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Abstract. The buckling of elastic circular plates with an internal elastic ring support and 

elastically restrained edges against rotation and simply supported is concerned. The classical 
plate theory is used to derive the governing differential equation. This work presents the 
existence of buckling mode switching with respect to the radius of internal elastic ring sup-
port. The plate may buckle in an axisymmetric mode in general, but when the radius of the 
ring support becomes small, the plate may buckle in an asymmetric mode. The cross-over 
ring support radius varies from 0.09891 to 0.1545 times the plate radius, depending on the 
rotational stiffness of the elastic restraint at the edges and elastic restraint of the ring. The 
optimum radius of the internal elastic ring support for maximum buckling load is also de-
termined. Extensive data is tabulated so that pertinent conclusions can be arrived at on the 
influence of rotational restraint, translational restraint of internal elastic ring support, Pois-
son’s ratio, and other boundary conditions on the buckling of uniform isotropic circular 
plates. The numerical results obtained are in good agreement with the previously published 
data. 
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mode switching. 
 
 
I. Introduction. 
Buckling of plates is an important topic in structural engineering. The prediction of 

buckling of structural members restrained laterally is important in the design of various en-
gineering components. In particular, circular plates with an internal elastic ring support find 
applications in aeronautical (instrument mounting bases for space vehicles), rocket launch-
ing pads, aircrafts (instrument mounting bases for aircraft vehicles) and naval vessels (in-
strument mounting bases).  Based on the Kirchhoff’s theory, the elastic buckling of thin 
circular plates has been extensively studied by many authors after the pioneering work pub-
lished by Bryan [1]. Since then, there have been extensive studies on the subject covering 
various aspects such as different materials, boundary and loading conditions. Also the buck-
ling of circular plates was studied by different authors Wolkowisky [2] and Brushes [3]. 
However, these sources only considered axisymmetric case, which may not lead to the cor-
rect buckling load. Introducing an internal elastic ring supports may increase the elastic 
buckling capacity of in-plane loaded circular plates significantly. Laura et al. [4] investi-
gated the elastic buckling problem of the aforesaid type of circular plates, who modeled the 
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plate using the classical thin plate theory. In their study only axisymmetric modes are con-
sidered.  

Kunukkasseril and Swamidas [5] are probably the first to consider elastic ring supports. 
They formulated the equations in general, but presented only the case of circular plate with a 
free edge. Wang and Wang [6] studied the fundamental frequency of the circular plate with 
internal elastic ring support. They have considered the four basic boundary conditions.  

Although the circular symmetry of the problem allows for its significant simplification, 
many difficulties very often arise due to complexity and uncertainty of boundary conditions. 
This uncertainty could be due to practical engineering applications where the edge of the 
plate does not fall into the classical boundary conditions. It is accepted fact that the condi-
tion on a periphery often tends to be part way between the classical boundary conditions 
(free, clamped and simply supported) and may correspond more closely to some form of 
elastic restraints, i.e., rotational and translational restraints Kim and Dickinson [7], Wang et 
al. [8], Wang and Wang [9], Ashour [10], Rdzanek et al. [11], and Andrei Zagrai and 
Dimitri Donskoy [12].  In a recent study, Wang et al. [8] showed that when the ring support 
has a small radius, the buckling mode takes the asymmetric mode. Wang and Wang [9] 
showed that the axisymmetric mode assumed by the previous authors might not yield the 
correct buckling load. In certain cases, an asymmetric mode would yield a lower buckling 
load. But they have studied only the circular plate with rigid ring support and elastically 
restrained edge against rotation. Recently, Wang [13] studied the buckling of a circular plate 
with internal elastic ring support by considering only the classical boundary conditions. The 
purpose of the present work is to complete the results of the buckling of circular plates with 
an internal elastic ring support and elastically restrained edge against rotation and simply 
supported by including the asymmetric buckling modes, thus correctly determining the 
buckling loads.  

 
II. Definition of the problem. 
Consider a thin circular plate of radius R , uniform thickness h , Young’s modulus 

E and Poisson’s ratio   and subjected to a uniform in-plane load, N  along its boundary, as 
shown in Fig. 1. The circular plate is also assumed to be made of linearly elastic, homoge-
neous and isotropic material. The edge of the circular plate is elastically restrained against 
rotation and simply supported and supported by an internal elastic ring support, as shown in 
Fig. 1. The problem at hand is to determine the elastic critical buckling load of a circular 
plate with an internal elastic ring support and elastically restrained edge against rotation and 
simply supported.  

 

 
 

Fig. 1  
Buckling of a Circular plate with an internal elastic ring Support and Elastically Restrained 

edge against Rotation and Simply Supported. 
 
III. Mathematical formulation of the problem. 
The plate is elastically restrained against rotation and simply supported at the edge of 

radius R and supported on an internal elastic ring of smaller radius bR as shown in Fig. 1.  
Let subscript I denote the outer region 1b r   and the subscript II denote the inner re-
gion 0 r b  . Here, all lengths are normalized by R . Using classical (Kirchhoff’s plate 
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theory), the following fourth order differential equation for buckling in polar coordi-
nates ( , )r  . 

4 2 0D w N w    ,                                                         (1) 

where w  is the lateral displacement, N  is the uniform compressive load at the edge. After 
normalizing the lengths by the radius of the plate R , Eq. (1) can be written as  

4 2 2 0D w k w    ,                                                         (2) 

where 
2 2

2
2 2 2

1 1

r rr r 
  

   
 

 is the Laplace operator in the polar coordinates r  and . 

Where r  is the radial distance normalized by R . 3 2/12(1 )D Eh   is the flexural rigid-

ity, /w w R , is normalized transverse displacement of the plate. 2 2 /k R N D is non-
dimensional load parameter. Suppose there are n nodal diameters. In polar coordinates 
( , )r   set  

( , ) ( )cos( )w r u r n  .                                                         (3) 

General solutions (Yamaki [14]) for the two regions are  
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5 6( ) ( ) n
II nu r C J kr C r  ,                                                    (5) 

where top form of the Eq. (4) is used for 0n  and the bottom form is used for 0n  , 
1 2 3 4 5 6, , , , &C C C C C C are constants, (.) & (.)n nJ Y  are the Bessel functions of the first and 

seconds of order n , respectively. Substituting Eq. (4) and (5) into Eq. (3) yields the follow-
ing: 
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;                         (6)  

5 6( , ) ( ) cos( )n
II nw r C J kr C r n     .                                       (7) 

The boundary conditions at outer region of the circular plate in terms of rotational stiff-
ness 1( )RK  is given by the following expressions 

1( ) '( )r R IM r K u r ;                                                     (8) 

( ) 0Iu r  .                                                            (9) 

The radial moment at outer edge is defined as follows 

 2
3

( ) ''( ) '( ) ( )r I I I
D

M r u r u r n u r
R

      .                        (10) 

Eqs. (8) and (10) yield the following  

 
2
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Therefore, the boundary conditions are as follows  
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11''( ) '( ) ( ) '( )I I I Iu r u r n u r R u r      ;                      (12) 

( ) 0Iu r  ,                                                (13) 

where 
2

1
11

RK R
R

D
 . 

Apart from the elastically restrained edge against rotation and simply supported edge, 
there is an internal elastic ring support constraint and the continuity requirements of slope 
and curvature at the support, i.e. at r b  

( ) ( )I IIu b u b ;                                                              (14) 

'( ) '( )I IIu b u b ;                                                            (15) 

''( ) ''( )I IIu b u b ;                                                          (16) 

22'''( ) '''( ) ( )I II IIu b u b T u b  ,                                              (17) 

where 2
22

TK R
T

D
 . The prime ( ' ) denotes the differentiation with respect to r . The non-

trivial solutions to Eqs. (12), (13), (14) – (17) are sought. The lowest value of k is the square 
root of the normalized buckling load. From Eqs. (4), (5), (12), (13) and (14) – (17) we get 
the following.  
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The top forms of Eqs. (17) – (23) are used for 0n   (axisymmetric buckling) and the 
bottom forms are used for 0n  (asymmetric buckling). 

 
IV. Solution. 
For the given values of 11 22, , , &n R T b  the above set of equations, gives exact charac-

teristic equation for non-trivial solutions of the coefficients 1 2 3 4 5 6, , , , &C C C C C C . For non-

trivial solution, the determinant of  6 6x
C must be removed. The value of k , calculated from 

the characteristic equation by a simple root search method. Using Mathematica, computer 
software with symbolic capabilities, solves this problem. 

 
V. Results and discussions. 
The influence of rotational spring stiffness parameter on buckling load for a given trans-

lational spring stiffness parameters of an elastic ring support is shown in Figs. 2 – 5. Figs. 2 
– 5, show the variations of buckling load parameter k , with respect to the internal elastic 
ring support radius b , for various values of rotational spring stiffness parameters 

11( 0,0.5,10,100 & )R   by keeping translational spring stiffness parameter of an internal 

elastic ring support constant 22( 100000)T  . It is observed from Figs. 2 – 5, that for a given 

value of 11R and by keeping 22T  constant, the curve is composed of two segments. This is 

due to the switching of buckling modes. For a smaller internal elastic ring support radius b , 
the plate buckles in an asymmetric mode ( . ., 1)i e n  . In this segment (as shown by dotted 

lines in Figs. 2 – 5) the buckling load decreases as b  decreases in value. For larger internal 
elastic ring support radius b , the plate buckles in an axisymmetric mode ( . ., 0)i e n  . In this 

segment (as shown by continuous lines in Figs. 2 – 5) the buckling load increases as b  de-
creases up to a peak point corresponds to maximum buckling load and thereafter decrease as 
b  decreases in value. 

The cross over radius varies from 0.09891b   for 11 220 & 100000R T  to 0.1545b   

for 11 22& 100000R T   as shown in Figs. 2 and 5 respectively. The major interest in the 
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design of supported circular plates is the optimal location of the internal elastic ring support 
for maximum buckling load. The optimal solutions for this case are presented in Table 1. It 
is observed that the optimal ring support radius parameter decreases with increase in rota-
tional spring stiffness parameter and also the optimal buckling load capacity increases with 
rotational spring stiffness parameter. Introducing internal elastic ring support, when placed 
at an optimal position increases the elastic buckling capacity significantly, and the percent-
age of increase in buckling loads is presented in Table 1. It is observed that the percentage 
increase in buckling load parameter decreases with increase in 11R . This is due to the 

amount of increase in buckling load without elastic ring support with 11R  is more than that 

of increase in buckling load with elastic ring support with 11R . 
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Fig. 2  

Buckling Load Parameter k , versus internal elastic ring Support Radius b , for various val-
ues of 11 220.5 & 100000R T  . 
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Fig. 3 

Buckling Load Parameter k , versus Internal elastic ring Support Radius b , for various val-
ues of 11 2210 & 100000R T  . 
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Fig. 4  

Buckling Load Parameter k , versus internal elastic ring Support Radius b ,  
for various values of 11 22100 & 100000R T  . 
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Fig. 5  

Buckling Load Parameter k , versus internal elastic ring Support Radius b ,  
for various values of 11 22& 100000R T   . 

 
 

Table 1.  
Optimal Location of an Internal Elastic Ring Support optb , the corresponding Buckling Load 

Parameter optk  and Percentage Increase in Buckling Load Parameter. 
 

22 100000T   

11R  0 0.5 10 100  

optb  0.4998 0.4010 0.3001 0.2982 0.2966 

optk  5.3669 5.4571 6.4333 6.9313 6.9989 

% 161.95 135.52 84.39 82.71 82.66 
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The influence of translational spring stiffness parameter of an elastic ring support on 
buckling load for a given rotational spring stiffness parameter is shown in Figs. 6 – 8. Figs. 
6 – 8, show the variations of buckling load parameter k , with respect to the internal elastic 
ring support radius b , for various values of translational spring stiffness parameter of an 
internal elastic ring support 22( 1000,100000 & )T   by keeping rotational spring stiffness 

parameters constant 11( 1000)R  . It is observed from Figs. 6 – 8, that for a given value of 

22T and by keeping 11R  constant, the curve is composed of two segments. This is due to the 

switching of buckling modes. For a smaller internal elastic ring support radius b , the plate 
buckles in an asymmetric mode ( . ., 1)i e n  . In this segment (as shown by dotted lines in 

Figs. 6 - 8) the buckling load decreases as b  decreases in value. For larger internal elastic 
ring support radius b , the plate buckles in an axisymmetric mode ( . ., 0)i e n  . In this seg-

ment (as shown by continuous lines in Figs. 6 – 8) the buckling load increases as b  de-
creases up to a peak point corresponds to maximum buckling load and thereafter decrease as 
b  decreases in value. 

The cross over radius varies from 0.2333b   for 22 111000 & 1000T R  to 0.1518b   

for 22 11& 1000T R   as shown in Figs. 6 and 8 respectively. The optimal solutions for 

this case are presented in Table 2.  
Introducing internal elastic ring support, when placed at an optimal position increases 

the elastic buckling capacity significantly, and the percentage of increase in buckling loads 
is presented in Table 2. 
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Fig. 6  
Buckling Load Parameter k , versus internal elastic ring Support Radius b ,  

for various values of 22 111000 & 1000T R   
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Fig. 7  

Buckling Load Parameter k , versus internal elastic ring Support Radius b ,  
for various values of 22 11100000 & 1000T R  . 
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Fig. 8  

Buckling Load Parameter k , versus internal elastic ring Support Radius b ,  
for various values of 22 11& 1000T R   . 

 
Table 2.  

Optimal Locations of Internal Elastic Ring Support optb , the corresponding Buckling Load 
Parameter optk  and Percentage Increase in Buckling Load Parameter. 

 

11 1000R   

22T  1000 100000  

optb  0.2999 0.2987 0.2984 

optk  6.9857 6.9898 6.9901 

% 82.49 82.60 82.61 
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Table 3.  
Comparison of Buckling Load Parameter k , with Wang et al. [17] for various Rotational 

Stiffness Parameters 11R  and Poisson’s ratio = 0.3. 
 

11R  0 0.1 5 10 100  

Wang et al. 4.198 4.449 10.462 12.173 14.392 14.682 

Present 4.19766 4.44864 10.46134 12.17242 14.39200 14.6814 

 
Table 4.  

Comparison of Buckling Load Parameter k , with Laura et al. [4], Wang et al. [17] and 
Bhaskara Rao and Kameswara Rao [16] for Rotational stiffness Parameter 

11 0 & 0.3R   . 
 

Ring support radius, b  
Laura et al 

[4] 

Wang et al. 

[17] 
Bhaskara Rao and Kameswara Rao [16] 

Present 

 

0.1 4.5244 4.5235 4.52341 4.52341 

0.2 4.7718 4.7702 4.77018 4.77018 

0.3 5.0725 5.071 5.07091 5.07091 

0.4 5.3301 5.3296 5.32964 5.32964 

0.5 5.3666 5.3666 5.36659 5.36659 

0.6 5.1284 5.1261 5.12606 5.12606 

0.7 4.7789 4.7727 4.77266 4.77266 

0.8 4.4249 4.4215 4.42141 4.42141 

0.9 4.1122 4.1063 4.10629 4.10629 

 
Table 5. Comparison of Buckling Load Parameter k , with Laura et al. [4] and 

Bhaskara Rao and Kameswara Rao [16] for Rotational stiffness Parameter 
11 & 0.3R    .  

 
The results of this kind were scarce in the literature. However, the results are compared 

with the following cases. (i). For any value of 11R and as 22T   and 1b  , all the curves 
converge to 3.83165k   which is of the clamped plate and it is agree with those of Wang et 
al. [9]. (ii). When 11 22& 10R T  , or clamped support with internal elastic ring support, 
the optimum location is at a radius of 0.290b  , with a buckling load of 4.20875k  , and 
also as 1b  , the buckling load, 3.83163k  , these results are in well agreement with the 

Ring support radius, b  Laura et al [4] 
Bhaskara Rao and 
Kameswara Rao 

[16] 
Present 

0.1 6.772 6.50105 6.50105 

0.2 6.9649 6.95592 6.95592 

0.3 6.9964 6.99485 6.99485 

0.4 6.6693 6.66257 6.66257 

0.5 6.0852 6.07454 6.07454 

0.6 5.4845 5.4755 5.4755 

0.7 4.9588 4.95263 4.95263 

0.8 4.5277 4.51266 4.51266 

0.9 4.1509 4.14357 4.14357 
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of Wang [6]. (iii). When 11 220 & 10R T  , or simply supported edge plate with internal 
elastic ring support, the optimum location is at a radius of 0.417b  , with a buckling load 
of 2.69104k  , and also as 1b  , the buckling load, 2.04882k  , these results are in well 
agreement with the of Wang [6]. (iv).  

Table 3, presents the buckling load parameters k , for a circular plate with simply sup-
ported edge and rotational restraint with 22 0T  (i.e., with no ring support), against those 
obtained by Wang et. al. [15]. (v). When 11 22&R T  , or rotationally restrained and 
simply supported circular plate with internal rigid support, the optimum location is at a ra-
dius of 0.265b  , with a buckling load of 7.01554k   that agree with the results of Wang 
et al [15]. (vi).  

Tables 4 and 5, presents the buckling load parameters k , for a circular plate with an in-
ternal ring support ( 22T  , i.e., rigid ring support) and elastically restrained edge against 
rotation and simply supported, against those obtained by Laura et al. [4], Wang et al. [17] 
and Bhaskara Rao and Kameswara Rao [16]. 

 
VI. Conclusions. 

The buckling problem of thin circular plates with an internal elastic ring support and elasti-
cally restrained edge against rotation and simply supported has been solved. The buckling 
loads are given for various rotational restraints [ 11R ] and translational restraints of internal 

ring support [ 22T ]. It is observed that the buckling mode switches from an asymmetric mode 

to an axisymmetric mode at a particular ring support radius. The cross-over radius is deter-
mined for different values of rotational restraints and translational restraints of elastic ring 
support. The optimal ring support is affected by the rotational stiffness parameters and trans-
lational spring stiffness parameters of an internal elastic ring support. The optimum location 
increases with decreasing 22T , whereas the bucking load decreases with 22T . The optimum 

location increases with decreasing 11R , whereas the bucking load decreases with 11R . How-

ever, it is observed that the influence of rotational restrains on buckling load is more pre-
dominant than that of translational restraints of internal elastic ring support. In this paper the 
characteristic equations are exact; therefore the results can be calculated to any accuracy. 
These exact solutions can be used to check numerical or approximate results. The tabulated 
buckling results are useful to designers in structural design and vibration control. 
 

Nomenclature: 
( , )w r   – Transverse deflection of the plate; 

h  – Thickness of a plate; 
R  – Radius of a plate; 

b  – Non-dimensional radius of ring support; 
  – Poisson’s ratio; 

E  – Young’s modulus of a material; 
D  – Flexural rigidity of a material; 

2TK  – Translational Spring Stiffness of Internal elastic ring; 

1RK  – Rotational spring stiffness; 

11R  – Non-dimensional rotational spring stiffness Parameter; 

22T  – Non-dimensional translational spring stiffness parameter of internal elastic ring; 

N  – Uniform in - plane compressive load; 
k  – Non-dimensional Buckling Load Parameter. 

 
Р Е ЗЮМ Е .  Розглянуто випучування пружної круглої пластинки з внутрішнім кріпленням у 

вигляді пружного кільця і зовнішньою границею, яка обмежує пружне обертання і є вільно опертою. 
Виведено диференціальні рівняння, що описують задачу, для чого використано класичну теорію 
пластинок. Запропоновано доведення існування перемикання на моду випучування в залежності від 
радіуса внутрішнього кільця. Пластинка може випучуватися, взагалі кажучи, за осесиметричною 
модою, але для малого радіуса кільця пластинка може випучуватися за неосесиметричною модою. 
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Перехідне значення відношення радіуса кільця до радіуса пластинки змінюється від 0,9891 до 0,1545 
в залежності від жорсткості кільця і обмеження на обертання на зовнішній границі пластинки. Також 
визначено максимальний радіус кільця, пов'язаний з максимальним значенням навантаження. Число-
ві дані згруповані таким чином, що вони дозволяють зробити висновки щодо впливу обмеження на 
обертання, обмеження на поступальний рух кільця, коефіцієнта Пуассона та інших граничних умов 
на випучування однорідної круглої пластинки. Отримані числові результати добре узгоджуються з 
даними, опублікованими раніше. 
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