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P.O. KASYANOV, |V.S. MEL'NIK]|, L. TOSCANO

We consider the main classes of Wio -pseudomonotone multi-valued maps. The

main properties of these operators have been investigated. The new classes of these
operators have been obtained.

1. INTRODUCTION

One of the most effective approach to investigate nonlinear problems, represented
by partial differential equations, inclusions and evolution inequalities with bound-
ary values, consists in the reduction of them into equations in Banach spaces gov-
erned by nonlinear operators. The given theory was developed by many authors
[1-20]. In particular, the idea of Wﬂ0 -pseudomonotone maps was introduced in

I.V.Skripnik paper and it was developed in papers [3-10, 14, 17, 19].
Here we investigate the main properties of the given multi-valued operators.
In particular, we will show that the sum of these operators is Wﬂ0 -

pseudomonotone, it is difficult in the classical definitions. We will also con-
sider the generous pseudomonotone operators and we will prove its W%-

pseudomonotony.
Finally, we will consider a class of the Wﬂ0 -pseudomonotone multi-valued

maps and, by using the obtained results and one abstract result for such operators
[7], we obtain the solvability for a class of nonlinear evolutional problems.

2. CLASSES OF MAPS

Let (Y, |-|ly) be some Banach space, A:Y —2' be a multi-valued map. We

*

consider its corresponding maps coA:Y —»2' and coA:Y »2' defined by

the relations (co A)(y) =co(A(y)) and (é A(y)) = %(A(y)) respectively, where

* is * -weak closure in the space Y .
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For each multi-valued map A we introduce its upper and lower function of
support:

[A(y), @], = sup <d,w>y, [A(Y),@]_= inf <d,w>y,
deA(y) deA(y)

where y, @ € X . We also consider its upper and lower norms:

A= sup [[dIl ~, IA(Y)II-= inf [ ~.
deA(y) deA(y)

Proposition 1. Let A,B:Y — ZY*. Then the next relations are valid:
1) [A(Y).v1 + V2] <[AY), V1)L +[A(Y), V2 ]y,

[ACY). vy + Vo1 2 [A(Y), v - +[A(Y), V2],

[A(Y),v1 + Vo1 2[A(Y), Vi ], +[A(Y), V2],

[A(Y).vi +Vo ] <[A(Y). V1], +[A(Y)V2]- VY, B, Vo €Y
2) [A(Y). V], =-TA(y). - V],

[A(Y) + B(Y). V1) =[A(Y) VD) +[B(Y) VD) VY veY;

3) [A(Y) V], =[COA(Y) VL) VY, VeY;
4) [AW VL <TAW ol
diy (AY), BO) 2|l AW ) =B Il

IAY) = BO L2 |[AW)], —BW)IL|.
where d () is the Hausdorff metric;

*

5) ||5A(y)||+=|| A(Y) ||, and if the space Y is reflexive then

lco A=l AWl VyeY;
6) the functional ||-||,:C, (X ") — R, defines the normon C, (X ") ;
7) the functional ||-||_:C, (X o R, satisfies the conditions:
a) 0 A(y) = | AY)II-=0,
b) la AW Il_=la Al VaeR, yeX,

¢) IA(Y)+BW) <l AW I- + 11 BY) II--
Proof. The properties 1), 2), 4), 6), 7) can be proved directly. Property 3) is

well known. Let us consider the property 5). It is obvious that ||5A(y)||+2
>|lco A(Y) |l 2l A(Y) I, and so we will prove the inverse inequality. For arbi-

*

trary f eEA(y) there exists the sequence f, ecoA(y) such that f, > f *-
weakly in Y™ and from the Banach-Steinhaus theorem it follows
l[co ACY) 1 Tim [I fo [l =2 T« -

N—oo
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*

Since the last inequality is valid for all f eEA(y) then

llco AY)I1, =l co AL, -
Let us prove that ||co A(Y) ||, <|| A(y)||,. Let f ecoA(y) be arbitrary then

n
for n>1 there exist ay,...a, (2; 20, D@ =1), 0;....9, (9; €A(y)) such
i=1

n
that f = a;0;. Hence
i=1

n n
(RIS Z;,ai i ll,~< Z;,ai AW Il =T AW I -
= 1=

From here and from the arbitrariness of f eco A(y) we obtain the required ine-

quality which proves the first equality in 5). Let us prove the second one. Let us
introduce the mapping

f:(A(y)cY)x(BicY)>R
defined by the equality f(d,&)=<d,<& >y where By is the unitary closed sphere
in the space Y with the center in zero. Let f.()="f(,&) then f;(p):

=[co A(y), p—¢£], and

dom f; ={peY |[co A(y), p—£], <+}.

Notice that 0 eint( | Jdom ;). In fact, 0edom fg, B, cdom f; and the

geBy
function f satisfies the condition of non-symmetric theorem on minimax [14].
Therefore

inf sup f(d,&)=sup inf f(d,J),
deA(y) geBy £eBp deA(y)

from which the required equality follows.

Proposition 2. The inclusion d eEA(y) is fulfilled if and only if
[A(Y), V], 2<d,v>y VveY.

Proof. Let d eEA(y) then Vv eY , from the proposition 1, it follows that

<d,v>y <[co A(Y).V], =[A(Y). V..
Now let the inequality
[A(y),v], 2<d,v>, VveY

* *

be valid and nevertheless d & co A(y). The set co A(y) is convex and closed in

o(Y";Y) -topology of the space Y, therefore from the separability theorem there
exists vg €Y such that
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[A(Y), Vo1, =[co A(Y), Vo1, <<d,vg >y
which contradicts the condition of the proposition.

Proposition 3. Let a(,,):DcY xY —->R=R U{+x}. Foreach yeDcY
a functional Y >w a(y,w) is positive homogeneous convex and lower semi-

continuous if and only if there exists a multi-valued map A:Y — 2" such that
D(A)=D and

a(y,w) =[A(y),w], VyeD(A), weY.

Proof. Let A:D(A)cY —2" . Then for each ye D(A) the functional
Y svi>a(y,v) =[A(y),v], is positive homogeneous and semi-additive since the

proposition 1. Hence it is convex. Its lower semicontinuity is obvious.
Now let Y >svi>a(y,v) be a positive homogeneous convex and lower

semicontinuous functional for each ye D <Y . Since a(y,0)=0, it is the point-
wise upper bound of a set of continuous linear functionals. We denote this set by

A(y)=Y". Thus a(y,v) =[A(y),V], .

We remind that the multi-valued map A:D(A)cY —2" s called mono-
toneif Vy;, y, e D(A) <dy—d,,y; -y, >y20 Vd; e A(y;), dy € A(y,).
By using the above mentioned introduced brackets it is easy to note that the

multi-valued operator A:D(A)cY —2" is monotone if and only if

[A(Y1), Y1 = Y21 2[A(Y2), Y1 = Y21i VY1,Y2 € D(A).

Besides the usual monotony of the multi-valued maps we are interested in:
¢ N -monotony, i.e.

[A(Y1), Y1 = Y21- 2[A(Y2), Y1 —Y2]- VY1,¥, € D(A);
e V -monotony, i.e.
[A(Y1), Y1 = Yoli Z[A(Y2), V1 = Y21 VY1, Y2 € D(A);
e w-monotony, i.e.
[A(YL) Y1 = Yoli 2[A(Y2): Y1 = Y21 Vy1,¥2 € D(A).
Remark 1. Together with the forms a,, a_ we consider the forms

a. (y, ) =[[A(y), @]] , =, 5 )|<d,w>| and  a-(y,0) =[[A(y),o]] _ =
eA(y

= inf |<d,w>| Vy,we X.Thusitis obvious that
deA(y)

[A(Y), @], <[[A(y), @], [<[[A(Y), @], <[ AY) [lsll@]lx

[A(Y), @] <[[A(y), @] [<[[A(Y), @]]- < A(Y) (|-l ]lx -
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Remark 2. Further y, gy in Y will mean that y, weakly converges to y

in the space Y. If Y is not reflexive, then yngy in Y* means that Y,

*-weakly converges to y in the space Y. We denote as C, (Y) the family of all
nonempty closed convex bounded subsets of Y .

Definition 1. Let D(A) be some subset. The multi-valued map A:D(A) c
cY 2" iscalled:

o +(-)-coercive if ||y [y [A(Y), ], () =+ as ||y ly >+, y e D(A);

e uniformly +(-)-coercive if for some ¢ >0

[ACY), Y1y —Cll AY) Il
Iy lly
e bounded if for any L >0 there exists | >0 such that [|A(y)|,<I
vyeD(A) [lylv<L;
o locally bounded if for any fixed y e D(A) there exist the constants m >0
and M >0 such that || A($) ||,<M when ||y—¢ly<m, £eD(A);

e d -closed if from the fact that D(A)>y,, —> ye D(A) strongly in Y it
follows

as |lylly =+, yeD(A);

lim [A(yn) ¢]- 2[A(y). 0] VoeY.

n—oo
Let W be also a normalized space with the norm ||-||,, . We consider
W <Y with continuous embedding.

Definition 2. The multi-valued map A:D(A)cY —2" with the convex
definitional domain D(A) is called:
o radial lower semicontinuous if for any fixed y, £ D(A):& -y e D(A)

lim [A(y +1£),¢1, 2[A(Y), é]-;

t—+0
o radial continuous if the real function [0,&]>t —>[A(y +t&),&]_ is con-
tinuous from the right in the point t = 0 for any fixed y, £ D(A):{ -y e D(A);
¢ radial continuous from above if the real function

[0,e]>t —>[A(y +t£). S,

is upper semi-continuous from the right in point t = 0 for any fixed y, £ D(A);
e an operator with semi-bounded variation on W (with (Y,W)-semi-
bounded variation) if V y;,y, e D(A), || V1 IN<R, Y, Iy <R

[ACY1), Y1 = V2lo 2[A(Y2), Y1 — Yol —C(Rill s — Y2 llw
e an operator with N -semi-bounded variation on W if

[A(YL): Y1 = Y2 lo 2[A(Y2), Y1 = Y2 =C(Rill i — Y2 llw)

126 ISSN 1681-6048 System Research & Information Technologies, 2007, Ne 3



The classes and the main properties of the multi-valued Wio -pseudomonotone maps

e an operator with V -semi-bounded variation on W/ if

[A(Y1): Y1 = Yali Z[ACY2), Y1 — Y2 1i —C(Rill Y1 — Y2 Ilw );
e JA-pseudomonotone on W (w, -pseudomonotone), if for every sequence
{Yn}nso €W m D(A) such that y, gyo in W, from the inequality
lim <dg,Yn = Yo >y <0, (21)
nN—o0
where d, € A(y,) Vnzx1, itfollows the existence of {y, }.; from {y,},»; and
{dn, k=1 from {d }.1 such that
lim <dp . Yo, —W>y2[A(Yo), Yo —W]. VweD(A); (2.2)

k—o0

e J1y-pseudomonotone on W (wﬂ0 -pseudomonotone), if for every se-

quence {Y,}s0 €W N D(A) such that y, ﬂ>y0 inW, d, E>d0 in Y, where
d, € A(y,) Vvnx1, from the inequality (2.1), it follows the existence of
{Yn, ka1 from {y,}nsy and {d, }yoy from {d}., such that (2.2) is true.

The mentioned above multi-valued map satisfies:
o the property (x), ), if for every bounded set D in X there exists ¢ e R

such that
[AWVI.(y 2=cllvllx  VveD\{O}

Here C e @, i.e. C(r;):R, — R is a continuous function for every r, >0

and such that z7*C(r;;2r,) >0 for t >0+ V1,1, >0 and |||y is the (semi)
normon Y, that is relatively compact on W and relatively continuous on Y !

Remark 3. The idea of the passage to a subsequences in the definition 1 was
adopted by us from Skripnik's work [15].

Now let Y =Y, nY,, where (Y, ||-||Y1) and (Y,, ||-||Y2) are Banach spaces.

Definition 3. The pair of the multi-valued maps A:D(A)cY; —2" and

B:D(B)cY, —» 2"2 s calleds -mutually bounded, if for every M >0 there ex-
ists K(M) >0 such that from

Iylly<M, yeD(A)nD(B) and <d(y),y >y, +<d,(y), y>y,<M
we have
or [[dy (V) Il < K(M), or [lda(y) [l »=<K(M)
1 2
for some selectors d; € A and d, € B.

Remark 4. Further A:Y — 2" will mean that A maps Y into 2" \&,
i.e. A is amulti-valued map with nonempty bounded values.
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3. THE MAIN PROPERTIES OF THE Wi -PSEUDOMONOTONE MAPS

Lemma 1. Let A:Y; >2%1 and B:Y, —2'2 be some multi-valued +(-)-
coercive maps that satisfy the condition (x). . Then the multi-valued operator
C:=A+B:Y »2' isalso +(-)-coercive.

Proof. We obtain this statement arguing by contradiction. Let 3{y,}s1 <
<Y 1Y lly =Y iy, +11 Y lly, = +o0 s n— o0, but

[C(yn)a yn]+(—) <

n>1 Il Y lly
Case 1. || y, ||Yl—>+oo as n—owo,|y, ||Y2gc vn>1.

[A(V), V] [B(w),w].

7/A(r);: inf —J“(), 7B (r);: inf —M
My, =r IVl i, =r Wiy,

We remark that y, (r) =+, yg(r) >+ as r—+wo.Then Vnx>1

[A(yn)’ yn] +(-) >
Iyally

(3.1)

” Yn ”\?11 [A(Yn)r yn]+(—) 2 Va (” Yn ”Yl) ” Yn ”Yl and

1Y Iy

ll'yn Iy
Due to the condition (x), . forevery n>1

27 (lYnlly) —>+0 a8 || Yy [ly, > +e0 and ||y, [ly,<c.

[B(yn), yn]+(_) >7/ (” y || )” yI"I “Yz >—C ” yI"I ||Y2
Iy Ily B2yl T T e Iy

where ¢, € R is a constant as in the condition (x),_y with

D={er2\IIyIIYZSC}-

—0 as n— o,

It is obvious that
[C(yn)i yn]+(—) - [A(yn)v yn]+(—) + [B(yn)y yn]+(—)
'Y lly 'Y lly I'Yn lly
This is in contradiction with (3.1).
Case 2. The case when ||y, ||Yls c vn>1and |y, ||Y2—> © as N — 4w

can be examined in the same way.
Case 3. Let us consider the situation ||y, ||Yl—> +o0 and |y, ||v2—> +00 as

—>+00 aS N —>oo.

n— 4. Then

[C(Yn) Ynli 1'Yn iy,

+00>suUp 2y, (l'Ynlly,)
ATy, lly, +11 Y lly,

n>1 l'yn lly

1Y Iy,

1Yn Iy, +11Yn v,

+7g (1Yn liv,) 3.2)
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Il Yo ll Il ynll
It is obvious that Vn>1 " >0 and n Y2 >0 and moreover if even
I Yn lly Il Y lly
lyn ll lynll
one of the boundaries, for example, n—Y1—>O, then n =1-
Il Yn llv lyn lly

1Yn I,
AR

—1. Then we have a contradiction in (3.2).

Lemma 2. Every strict multi-valued operator A:Y —2'  with
(Y ;W) -semi-bounded variation is bounded-valued, i.e. A:Y — 2" .
Proof. We remark that for every y e Y
Y0 —>[AYY), 0], e RU{+x}, Y30 > [A(Y),®]. € RU{—x}.

So, due to the definition of the semi-bounded variation on (Y,W) we obtain
that for all @ €Y , for some R=R(w,y) >0

[A(Y). @], <[A(Y + @), @] +Cp(R[[ @]y ) < +o.

From last, in virtue of Banach-Steinhaus theorem, it follows that || A(y) ||, <
<+oo forevery yeY.

Lemma 3. The multi-valued operator A:Y —2' with (Y;W)-semi-
bounded variation is locally bounded.

Proof. We obtain this statement arguing by contradiction. If A is not locally
bounded then for some yeY there exists a sequence {y,},»1 <Y such that

Yo=Yy inY and || A(y,) ||, — + as n — +co. We suppose that

an =1+ AQYR) el Yn = Yy
for every n>1. Then, due to the proposition 1, Vo eY and some R> 0 we
have

an TAYL) @], <an{IAWY.). Yo = Y1, +[AWY,), @+ Y —y,1,3<
<oy HAWYL) Yn — Y1 +[A(Y + @),y + @ - Yol +CaRillYn — Y= @lly )}

Since the sequence {a;l} is bounded and ||y, -y —@|ly =l @|ly (according to
the assumption || & |y <k || & |ly forall yeY ), due to proposition 1, we have

VN2l ap'[A(Yn) @l <o {CARINYn -V - @lly) +
+HIAY + o)l - Iy +@—=Yqlly }+1< Ny,
where N; does not depend on n>1. Thus,
sup

an ' TA(Y,), @],
n>1
Therefore, since the Banach-Steinhaus theorem, there exists N > 0 such that

IAY) Il < Nag = N@HTAYD) I T ya = YIlv) vl

<o VoweY.
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By choosing ny >1 from the condition N ||y, —y|I<1/2 ¥n>n, we obtain that
forevery n>n, || A(y,)Il. < 2N, which contradicts the assumption. So, the local
boundedness is proved.

Lemma 4. The multi-valued operator A:Y — 2Y* with (Y;W) -semi-
bounded variation has the property (IT) : if for some k;,k, >0 and d € A

<d(y),y>y<k; for each yeY:||ylly<k,
then there exists C >0 such that
ld(y)ll «<C for all yeY:|lyly<k,.

Proof. In virtue of the locally boundedness of A there exist ¢ >0 and
M, >0 suchthat || A(&)|l. <M, V] &]ly <e. It means that for some R > ¢

ld(y) |l ~= sup 1<d(y),§>vs sup 1{[A(y),@’—y]++<d(y),y>v}S
Y ey <e € lely <& €

< sup H{IAW@).E—y] +<d(y).y >y +CA(RIllY - £l )<

ey <€ &

< sup l{IIA(é‘)II+ e =Ylly +<d(y)y>y +Ca(Rilly =& llw )} <
lély <€ &€

sl(gMg +k,M, +k +1)=C,
&

where 1= sup sup CA(R;||ly—¢1w) <+w, since C(Ry):R, >R is a
lIylly <kg ligly <&

continuous function and || - |y is relatively continuous ||-|ly on'Y .

Remark 5. It is obvious that if one of the maps of the pair A,B: X 3 X “is
bounded, then the pair (A;B) is s-mutually bounded. Moreover, if the pair
(A;B) is s-mutually bounded and each of them satisfies the condition (IT), then
the operator C = A+B: XjX* satisfies the property (IT).

Lemma 5. Let Y be a reflexive Banach space. Then every
A-pseudomonotone on W map is Ay-pseudomonotone on W . For bounded

maps the converse implication is true.
Proof. The direct implication is obvious. Let us prove the converse implica-

tion. We consider the A1,-pseudomonotone on W map A:Y 3Y", y, -y
weakly in W, the (2.1) holds, where d, eéA(yn). From the boundedness of

the operator A it immediately follows the boundedness of éA and so the

boundedness of the sequence {d,} in Y ™. Consequently, there exists a subse-
quence {d,} < {d,} and, respectively, {y,}<{y,}, such that d,, > d weakly

in Y™ and at the same time
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lim <d,y, -v>/<lim<d,,y, -v>,<0.
m—oo nN—o0

However the operator A is A,-pseudomonotone on W, therefore there exist
the subsequences {ynk Her <y} and {dnk he1 <{d,} for what (2.2) is true.
This proves our statement.

Remark 6. Let us pay our attention on the fact that for the classical defini-
tions (not passing to the subsequences) this statement is problematically!

In F. Browder and P. Hess work [16] the class of generous pseudomonotone
operators has been introduced.

Definition 4. The operator A:Y —>CV(Y*) is called generous pseudo-
monotone on W , if for each pair of sequences {y,}.; cW and {d },o <Y~
such that d, € A(y,), ¥, =y weaklyin W, d, > d *-weakly in Y™, from the
inequality

lim <d,,y, >y<<d,y>, (3.3)

n—o0
we have d e A(y) and <d,,y, >y —><d,y>y.
Proposition 4. Every generous pseudomonotone on W operator is A,-
pseudomonotone on W .

Proof. Let y, —>y weakly in W, A(y,)>d,, >d *weakly in Y" and
(3.3) holds (we remark that in this case the inequality (2.1) is also true). Then, in
view of the generous pseudomonotony, <d,,y, >y —=><d,y >y, d € A(y), con-
sequently, in virtue of the proposition 2,

lim <d,,y, —v>y=<d,y-v>,2[A(y),y-v]. VveY.

N—oo

The converse statement in the proposition is not true, but

Proposition 5. Let A:Y 2" be a Ao -pseudomonotone operator. Then

*

the next property takes place: from y, —y weakly in W, -5 A(y,)>d, > d *-
weakly in Y~ and from the inequality (2.1) the existence of the subsequences
{Ymtc{y,} and {d,}c={d,} such that <d,,y, >y —><d,y>y, with

d e g A(y), follows.

Proof. Let {y,},{d,} be required sequences, consequently, one can choose
such subsequences {y.,}, {d,}. that the inequality (2.2) is true. By fixing in the
last relation w =y, we get

<dn,Ym—y>y—>0o0r<dg,y, > —><d,y>y,

<d,y-v>y= lim <dp, Y, -V>y2[A(y),y-v] YveY.

m-—oo

From here, in virtue of the proposition 2 we obtain that d € ;5 A(Y).
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Proposition 6. Let A=Ay + A, :Y 3Y", where Ay:Y 3 Y is a monotone

map, and the operator A;:Y 3 Y " has the following properties:

1) there exists a linear normalized space Z in which W is compactly and
densely enclosed and Y < Z with continuous and dense embedding;

2) the operator A, :Z 3 Z" univocal and locally polynomial, i.e. VR >0
there exists n=n(R) and a polynomial function Pg(t)= z A, (R)t% with
0<a<n
continuous factors 4, (R) > 0 such that the estimation is valid
@ L
[y = A <Pallys = vall, ) ¥ Iwill, <R i=12
Then A is the operator with semi-bounded variation on W .

Proposition 7. Let in the previous proposition the operator A, :Y 3 Y" be
N -monotone, and instead of the condition 2) we make the following one:

2') a map (multi-valued) A :Z 3 Z" is locally polynomial in the sense that
VR >0 there exists n=n(R) and a polynomial Pg(t) for which

dist(Ay(y1), A (Y2))< Palys = vol, ) ¥ villz<R, i=12.  (34)

Then A= A, + A is the operator with N -semi-bounded variation on W .

Proof. We give the proof in the proposition 7. In the case of the proposition
6 the reasonings are similar. Since for each y;,y, €Y

[Ao (yo ) y1 = Y2 L2 [Ao(y2 ) ya - ¥21,
we must estimate [A(y1), y; = ¥2] —[A(y2) va - va ]
Forany d; e A/(y,), d, eAy,) we find
<dg,y1— Yo >y —<dp,yp -y, >y=<dy, Y-y, >z —<dy, Yy -y, >z<
S"dl _d2"z* "yl - y2”2 '
hence
[Al(YZ)a Y1 - yz]_ - [Al(yl)r Yi—Y2 ]_ < dist (Al(yl)a A1(V2))||Y1_y2”z'

From here and from the estimation (3.4) as |y;|, <R (i=1,2) (respectively

"yi”y <R, R= R(FA%) ) we obtain

(A (Y1) ¥ = ¥2) 2 [Au(y2) v = 2 ~C (Rl v = val b )
where ||, =], C(R=Pg(®)t.
Itis easy to check that C e @.
Proposition 8. Let one of two conditions hold:

1) A:Y 3 Y is radially lower semi-continuous operator with semi-bounded
variationon W ;

2) A:Y 3Y" is radially continuous from above operator with N -semi-
bounded variation on W with compact values in Y.
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Then A is A,-pseudomonotone on W map.

Proof. Let y, —y weakly in W, éA(yn)a d, —>d x-weaklyin Y and

(2.2) is true. By using the property of semi-bounded variation on W of the opera-
tor A, we conclude that for every veY

< dn 1¥Yn -V >Y 2 [A(yn )! Yn _V]_ 2 [A(V)! Yn _V]+ - C(R;"yn _V”\IN )
The function X >wi— [A(v), W]+ is convex and semi-continuous from be-

low, and so it is weakly semi-continuous from below, therefore by substituting in
the last inequality v =y and passing to the limit, in view of the properties of the

function C, we obtain lim <d,,y, —y>y 20, i.e <d,,y, - y>y—0.

n—o0

Forany heY and 7 €[0,1] we shall put w, = zh +(L-17)y, then

<dnvyn — W, >Y2[A(a)r)' Yn —6()2.]+ _C(R’”yn _wT”\‘N)
or by passing to the limit
£ lim <dy.y—h>y = e[Aw,)y—h], ~C(Riely -t ).
N—oo

By dividing the last inequality by z and by passing to the limitas z — 0+, in
view of the radial lower semi-continuity of A and of the properties of the func-
tion C , we obtain that for each heY

“_m <dn’y_h>Y2
N—o0

. .1 -
> lim [A(@, )y —h], + lim —C(R;r||y—h||W )2 [A(y),y-h]._.
40 7>+0 T
Moreover as < d,,y, —y >y — 0 we get
lim <d,,y, —h>y=lim <d,,y—h>,>[Aly)y-h] vhev,

n—o0 n—o0

and this proves the first statement of the proposition 8.

Now we stop on the basic distinctive moments of the second statement. Be-
cause of the N -semi-boundedness of the variation for the operator A we con-
clude that

Ii_m <dn’yn _V>YZM[A(yn)’yn _V] >

nN—o nN—oo

> 1im [AW). yo ~v]_ ~C(Ri|y v, ) (35)

Let us estimate the first member in the right part of (3.5). Let us prove that
the function X >h[A(v),h]_ is weakly lower semi-continuous VveY . Let

z, —z weakly in Y , then for each n=1,2,... 3&, €5 A(v) such that

[A(V)’Zn]_ :<‘§nazn >y -
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From the sequence {&,;z,} we take a subsequence {&,;z,} such that

Ii_m [A(V)'Zn]_ = Il_m <§n’zn >y = lim <§mlzm >y
n—oo nN—o0 m—oo

and by virtue of the compactness of the set é A(v) we find that &, — & strongly
in Y™ with & e g5 A(v). Hence
lim [A(V), Zn]f = lim < égm 1 Zm >Y =< ég! z >Y = [A(V), Z]— !
r;o n—oo
and this proves the weak lower semi-continuity of the function h— [A(v), h]f .
So from (3.5) we get
lim <dy, v, —v>y 2 lim [A(y,),vo ~v]_ 2[AW),y -v] -C(Riy -], ).
n—o0 N—oo

Then by substituting v with y in the last inequality we have
<d,, Yy, —Yy>x—0, therefore

lim <dn,yn —v>y 2 [AWv-w] —C[Ri[y-v], | vveY.
N—oo
By substituting in the last inequality v with tw+(1—t)y, where weY,
te [0,1], then by dividing the result on t and by passing to the limitas t — +0,
because of the radial semi-continuity from above we find

lim <dp,yp —W>y>[A(y),y-w]  VweY.

n—>o0
Now let W =W, nW,, where (W, ||‘||w1) and (W, ||'||w2) are Banach
spaces such that W; —Y; with continuous embedding.
Lemma 6. Let Y;, Y, be reflexive Banach spaces, A:Y, —C,(Y,) and
B:Y, —>CV(Y2*) be s-mutually bounded A,-pseudomonotone respectively

on W, and on W, multivalued maps. Then C:=A+B:Y »C,(Y") is
Ao -pseudomonotone on W map.

Remark 7. If the pair (A;B) is not s-mutually bounded, then the last
proposition holds only for A -pseudomonotone (respectively on W; and on W,)
maps.

Proof. At first we check that VyeY C(y)eC, (Y”). The convexity of
C(y) follows from the same property for A(y) and B(y). By virtue of the
Mazur theorem, it is enough to prove that the set C(y) is weakly closed. Let ¢
be a frontier point of C(y) with respect to the topology o (Y ;Y ") =c(Y";Y)
(the space Y is reflexive). Then

3 s <C(Y): €y —>C weakly in Y as m—+o.
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From here, since the maps A and B have bounded values, due to the Banach-
Alaoglu theorem, we can assume that for each m>1 there exist v, € A(y) and

W, € B(y) such that v, + w,, = c,, and by passing (if it is necessary) to the sub-
sequences we obtain:

VooV oin Y, and w, >w in Y,
for some ve A(y) and weB(y). Hence c=v+weC(y). So it is proved that

the set C(y) is weakly closed in Y.
Now let y, gyo in W (from here it follows that y, gyo in W, and

w *
Yo=Y Iin W,), C(yn)ad(yn)gd0 in Y and the inequality (2.1) be true.
Hence

da(yn)eAly,) and dg(y,)eB(yn): da(y,)+dg(yn)=d(yn).

Since the pair ( A;B) is s -mutually bounded, from the estimation
<d(Yn), Yn >y =<da(yn) +dg(¥Yn). Yo >y =
=<da(¥Yn): Yo >y, +<dg(¥n).¥n >v, <k
we have or || d(Y,) ||Yl*§ C or||[dg(yy) ||Y5§ C. Then, due to the reflexivity of
Y; and Y,, by passing (if it is necessary) to a subsequence we get
da(yn)—>dy in Y, and dg(y,)—>dg§ in Y. (3.6)
From the inequality (2.1) we have

lim <dg(¥n). Yn = Yo >v, +1im <da(Yn): Ya = Yo >y, S
nN—o0 n—

< lim <d(y,), Yo — Yo >y <0,
n—o0
or symmetrically

lim <da(Yn): ¥Yn — Yo >y, +1im <dg(Yn): Yn — Yo >y, <
n—o N—eo

<lim <d(Yp), Ya = Yo >y <0.
Nn—o0

Let us consider the last inequality. It is obvious that there exists a subse-
quence {Y}m <{Yn}q>1 such that

02 lim <dg(¥n).Yn = Yo >y, + im <da(yn), ¥ = Yo >y,
nN—0 N—o0

> lim <dg(Ym): ¥Ym — Yo >y, + lim <da(ym) Ym — Yo >y, - (3.7)
m—o0 m—o
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From here we obtain:

or Ilm <dA(ym)yym_yO >Y1SOI or m <dB(ym)’ym_y0 >Y2S0'
m—oo m-—o0

Without loss of generality we suppose that
lim <da(ym), Ym = Yo >y, <0.
m—o0

Then because of (3.6) and of the A,-pseudomonotony of A on W, there ex-
ists a subsequence bt <{Ymdm such that

lim <da(Ym, ). Ym, —V>y, 2[A(Yo) Yo -V]. VveY;. (3.8)
k—o

By substituting in the last relation v with y, it results in

<da(Ym ) Ym, —Yo >y >0 as k—+w.
Therefore, taking into account (3.7), we have
lim <dg (Y, ), Y ~ Y0 >y, <0,
By virtue of the A,-pseudomonotony of B on W,, by passing to a subse-
quence {yp, , } ={Ym, }x=1 We find

lim <dg (Y, ) Ym, —W>y,2[B(Yo) Yo Wl VWeY,. (3.9)

k—o

So from the relations (3.8) and (3.9) we finally obtain

lim <d (Y, ) Y, =X>y2 lim <da(Ym, ) Vi, =X >y, +
k—o k—»o0

+ lim <dg (Y, ): Y = X>v, 2[A(Y0), Yo —X]- +
k—o0

+[B(Yo). Yo —X]_ =[C(yo), Yo —X]_ VxeY.

Proposition 9. Every —-coercive multi-valued map A:Y —»2' is +-
coercive; every monotone + -coercive multi-valued map is —-coercive, uniformly
—-coercive and uniformly +-coercive.

Proof. The first part of this proposition is the direct corollary of the defini-
tions of [-,-], and of [-,-]_. Let us check the second one.

Let A:Y 2" be amonotone +(-)-coercive map. Let us prove that A is
uniformly + (-)-coercive.
From the lemma 3 it follows that there exist a ball

B, ={yeVYlllyly<r}
and a constant ¢; > 0 such that

| A(@)|l,<¢c;, VeweB,.
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Hence foreach y eY

1 1
AW Il,= sup sup =<d(y),®>y == sup [A(Y) ], <
d(y)eA(y) oeBy " B,

<L sup [AW). 0 y1. +TAM) Y1, 1< L sup fA@) @1, +

weB, weB,

AW YL Y= e+ i)+ TAG) . 1=
1 Cy .
-F[A(YX yl, +¢ +T” Yily;

1
IAWI-= inf sup=<d(y),o>y=
d(Y)eA(Y) weB, T

1
= inf  sup —{<d(y),@-y>y +<d(y),y>y}<
d(y)eA(y) weB, T

1
< inf sup ={<d(@),0-y>y +<d(y),y>y )<
d(y)eA®Y) weB, T

1 1 c
<= inf {<d(®@),y>y e+ ylix )= STAY), Y1 + o+~ ylly,
I d(y)eA(y) r r

1 o
vyeY [[A(Y) ||+(—)SF[A(Y), Yl +a +Tl|| Ylly -

Thusas ¢ = % >0 the uniform + (-) -coercivity for A follows from the fol-

lowing estimations:
[A(Y), Y1) —cll AY) Il N

Iy lly
1 rc C
A(Y), - AW YLy - -2
2[ ¥l 2[ ) ¥l 5 2||y“Y:
Iy lly
1 rc, ¢
Aly),y-—y| ——+-1
_[ (y)y Zyl 5 2IIyIIY
Iy lly -
1 1 rcc ¢
AZyly--y| ——=t-=2
[[zyjy zyl 5 2IIyIIY
- Iy lly
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1 1
_L\2 2°), oy

) 1 2 20y
211 ¥l Yliv

+ooas |lylly = e

To finish the proof it is enough to show that every monotone -+ -coercive
map is - -coercive. This follows from the next estimations:

[AGy).y1 _ 2HAO) y‘; yl- 2[A(; y), y—% yl,
YL _ .
Iy lly 1Y Ily v

o

:1—*—>+oo as |lylly = .
”Ey”Y

Corollary 1. Let ¢:Y — R be a convex lower semicontinuous functional
such that
20
Iy lly
Then its subdifferential map

—>+o as ||ylly— .

op(y) ={peY <K po-y> <p(@) -9(y) YoeY}=D, yeY

is +-coercive, and hence, - -coercive, uniformly - -coercive and uniformly
+ -Coercive.

Proof. Due to the monotony of the map d¢:Y — 2" and to the proposition

9, it is enough to prove only that it is +-coercive. This follows from the next esti-
mations:

Iy K [0o(y), y1. 2 Y K (=11 Y IN! 9(0) = +o0 as ||y [ly = +oo.

Definition 5. The multi-valued map A:Y — 2Y* satisfies the uniform prop-
erty («),(, if for each bounded set D in Y and for each ¢>0 there exists

¢; > 0 such that

1 c —
I AM) [+ SE[A(V),V]+(_) + ?1 Ivily VvveD\{0}.
Lemma 7. Let A:Y, %Y, , B:Y, 3Y, be +-coercive maps, which satisfy

the uniform property (x),). Then the map C:=A+B:Y —>2Y* is uniformly
+(-) -Coercive.

Proof. We obtain this statement arguing by contradiction. Let {X,},s;1 <Y
with x, =0 and || x, [ly =|| X, ”Y1 +1 X, ||Y2—> +00 85 N — 400, Taking into ac-
count that
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C Xp ), X y—C, C X _
[C(x,) n]+( )~ ~C 1C( n)||+( ) < +o0, (3.10)
n>1 Il Xn lly

where cc =min{c,,Cg}, C,Cg >0 are the constants as in the uniform +(-)-
coercive condition for A and B respectively. Let

[AW), V] ) —call AW Il

ya(r):= inf ,
IMly, =r IV ly,
[B(W), W], () —Cg [IBW) Il (-
re(r):=_inf i O, >0,
vl =r Iwlly,

we remark that y 5 (r) = +oo, yg(r) >+ as r — +oo. In the case || x, ||Y1—> +00

as n—+oo and || X, ||Y2§c vnx1 we get

[A(x,), Xn]+(—) —call AlXq) ||+(—)

Il Xn Ilv

1%, lly,
2yallXnlly) 70—+ & n—+w

[ Xn lly

and moreover
[B(Xn)’xn]+(—) —Cp ” B(W)||+(7) > _¢ ” Xn ||Y2
="V
Il Xn lly Il Xn lly

where ¢; € R is a constant as in the condition (x) with

D={yeY, lllyly,<c} c=cs.

—0 as +n—w,

Consequently
[C(Xn) Xn i) —Cc 1C(Xn) Il .

[1%n lly
> [A(Xn)v Xn]+(—) —Ca ” A(Xn) ||+(—) "
1% lly
B(Xn): Xn 1y —Cg I B(x -
+[ (n) n]+() B” (n)”+()—)+oo as N —> -+,

[l Xn [lv
and this is in contradiction with (3.10).
If || x, ||Y1£c vnx>1 and || x, ||Y2—>+oo as n— +oo the reasoning is the

same.
When || x,, ||Y1—> +o0 and || X, ||Y2—> 400 as n— +oo, We get the contradic-

tion
C(X.), X 1ory —Ce 1C(X) |y Il Xn [l
+oo>sup[ (%) Xl —Cc 1T Il > yall %, ) n liv;
n>1 Il %q lly [ Xn Iy, +11%n Ilv,
[ Xn lly,

+78(% I, > min a1 %y ). 78 (1% I, )0

[1Xn lly, +11%n lly,
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Proposition 10. If the multi-valued operator A:Y — 2" satisfies the con-
dition (IT), then it satisfies the condition (x), .

Proof. We prove this proposition arguing by contradiction. Let D cY
be a bounded set such that for each c¢>0 there exists v, € D\{0}:
[A(v;),V. ], £—c]|V, |ly 0. Then due to the condition (IT)
sup || A(Ve) [l =:d < +oo,

c>0

Thus
—cllve [y 2 [AMVe), Vel = =T AV Il ve iy = =d [ ve [ly

and (d —c)|| v, |ly=0 foreach ¢c > 0. This is a contradiction with v, # 0.
Proposition 11. Let the functional ¢:Y — R be convex, lower semicon-

tinuous on Y. Then the multi-valued map B=0¢:Y — CV(Y*) is Ap-
pseudomonotone on Y and it satisfies the condition (IT).
Proof. a) Property (IT). Let k >0 and the bounded set B <Y be arbitrary

fixed. Then VyeB and Vd(y)edp(y) <d(y),y-yo >y<k is fulfilled. Let
ueY be arbitrary fixed, so

<d(y)u>y=<d(y)u-y>y +<d(y),y>y<pu)-o(y) +k<

<@(u)—inf o(y) +k =const < +o,
yeB

since every convex lower semicontinuous functional is lower bounded by every
bounded set. Hence, thanks to the Banach-Steinhaus theorem, there exists

N = N(yq,k,B) such that || d(y) ||Y*§ N foreach yeB;

b) A,-pseudomonotony on Y . Let y, lyo inY, dp(y,)>d, Sdiny”
and the inequality (2.1) true. Then, due to the monotony of oO¢, for each
dg €0¢(yy) and foreach n>1

<dp,¥Yn— Yo >y=<d, —do,¥n — Yo >y +<dg,¥n = Yo >y 2<dq, ¥y — Yo >y -
Hence

lim <d;,y, —Yo >y lim <dgy,y, -y, >y =0.
nN—+o0 n—+ow

Because of the last inequality and of the inequality (2.1) it results in

lim <d,,y, -y >y=0.

N—-+00

Thus for each weY

lim <dp,y, —w>y> lim <d,,y, —yo >y +
N—>+o0 N—+00

+ lim <d,,yo —w>y=<dg,yo —W>y. (3.11)

N—+o0
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From another side we have

<dO’W_YO >YS m <dn’W_yn >YS¢(W)_
nN—+o0

— lim (yn) <o(W) - o(Yo)- (3.12)

N—+o0

since every convex lower semicontinuous functional is weakly lower semicon-
tinuous. From (3.12) it follows that d, € d¢p(y,) . From here, due to the inequal-

ity (3.11), we obtain the inequality (2.2) as B=0¢ on Y .

4. EXAMPLE
Now we consider a class of Wz, -pseudomonotone maps. Let us consider the

bounded domain QcR" with rather smooth boundary o0Q, S =[0,T],
Q=Qx(0;T), Iy =6Qx(0;T). Let as i=1,2 m; eR, NI (respectively N})
the number of the derivatives respect to the variable x of order <m; —1 (respec-

tively m;) and {A('I (X’t’n’f)}msmi be a family of real functions defined in
i i
QxRleRNZ.Let
Dku={Dﬂu,|ﬂ|= k} be the differentiations by x,

m; —1

oju={u, Du, ..., D u},

Al (x,t,8,u,D™v): x,t > Al (x,t,5;u(x,t), D™v(x,t)).
Moreover, let ¢ :R — R be a convex, lower semicontinuous coercive real
functionand ®:R — C, (R) be its subdifferential.

mj,

Let us assume H =L,(Q) and V; =W, Pi ) with p; € (1,2] such that

V, < H with continuous embedding, p;*+q;* =1, dp(y) is the Gateaux sub-
differential of the convex lower semicontinuous coercive functional

L2(S;L2(Q)) >y = 0(y) = [w (y(x,1)) dxdt
Q

in the space L, (S;L,(Q)).

. i i
Definition of operators A;. Let A} (x,t,n,&), defined in Qx R™M x RNZ,
satisfying the conditions

for almost each x,t€Q the map 77,5—>Al,(x,t,77,§)
i

[
is continuous on R xRNZ; 4.2)

for each n,& the map x,t—>A(i1(x,t,77,.f§) is measurable on Q,
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for each u,velP(0,T;V;)=:K; Al (xt,6u,D"u)eli(Q). (4.2)
Then for each u € K; the map
woa(uw)= Y J.A;(x,tﬁiu,Dm‘u)D“dedt,

lal<m; Q
is continuous on K; and then
there exists A (u)eK; such that a;(u,w)=<A (u),w>. (4.3)
Conditions on A;. Similarly to [20, sections 2.2.5, 2.2.6, 3.2.1] we have
A (u) = A (u,u), A(u,v) = A (u,v) + A (u),

where
< Ag(uv),w>= Y [AL(xt,5u,DMV)D wdxdt,
lel=m;jQ
<Apu),w>= J.AL,(X,L&U, D™u)D*wdxadt.
|0{|Smi—1Q
We add the next conditions:
< Ag(uu)u—-v>—-<Ay(u,v),u-v>20 YuvekK;, (4.4)

if ujﬂu in Kj, uj‘ﬂu’ in K, and if <Ap(uj,uj)—Ag(uju)u; —u>->0,

then Al (x,t,&;,D"u;)> Al (xt,6u,D™u) in LY(Q), (45)

coercivity . (4.6)

Remark 8. Similarly to [20, theorem 2.2.8] the sufficient conditions to get
(4.4), (4.5) are:

> AL (xt7,6)E, :
o=y IHEE

for almost each x,t € Q and |7 | bounded,

DAL (7 E) = AL (XL EDNE, — &) >0as E-E

|arl=m;

=) —>+00 as | o

for almost each x,t e Q and 7.
The next condition gives the coercivity:

> AL (X7, E)E, 2| €™ as rather large | &].

|lal=m;

A sufficient condition to get (4.2) (see [20, p. 332]) is the following one:
i -1 -1
|A;(x,t,n,é)|sc[|n|"' [P +k(x,t)} kely Q. (@47)

Arguing by analogy with the proof of [20, theorem 3.2.1] and of [20, state-
ment 2.2.6] we get the next.
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Proposition 12. ([20], p.337) Let A :K; — Ki* (i=1,2) be the operator,
defined in (4.3), satisfying (4.1), (4.2), (4.4), (45) and (4.6). Then A is
A -pseudomonotone on

W; ={y e Kily'e Ky + K3}
(in the classical sense) and coercive. Moreover it is bounded if (4.7) holds.
From the lemma 6 and the lemma 1 we deduce the next corollary:
Corollary 2. Let A :K; > Ki* (i=1,2) be the operator, defined in (4.3),
satisfying (4.1), (4.2), (4.4)—-(4.7). Then A=A +A,:X;=K;nK, >

— K; +K, = X" is 1y-pseudomonotone on

W, ={yeX |y eX'}

and coercive.

Due to the proposition 11, to the proposition 12, to the lemma 6 and the
lemma 1 it is easy to obtain the next

Corollary 3. Let A :K; > Ki* (7= 1,2) be the operator, defined in (4.3),
satisfying (4.1), (4.2), (4.4)-(4.7); ¢:G =L,(S;H) > R be the functional satis-

fying the conditions of the proposition 11 and of the corollary 1. Then the multi-
valued map

A=A +A +39:X NG —>C,(X +G)
is + (—) -reflexive, A,-pseudomonotone on
W={yeXnG|y'eX +G}

and it satisfies the condition (I1).

4.1. An application. By virtue of the corollary 3 and of the [7] (theorem 1),
under the conditions of the corollary 3, the problem

ayg’t) + Y (1D (AL (xt,51y, D™y)) +
lerf<my

+ > (D) D*(AZ(x,1,8,y,D"2y)) + d(y(x, 1) > f(x,t) in Q,

|a|§m2

D?y(x,t)=0 on Iy as |al<m;-1 and i=1,2,
y(x,00=0 in Q
has a solutionin W .
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