

The study focuses on the pressing problem of an analytical validation of the integral characteristics of the rotor systems for further balancing the rotors at rundown (at start). This allows dismissing the contact vibration pickups and other special instruments for monitoring the balancing process. The work aim is to develop an algorithm of the determination of the integral characteristics of the rundown rotor system in the presence of a special relation (a positive discriminant) of the coefficients of moments, which are summands of a total moment of rotational drag. A one-to-one sequent algorithm is built to determine an axial moment of the rotor inertia, the needed coefficients of the equation of a total moment of rotational drag, a total frictional characteristic, a reduced mass of the rotor, and an axial location of the center of mass. Four starts would suffice to determine these magnitudes. The presented disturbances of the rotor system are graded. A general approach to the solution of the problem without the method of least squares in full measure is presented. This obviates the solution of the multi-modal optimization problems and a choice of an optimization criterion.

621.66

() () *t* ()

2...4

φ, ω, ε.

- $J_p, \cdot \cdot \cdot^2,$
- x_p , ;
- $m, \cdot 2/, m \cdot , \cdot ;$
- – $r_n \cdot f$, ,
- . ,
 - ,

 - , . .
 - .
- , (). -, , ,
- [1]: ()) ()
- , .
- . [3] . [1, 2 .]
 - , , , . , (
 -) -

121

_

_

$$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ &$$

•

,

,

-

$$F(\mu, m, M, \cdot) = J \cdot \begin{cases} \overline{M}, & \mu = 0, m = 0, \Delta = 4\mu M - m^2 = 0\\ \frac{-2}{m+2\mu}, & \Delta = 0, \mu + m \neq 0\\ \frac{2}{\sqrt{\Delta}} \operatorname{arctg}\left(\frac{m+2\mu}{\sqrt{\Delta}}\right), & \Delta > 0\\ \frac{2}{\sqrt{-\Delta}} \operatorname{arctg}\left(\frac{m+2\mu}{\sqrt{-\Delta}}\right), & \Delta < 0 \end{cases}$$

122

 $\Delta = 4\mu M - m^2$

. 1.

		1
		$\Delta = 4\mu M - m^2 > 0$
1	2	3
1		$\int \frac{Jd\omega}{\mu\omega^2 + m\omega + M} = \frac{2J}{\sqrt{\Delta}} \operatorname{arctg}\left(\frac{m + 2\mu\omega}{\sqrt{\Delta}}\right) + C$
2	I	$t(\omega) = t_0 + \frac{2J}{\sqrt{\Delta}} \cdot \arctan\left[\frac{\left(\omega_0 - \omega\right)\sqrt{\Delta}}{2M + m\omega_0 + \left(2\mu\omega_0 + m\right)\omega}\right]$
3	-	$t := t(0) \Big _{t_0=0} = \frac{2J}{\sqrt{\Delta}} \cdot \operatorname{arctg}\left[\frac{\omega_0 \sqrt{\Delta}}{2M + m\omega_0}\right]$
4		$\omega(t) = \frac{\sqrt{\Delta}}{2\mu} \operatorname{tg}\left[\operatorname{arctg}\left(\frac{m+2\mu\omega_0}{\sqrt{\Delta}}\right) - \frac{(t-t_0)\sqrt{\Delta}}{2J}\right] - \frac{m}{2\mu},$
		$: \omega(it) = 0$
5	II- -	$\varphi(t) = \frac{J}{\mu} \ln \cos \left[Z - \frac{\sqrt{\Delta}}{2J} (t - t_0) \right] \cdot \cos^{-1} \left[Z \right] - \frac{m}{2\mu} (t - t_0) ,$
		$Z = \operatorname{arctg}\left(\frac{2\mu\omega_0 + m}{\sqrt{\Delta}}\right)$

123

_

 $\boldsymbol{M}_{CO\Pi P} = \mu \omega^2 + \boldsymbol{m} \omega + (\boldsymbol{r}_{\Pi} \cdot \boldsymbol{f}) \cdot \boldsymbol{G}_{p}$.

$$G_{\Gamma}$$
 , J_{Γ} ,

, . 3.

			3	
	<i>m</i> =70			
		$r_{min} = 4$	$r_{max} = 9$	
()				
	0	min	max	
$J = 2 \cdot m \cdot r^2, \cdot ^2$	0	2,24	11,34	

,

,

$$t_{\Pi B1} = (J_P + J_{\Gamma 1}) \cdot [F(\mu, m, M, \omega_0) - F(\mu, m, M, 0)];$$

$$t_{\Pi B2} = (J_P + J_{\Gamma 2}) \cdot [F(\mu, m, M, \omega_0) - F(\mu, m, M, 0)].$$

, J_P ,

,

$$J_P = \frac{J_{2}t_{2} - J_{1}t_{1}}{t_{1} - t_{2}}, \qquad (2)$$

(

(2) J

 J_P)

. 4,

_

 J_P

							4
	-	•	t ,			J_P ,	
	-35		1	2	3		. 2
1		0	100,03	101,88	99,31	100,407	-
2	*	min	108,81	114,61	102,87	108,763	1387,90
3		max	110,47	108,13	109,84	109,48	()
4		min	102,1	106,65	104,35	104,367	534,491
5		max	103,54	109,62	105,34	106,167	(2)
6		min	91,08	96,3	97,56	94,98	230,391
7		max	100,75	97,69	98,1	98,847	()
J_{P} , · ²						717,594	

=t /4, .4.

2.

,

μ

m

. 4,

$$\begin{cases} tg\left(\frac{1\delta\cdot\sqrt{\Delta}}{2J}\right) = \frac{\Omega_{3}\sqrt{\Delta}}{2M + m\Omega_{3}} \\ tg\left(\frac{2\delta\cdot\sqrt{\Delta}}{2J}\right) = \frac{\Omega_{2}\sqrt{\Delta}}{2M + m\Omega_{2}} \\ tg\left(\frac{3\delta\cdot\sqrt{\Delta}}{2J}\right) = \frac{\Omega_{1}\sqrt{\Delta}}{2M + m\Omega_{1}} \end{cases}$$
(3)

•

$$\frac{\mu}{M} = \frac{\Omega_{1}\Omega_{3} + \Omega_{2}\Omega_{3} - \Omega_{2}^{2} - \Omega_{3}^{2}}{\Omega_{2}\Omega_{3}^{2}(\Omega_{1} - \Omega_{2})}$$

$$\frac{m}{M} = \frac{\Omega_{1}\Omega_{2} - 3\Omega_{1}\Omega_{3} + \Omega_{2}\Omega_{3} + \Omega_{3}^{2}}{\Omega_{3}^{2}(\Omega_{1} - \Omega_{2})} \qquad (4)$$

$$M = \frac{2J}{t_{1}\sqrt{4\frac{\mu}{M} - (\frac{m}{M})^{2}}} \operatorname{arctg}(\frac{\Omega_{3}\sqrt{4\frac{\mu}{M} - (\frac{\mu}{M})^{2}}}{2 + \frac{m}{M}\Omega_{3}})$$

$$(, (3), ..., 5,$$

•

. 1,

(3) (4)

μ, , *m*

•

3.1.

 $(r_{\Pi}f).$

.

_

 J_{ρ}

2, 3

 $\begin{bmatrix} \mu_2 & m_2 & M_2 = (r \ f)(G \ +G \ _2) \\ \mu_3 & m_3 & M_3 = (r \ f)(G \ +G \ _3) \end{bmatrix}$

,

		5		
,				
	$\sqrt{\Delta} = 0$			
$\sqrt{4\mu M} - m^2 = 0$	> 0			
$2M + m\omega_{1,2,3} = 0$	$\frac{M}{m} = -\frac{\omega_{1,2,3}}{2} < 0$	I		
$3\omega_3(2M + m\omega_2) = \omega_2(2M + m\omega_3)$	$\frac{M}{m} = \frac{\omega_2 \omega_3}{\omega_2 - 3\omega_3} < 0$	- <i>w</i>		
=0	$\Delta = 4 \mu M$	$-m^{2} < 0$		

$$(r \ f) = \frac{M_2 - M_3}{G_2 - G_3}.$$
 (5)

,

.

 G_P

-

$$_{n}$$
 $(r_{\Pi}f)$

n = 1, 2, 3

$$G_P = \frac{M_n}{(r \ f)} - G_n = \frac{M_0}{(r \ f)}.$$
(6)

$$-G_{\Gamma}, \quad .1, 2.$$

$$G_{\Gamma} \quad G \quad , \quad .2,):$$

$$\begin{cases}
R_{A} = G_{P} \frac{x_{P} - l}{l} + G \quad \frac{x - l}{l} \\
R_{B} = G_{P} \frac{x_{P}}{l} + G \quad \frac{x}{l} \\
M = (r_{\Pi} f)(R_{A} + R_{B}) \quad :
\end{cases}$$

$$x_{P} = \frac{l}{2} \left[1 + \frac{M}{(r \ f)G_{P}} - \frac{G}{G_{P}} \cdot \frac{2x \ -l}{l} \right], \tag{7}$$

$$x_{\Gamma} - ,$$

 $l - (). (2), (4)$

,

: J_{P} , μ , m, M, $(r_{\Pi}f)$, G_{P} , x_{P}

.

 $4\mu M - m^2 > 0$ (

) $(r_{\Pi}f)$

$$(r_{\Pi}f)_{A,B} \approx \frac{1}{2}(r_{\Pi}f)$$
.
, $(r_{\Pi}f)_{A} = (r_{\Pi}f)_{B}$.
, $(r_{\Pi}f)_{A} = (r_{\Pi}f)_{B}$.
, $(r_{\Pi}f)_{A} = (r_{\Pi}f)_{B}$.

131

-

_

(

)

