}; \quad \beta_{2}^{*} = \frac{(a_{22} - s_{1}^{2})A_{2} + a_{21}A_{1}}{a_{11} + a_{22}}.$$
(14)  
(10) -

[11],  

$$\phi_{1} = \phi_{10} + \phi_{11} = \alpha_{1}^{*} \cos|\mathbf{s}_{1}|t + \alpha_{2}^{*} \cos|\mathbf{s}_{3}|t + A_{1} \cos\Omega t;$$

$$\phi_{2} = \phi_{20} + \phi_{21} = \beta_{1}^{*} \cos|\mathbf{s}_{1}|t + \beta_{2}^{*} \cos|\mathbf{s}_{3}|t + A_{2} \cos\Omega t,$$
(15)

$$s_{j} (i = 1,3)$$
(9),  
 $\alpha_{j}^{*} \beta_{j}^{*} (j = 1,2) -$ (13) (14),  
 $A_{1} A_{2} - -$ (7).

$$P_{60} = (P_0 + P) \sin \varphi$$

$$P_6 = P_0 \sin(\varphi + \varphi_1) + P \sin(\varphi + \varphi_1 + \varphi_2) \cdot P_0$$

$$( ), P_-$$

$$, P_6 - P_{60}$$

$$\Delta P_{\delta} = (P_{O} + P)\varphi_{1} + P\varphi_{2} = A(P_{O} + P)(\overline{\varphi}_{1} + K \overline{\varphi}_{2}) = A(P_{O} + P)\delta P_{\delta},$$

$$K = P/(P_{O} + P) - ; \quad \overline{\varphi}_{1} = \varphi_{1} / A, \quad \overline{\varphi}_{2} = \varphi_{2} / A - 1$$

$$1 \quad 2, \quad \delta P_{\delta}$$

$$, \quad \varphi_{1} \quad \varphi_{2}:$$

$$\delta P_{\mathbf{5}} = \gamma_1 \cos|\mathbf{s}_1| t + \gamma_2 \cos|\mathbf{s}_3| t + \mathbf{A}_P \cos\Omega t .$$
<sup>(16)</sup>

$$\gamma_{1} = \left(\alpha_{1}^{*} + K\beta_{1}^{*}\right) / A,$$
  

$$\gamma_{2} = \left(\alpha_{2}^{*} + K\beta_{2}^{*}\right) / A,$$
  

$$A_{P} = \left(A_{1} + KA_{2}\right) / A.$$
(17)

(7), (13) (14),  
$$A$$
, -

$$z = z_1$$
  $z = z_2$ , -

•\_\_

(17)

2,

•

$$c_{2} = 1 / \int_{z_{1}}^{z_{2}} \frac{dz}{EI_{x}(z)}, \qquad (18)$$

 $EI_x(z)$  – , , --R<sub>0</sub> ( 2 3 . 1) , , . . 1). Z, E  $h_0$ . Н , I<sub>x</sub> (17),  $I_{x} = \frac{\pi h_{0}}{\cos \phi} \left[ R_{0} + \rho (1 - \cos \phi) \right]^{3} = \frac{I_{x0}}{\overline{R}_{0}^{3} \cos \phi} \left( \overline{R}_{0} + 1 - \cos \phi \right)^{3},$ ;  $\overline{R}_0 = R_0 / \rho$ ;  $\phi I_{x0} = \pi h_0 R_0^3 -$ , -

0 /4.  $\boldsymbol{z} = \rho \sin \phi ,$ 

\_

$$dz = \rho \cos \phi d\phi$$
(18)  

$$\int_{z_{1}}^{z_{2}} \frac{dz}{EI_{x}(z)} = \frac{\rho \overline{R}_{0}^{3}}{EI_{x0}} \int_{0}^{\phi_{2} = \pi/4} \frac{\cos^{2} \phi d\phi}{(\overline{R}_{0} + 1 - \cos \phi)^{3}} = \frac{\rho \overline{R}_{0}^{3}}{EI_{x0}} J .$$

$$t = tg \frac{\phi}{2} J$$

$$J = \frac{2}{(\overline{R}_{0} + 2)^{3}} \int_{0}^{t_{2} = \sqrt{2} - 1} \frac{(1 - t^{2})^{2} dt}{(a^{2} + t^{2})^{3}} ,$$

$$a^{2} = \overline{R}_{0} / (\overline{R}_{0} + 2),$$

$$J = 2 \left(\frac{a^{2}}{\overline{R}_{0}}\right)^{3} \left[\frac{3a^{4} - 2a^{2} + 3}{8a^{5}} \operatorname{arctg} \frac{t_{2}}{a} + \frac{(a^{2} + 1)(3 - 5a^{2})t_{2}}{8a^{4}(a^{2} + t_{2}^{2})} + \frac{(a^{2} + 1)^{2}t_{2}}{4a^{2}(a^{2} + t_{2}^{2})^{2}}\right].$$

$$, \qquad (17)$$

$$c_{2} = \frac{\overline{z}}{J} \frac{EI_{x0}}{Z_{2} - z_{1}} = K_{C} \frac{EI_{x0}}{Z_{2} - z_{1}} ,$$

$$\overline{z} = (z_{2} - z_{1})/\rho = \sin \phi_{2} = \sqrt{2}/2,$$

$$K . \qquad \overline{R}_{0} = 0.5; a^{2} = 0.2 u t_{2} = \sqrt{2} - 1$$

$$K \qquad 1,58. \qquad \overline{R}_{0} = 0.5$$

 $a_{12}$  ,

2.

: 
$$l = 0,3$$
 ;  $x_1 = 0,1$  ;  $m_1 = 8$  ;  $x_2 = 0,5$  ;  $m_2 = 16$  ;  $P = 30000$   
 $K = 0,4$ . (3) :

$$\begin{aligned} & a_{11} = -12,5 c_1; \\ & a_{12} = \left(\frac{c_2 \xi_2}{m_1 x_1^2} = 9,4 \cdot 10^7\right) - \left(\frac{Pl}{m_1 x_1^2} = 1,125 \cdot 10^5\right) = 9,38875 \cdot 10^7; \\ & a_{21} = 20 c_1; \\ & a_{22} = -1,51395 \cdot 10^8. \end{aligned}$$

. (15) (16) 10  $(\Omega = 20\pi \quad 62,83 \quad /, \ \Omega^2 \quad 3948)$ -A = 1. $a_{11} a_{21}$ ;  $a_{11} = 0,1$ ;  $a_{11} = -(5,875 \cdot 10^6; 5,875 \cdot 10^7; 5,875 \cdot 10^8) a_{21} = 0,1$ ;  $a_{21} = 0,1$ ;  $a_{22} = 0,1$ ;  $a_{23} = 0,1$ ;  $a_{23}$  $_{1} = _{2} \quad _{1} = 10 \quad _{2},$  $(9,4\cdot10^6; 9,4\cdot10^7; 9,4\cdot10^8).$  $\Omega^2$ (7)  $a_{11}$   $a_{22}$ , , :

$$A_1 \approx \Omega^2 \frac{m_1 x_1^2}{c_1} \left( 1 + \xi_2^2 \frac{m_2 x_2^2}{m_1 x_1^2} \right); \quad A_2 \approx \Omega^2 \xi_2 \frac{m_2 x_2^2}{c_2}.$$

2

-

-

|                                    | $1 c_1, \cdot /$ | 4,7·10 <sup>5</sup>   | $4,7 \cdot 10^{6}$    | $4,7 \cdot 10^{7}$    |
|------------------------------------|------------------|-----------------------|-----------------------|-----------------------|
| φ <sub>1</sub>                     | $, A_{1},$       | 9,51·10 <sup>-2</sup> | 8,76·10 <sup>-3</sup> | 8,69.10-4             |
| φ2                                 | $, A_{2},$       | 5,91·10 <sup>-3</sup> | 5,44·10 <sup>-3</sup> | 5,40·10 <sup>-3</sup> |
| <b>s</b> <sub>1</sub> <sup>2</sup> |                  | $-4,39 \cdot 10^4$    | $-3,29 \cdot 10^{5}$  | $-9,35 \cdot 10^5$    |
| <b>s</b> <sup>2</sup> <sub>3</sub> |                  | $-1,57 \cdot 10^{8}$  | $-2,10 \cdot 10^{8}$  | $-7,38 \cdot 10^{8}$  |

| r              |                                             |                       |                       |                      |
|----------------|---------------------------------------------|-----------------------|-----------------------|----------------------|
| Φ1             | $ \mathbf{s}_1 , \alpha_1^*,$               | 9,51.10 <sup>-2</sup> | 8,73·10 <sup>-3</sup> | 8,63.10-4            |
| φ <sub>1</sub> | $ \mathbf{s}_2 , \alpha_2^*,$               | 9,31.10-7             | 5,23.10-6             | $4,25 \cdot 10^{-6}$ |
| φ <sub>2</sub> | $ \mathbf{s}_{\mathbf{l}} , \beta_{1}^{*},$ | 5,91.10-3             | 5,43.10-3             | 5,39.10-3            |
| φ <sub>2</sub> | $ \mathbf{s}_2 , \beta_2^*,$                | $-1,50 \cdot 10^{-6}$ | -8,42.10-6            | -6,81.10-6           |
|                | $ \mathbf{s}_{1} , \gamma_{1}, \%$          | 9,74                  | 1,09                  | 0,30                 |
|                | $ \mathbf{s}_2 , \gamma_2, \%$              | $3,31 \cdot 10^{-5}$  | $1,86 \cdot 10^{-4}$  | $1,52 \cdot 10^{-4}$ |
|                | -<br>Ω, A <sub>P</sub> , %                  | 9,75                  | 1,09                  | 0,30                 |
|                | .2,,,                                       |                       | 1                     | , .                  |
| 10             | . ,                                         |                       |                       |                      |
| • ,            | ,                                           |                       |                       |                      |
|                |                                             |                       | 20                    | ,                    |
| ,              | (33                                         | ).                    |                       |                      |
| •              |                                             | ,                     |                       | ,                    |
|                |                                             |                       |                       |                      |
| ·              | ,                                           | ,<br>10               | ,                     |                      |
|                |                                             |                       |                       | . ,                  |
| ,              |                                             | , 20                  |                       |                      |
|                |                                             |                       |                       |                      |
| 1              |                                             |                       |                       | : .                  |
|                | : - , 2004. 544                             |                       |                       |                      |



| 2                         | · ·,                         | · ·,      | ,,                                                                                     |
|---------------------------|------------------------------|-----------|----------------------------------------------------------------------------------------|
| 2                         | . 2013. 4 70 –               | 83.       |                                                                                        |
| 3                         | • •                          |           | , 2003. – 412 .                                                                        |
| 5                         | ,2014.540 .                  |           |                                                                                        |
| 5                         | · .,                         |           |                                                                                        |
| 6                         | ,                            | ,         | · ·, · ·, · · · · ·                                                                    |
| 2008.<br>7                | 14/1 49 – 63.<br>,           | • •,      | - 2015 1 42 – 54                                                                       |
| 8                         | · ·,                         | · .,<br>_ |                                                                                        |
| 9<br>10<br>11<br>12<br>13 | . 2016. 1 2<br><br><br><br>C | :         | : , 1978.305 .<br>: , 1986.560 .<br>. 1971.636 .<br>: , 1975.536 .<br>: i , 1982.281 . |

24.11.2016, 14.12.2016