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Solutions of some Partial Differential Equations

with variable coefficients by properties of

Monogenic functions
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Abstract. In this paper we study some partial differential equations
by using properties of Gateaux differentiable functions on commutative
algebra. It is proved that components of differentiable functions satisfy
some partial differential equations with coefficients related with proper-
ties of bases of subspaces of the corresponding algebra.
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1. Introduction

The idea of studying partial differential equation by using proper-
ties of differentiable functions on algebras is not new. The first step in
this direction was the connection established between complex differen-
tial functions and harmonic functions. Ketchum [1] extended this idea to
the three-dimensional Laplace equation by using the algebra of functions
associated with the equation.

The so-called biharmonic bases in commutative algebras and mono-
genic functions on these algebras associated with the biharmonic equa-
tion are studied in [2, 3]. An interesting solution of the three dimen-
sional Laplace’s equation has been elaborated in [4] by defining a related
commutative and associative algebra over the field of complex numbers.
These ideas were generalized in [5] to a wide class of partial differential
equations with constant coefficients. In this paper we propose a further
generalization to the case of PDEs with linear dependent variable coeffi-
cients.
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2. Differentiability on commutative algebras

Let A be an infinite-dimensional (or finite-dimensional) commutative
unitary Banach algebra over a field K of characteristic 0. Assume that
the set of vectors ~en, n = 1, 2, . . . is a basis of A. Suppose B is an m-
dimensional subspace of A with the basis ~e1, ~e2, . . . , ~em, m ∈ N. Now,
any function ~f : B → A is of the form

~f(~x) =
∞∑

k=1

~ekuk(~x),

where uk(~x) = uk(x1, x2, . . . , xm) are K-valued functions of m variables
xi ∈ K. We will assume that all considered series are convergent in A.

Definition 2.1. ~f(~x) is called differentiable at a point ~x0 ∈ B if there
exists a unique element ~f ′(~x0) ∈ A such that for any ~h ∈ B

~h~f ′(~x0) = lim
ε→0

~f(~x0 + ε~h)− ~f(~x0)

ε
, (2.1)

where ~h~f ′(~x0) is the product of elements ~h and ~f ′(~x0) in algebra A.

It should be keep in mind that ε ∈ K in accordance with algebra
A. The classification of monogenic functions in a finite-dimensional com-
mutative algebra is performed in [6]. The element ~f ′(~x0) is called as the
Gateaux derivative of ~f at the point ~x0. For A = B = C this definition is
also equivalent to the (complex) differentiability of the complex function
~f , and ~f ′(~x0) becomes the usual complex derivative.

We say that ~f : B −→ A is differentiable (in B) or monogenic if it is
differentiable at any point of B.

Theorem 2.1. Suppose that for some 1 ≤ l ≤ m there exists ~e−1
l . Then

a function ~f(~x) =
∑∞

k=1 ~ekuk(~x) is is monogenic if and only if there

exists the function ~f ′ : B → A such that for all k = 0, 1, . . . ,m, and
∀ ~x ∈ B

~ek ~f ′(~x) = lim
ε→0

~f(~x+ ε~ek)− ~f(~x)

ε
, (2.2)

where ~f ′ does not depend on ~ek.

Proof. Suppose that (2.2) is fulfilled. Since by assumption there exists
~e−1
l (1 ≤ l ≤ m), we have

~el ~f ′ = lim
ε→0

~f(~x+ ε~e1)− ~f(~x)

ε
=

∞∑

k=1

~ek
∂uk
∂xl

,
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or equivalently,

~e1~f ′ = limε→0
~f(~x+ε~e1)−~f(~x)

ε =
∑n

k=1 ~ek
∂uk
∂x1

= ~e1~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

,

~e2~f ′ = limε→0
~f(~x+ε~e2)−~f(~x)

ε =
∑∞

k=1 ~ek
∂uk
∂x2

= ~e2~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

,

...

~em~f ′ = limε→0
~f(~x+ε~em)−~f(~x)

ε =
∑n

k=0 ~ek
∂uk
∂xm

= ~em~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

.

(2.3)
Now, let us consider ~h =

∑m
k=1 hk~ek, then it follows from (2.3) that

h1~e1~f ′ = h1
∑∞

k=1 ~ek
∂uk
∂x1

,

h2~e2~f ′ = h2
∑∞

k=1 ~ek
∂uk
∂x2

,

...

hm~em~f ′ = hm
∑∞

k=1 ~ek
∂uk
∂xm

.

This implies that

~h~f ′ = h1
∑∞

k=1 ~ek
∂uk
∂x1

+ h2
∑∞

k=1 ~ek
∂uk
∂x2

+ · · ·+ hm
∑∞

k=1 ~ek
∂uk
∂xm

= lim
ε→0

~f(~x+ε~h)−~f(~x)
ε .

Furthermore, it follows from (2.3) that

h1
∑∞

k=1 ~ek
∂uk
∂x1

+ h2
∑∞

k=1 ~ek
∂uk
∂x2

+ · · ·+ hm
∑∞

k=1 ~ek
∂uk
∂xm

= h1~e1~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

+ h2~e2~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

+ · · ·

+hm~em~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

.

Hence, for every ~h ∈ B

~h~e−1
l

∞∑

k=1

~ek
∂uk
∂xl

= lim
ε→0

~f(~x+ ε~h)− ~f(~x)

ε

or

~f ′ = ~e−1
l

∞∑

k=1

~ek
∂uk
∂xl

. (2.4)
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The set of (2.4) implies the following Cauchy–Riemann type of con-
ditions for a differentiable function ~f :

~el

∞∑

k=1

~ek
∂uk
∂x1

= ~e1

∞∑

k=1

~ek
∂uk
∂xl

,

~el

∞∑

k=1

~ek
∂uk
∂x2

= ~e2

∞∑

k=1

~ek
∂uk
∂xl

,

...

~el

∞∑

k=1

~ek
∂uk
∂xm

= ~em

∞∑

k=1

~ek
∂uk
∂xl

,

(2.5)

or in the vector form

~el
∂ ~f

∂xk
= ~ek

∂ ~f

∂xl
, k = 1, 2, . . . ,m. (2.6)

3. Differentiable functions providing solutions

to partial differential equations

In this section we extend the basic idea of relating analytic and har-
monic functions into more general situations. For given integers m, r ≥ 1
let

P (ξ1, ξ2, . . . , ξm) :=
∑

i1+i2+···+im=r

Ci1,i2,...,im(x1, x2, . . . , xm)ξi11 ξ
i2
2 . . . ξ

im
m ,

(3.1)
where Ci1,i2,...,im(x1, x2, . . . , xm) are K-valued continuous functions of m
variables xi, i = 1, 2, . . . ,m. Consider the following partial differential
equation

P (∂0, ∂1, . . . , ∂m) [u(x1, x2, . . . , xm)] = 0, (3.2)

where ∂k :=
∂k

∂xk
.

Theorem 3.1. Let P be a polynomial as in (3.1). Let a function ~f :
B −→ A, and its derivatives ~f ′, ~f ′′, . . . , ~f r be differentiable, ~f(~x) =
n∑

k=0

~ekuk(~x). Assume that functions Ci1,i2,...,im(x1, x2, . . . , xm) are lin-

ear dependent in Km and the basis ~e1, ~e2, . . . , ~em of the subspace B of
the algebra A is such that

P (~e1, ~e2, . . . , ~em) = 0, (3.3)



122 Solutions of some Partial Differential Equations...

then the functions uk(~x), k = 1, 2, . . . are solutions of (3.2).

Proof. It follows from the Cauchy–Riemann condition (2.6) that

∂in ~f

∂xink
= ~ek

in~el
−in ∂

~f

∂xl
, k = 1, 2, . . . ,m. (3.4)

This implies, for i1 + i2 + · · ·+ im ≤ r, that

∂i1+i2+···+im ~f

∂xi11 ∂x
i2
2 · · · ∂ximm

= ~e
−(i1+i2+···+im)
l ~e i11 ~e

i2
2 · · ·~e imm

∂i1+i2+···+im ~f

∂xi1+i2+···+im
1

. (3.5)

Therefore, we obtain

∑

i1+i2+···+im=r

Ci1,i2,...,im(x1, x2, . . . , xm)

× ∂r

∂xi11 ∂x
i2
2 · · · ∂ximm

~f(x1, x2, . . . , xm)

= ~e−r
l

∂r ~f(x1, x2, . . . , xm)

∂xrl

×
∑

i1+i2+···+im=r

Ci1,i2,...,im(x1, x2, . . . , xm)(~e1)
i1(~e2)

i2 · · · (~em) im = 0.

Hence, it follows that every component uk(~x), k = 1, 2, . . . , n of func-
tion ~f is a solution of (3.2).

Remark 3.1. We should notice that if the subspace B contains the unit
then among its basis vectors there is an invertible element.

4. Examples

4.1. The three-dimensional equation

Let us consider the following PDE

(
∂2

∂x2
+ x2

∂2

∂y2
+ (x2 + 1)

∂2

∂z2

)
u(x, y, z) = 0. (4.1)

This equation implies the polynomial P (ξ1, ξ2, ξ3) = ξ21+x
2ξ22+(x2+

1)ξ23 and (3.3) has the following view e21 + x2e22 + (x2 + 1)e23 = 0. In this
case we can use bicomplex algebra BC = {a0 + a1i+ a2j+ a3e| ak ∈ R}.
This algebra is commutative and its basis vectors 1, i, j, e satisfy i2 = j2 =
−e2 = 1, and ij = ji = e, ie = ei = −j, je = ej = −i.
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It is easy to see that x2i2 + j2 + (x2 + 1)e2 = 0. So, we may consider
BC as algebra A and B = {a1i+ a2j+ a3e| ak ∈ R} ⊂ BC as a subspace
of A.

Consider a function ~f : B → A, namely,

~f(x, y, z) = u0(x, y, z) + u1(x, y, z) i + u2(x, y, z) j + u3(x, y, z) e

where x, y, z ∈ R and uk : R3 → R, k = 0, 1, 2, 3.
According to Theorem 3.1, if the function ~f is monogenic then the

functions uk(x, y, z) are solutions of (4.1).
Thus, to obtain solutions of (4.1) it is enough to find a monogenic

function ~f : B → A. As an example consider the following function
~f(z) = exi+yj+ze, where z = xi + yj + ze. It is easily seen that f is
monogenic and

~f(z) = exi+yj+ze

= (cos(x) + i sin(x))(cos(y) + j sin(y))(cosh(z) + e sinh(z))

= cos(x) cos(y) cosh(z) + sin(x) sin(y) sinh(z)

+ i(sin(x) cos(y) cosh(z)− cos(x) sin(y) sinh(z))

+ j(cos(x) sin(y) cosh(z)− sin(x) cos(y) cosh(z))

+ e(cos(x) cos(y) sinh(z) + sin(x) sin(y) cosh(z)).

Therefore, we obtain four solutions of (4.1)

u0(x, y, z) = cos(x) cos(y) cosh(z) + sin(x) sin(y) sinh(z);

u1(x, y, z) = sin(x) cos(y) cosh(z)− cos(x) sin(y) sinh(z);

u2(x, y, z) = cos(x) sin(y) cosh(z)− sin(x) cos(y) cosh(z);

u3(x, y, z) = cos(x) cos(y) sinh(z) + sin(x) sin(y) cosh(z).

4.2. The four-dimensional equation

Now let us consider the following PDE

(
y2

∂2

∂x2
+ v

∂2

∂y2
− (y2 + v + 1)

∂2

∂z2
+

∂2

∂v2

)
u(x, y, z, v) = 0. (4.2)

This equation implies the polynomial P (ξ1, ξ2, ξ3, ξ4) = y2ξ21+vξ
2
2−(y2+

v+1)ξ23+ξ
2
4 and (3.3) has the following form y2e21+ve

2
2− (y2+v+1)e23+

e24 = 0. Suppose A is the commutative algebra of the following form
A = {a0+ ea1+ fa2+ga3|ak ∈ R}, where e2 = f2 = g2 = 1 and efg = 1.

We will find a monogenic function such as

~f : A → A,
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namely,

~f(x, y, z, v) = u0(x, y, z, v) + u1(x, y, z, v) e + u2(x, y, z, v) f

+u3(x, y, z, v)g

where x, y, z, v ∈ R and uk : R4 → R, k = 0, 1, 2, 3.

Let us define

~f(x, y, z, v) = (x+ y e + z f + v g)3.

It is easily verified that this function is monogenic and hence, by
calculating ui(x, y, z, v), i = 0, 1, 2, 3 we obtain four solutions of (4.2).
After a simple computation, we obtain a solution of (4.2) in the following
form

u0(x, y, z, v) = x3 + 3xy2 + 3xz2 + 3xv2 + 6yzv.

We may obtain solutions of (4.2), by using such monogenic functions
as ~f(z) = ex+ye+zf+vg, ~f(z) = cos(x+ ye + zf + vg), and so on.

4.3. The linearized Korteweg–de–Vries equation

A linearized version of the KdV equation is

∂w

∂t
+
∂3w

∂x3
= 0. (4.3)

Then, in order to show the use of our method we consider the slightly
different equation

∂3w

∂z2∂t
+
∂3w

∂x3
= 0. (4.4)

The corresponding polynomial can be defined as

P (ξ1, ξ2, ξ3) = ξ23ξ1 + ξ32 .

Let A0 be a 3-dimensional commutative algebra over R, and assume
that the set e0, e1, e2, is a basis of A0 with Cayley table:

eiej = ei⊕j ,

where ⊕j = i+ j (mod 3).

The algebra A0 has the following matrix representation:

ek → Pk = P k
1 ,
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where

P1 =




0 1 0
0 0 1
1 0 0


 .

Let us define

τ
(l)
0 = el, l = 0, 1, 2, τ

(m)
1 = emi = iem, m = 0, 1, 2,

where i is the complex numbers imaginary unit.

Let us consider the commutative algebra with the basis τ
(l)
0 , τ

(m)
1 ,

l = 0, 1, 2, m = 0, 1, 2 as A and the element τ
(0)
0 = e0 is a unit of A. We

state B =
{
ti+ xτ

(1)
1 + ze0

}
since it is easily seen that

P (ξ1, ξ2, ξ3) = ξ23ξ1 + ξ32 .

P
(
i, τ

(1)
1 , e0

)
= 0.

Consider a function
−→
f : B → A such that

−→
f (z, t, x) =

2∑

l=0

ul (t, x, z) el +

2∑

m=0

um+3 (t, x, z) emi

where ul : R
3 → R, l = 0, 1, · · · , 5, are three times continuously differen-

tiable functions.

We will find
−→
f as an exponential function of the following form

−→
f (t, z, x) = eti+xτ

(1)
1 +ze0

= (cos t + i sin t )

( ∞∑

k=0

(−1)kx6k

(6k)!
+ e1i

∞∑

k=0

(−1)kx6k+1

(6k + 1)!

− e2

∞∑

k=0

(−1)kx6k+2

(6k + 2)!
− i

∞∑

k=0

(−1)kx6k+3

(6k + 3)!

+ e1

∞∑

k=0

(−1)kx6k+4

(6k + 4)!
+ e2i

∞∑

k=0

(−1)kx6k+5

(6k + 5)!

)
ez.

Taking into account that

∞∑

k=0

(−1)kx6k

(6k)!
=

14 +
√
3

48
e−

√
3
2
xcos

(x
2

)
+

3− 2
√
3

48
e−

√
3
2
xsin

(x
2

)
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+
1

3
e

√
3
2
xcos

(x
2

)
+

1

3
cos (x).

∞∑

k=0

(−1)kx6k+3

(6k + 3)!
=

14 +
√
3

48
e−

√
3
2
xsin

(x
2

)
+

2
√
3− 3

48
e−

√
3
2
xcos

(x
2

)

+
1

3
e

√
3
2
xsin

(x
2

)
− 1

3
sin (x).

Therefore, omitting the factor ez we obtain three particular solutions
of the linearized Korteweg–de–Vries equation. One of them is given by

w1 (t, x) = cos t
(
K1 e

−
√
3
2
xcos

(x
2

)
−K2 e

−
√

3
2
xsin

(x
2

)

+
1

3
e

√
3

2
xcos

(x
2

)
+

1

3
cos (x)

)

+sin t

(
K1 e

−
√
3
2
xsin

(x
2

)
+K2 e

−
√
3
2
xcos

(x
2

)
+

1

3
e

√
3
2
xsin

(x
2

)

−1

3
sin (x)

)
.

where K1 =
14+

√
3

48 and K2 =
2
√
3−3
48 .

In the same manner, by computing the pairs

∞∑

k=0

(−1)kx6k+1

(6k + 1)!
,

∞∑

k=0

(−1)kx6k+4

(6k + 4)!

and
∞∑

k=0

(−1)kx6k+2

(6k + 2)!
,

∞∑

k=0

(−1)kx6k+5

(6k + 5)!
,

we obtain two more solutions, respectively w2 (t, x) and w3 (t, x) of (4.4).

4.4. Fourth-order equation

Let us consider the following equation

∂2w

∂t2
+ a2

∂4w

∂x4
= 0. (4.5)

This equation arises in the problems of the transverse vibrations of a
uniform elastic rod [7].
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To use our method we consider the close related equation

∂4w

∂t2∂z2
+ a2

∂4w

∂x4
= 0. (4.6)

The corresponding polynomial is as follows

P (ξ1, ξ2, ξ3) = ξ21ξ
2
2 + a2ξ43 .

In this case, we may consider the bicomplex algebra as A and B =
{a0 + a1ia+ a2e} with the basis 1, i

√
a, e, which satisfies the equation

P (ξ1, ξ2, ξ3) = 0.

Consider a function
−→
f : B → A, as follows

−→
f (x1, x2, x3) = u0 (x1, x2, x3) + u1 (x1, x2, x3) i+ u2 (x1, x2, x3) j

+u3 (x1, x2, x3) e,

where ul : R
3 → R, l = 0, 1, · · · , 5 are four times continuously differen-

tiable functions.
The components of the exponential function

−→
f (x1, x2, x3) = ez+iat+ex

are solutions of (4.6). It is easily seen that solutions of (4.5) are compo-
nents of the function eiat+ex, namely

u0 (t, x) = cos (at) cosh (x),

u1 (t, x) = sin (at) cosh (x),

u2 (t, x) = cos (at) sinh (x),

u3 (t, x) = sin (at) sinh (x).
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