VkpalHchbKuii MaTeMaTUIHUH BiCHUK -
Tom 13 (2016), Ne 1, 118 — 128 M

Solutions of some Partial Differential Equations
with variable coefficients by properties of
Monogenic functions
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(Presented by 1. 1. Skripnik)

Abstract. In this paper we study some partial differential equations
by using properties of Gateaux differentiable functions on commutative
algebra. It is proved that components of differentiable functions satisfy
some partial differential equations with coefficients related with proper-
ties of bases of subspaces of the corresponding algebra.
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1. Introduction

The idea of studying partial differential equation by using proper-
ties of differentiable functions on algebras is not new. The first step in
this direction was the connection established between complex differen-
tial functions and harmonic functions. Ketchum [1] extended this idea to
the three-dimensional Laplace equation by using the algebra of functions
associated with the equation.

The so-called biharmonic bases in commutative algebras and mono-
genic functions on these algebras associated with the biharmonic equa-
tion are studied in [2,3]. An interesting solution of the three dimen-
sional Laplace’s equation has been elaborated in [4] by defining a related
commutative and associative algebra over the field of complex numbers.
These ideas were generalized in [5] to a wide class of partial differential
equations with constant coefficients. In this paper we propose a further
generalization to the case of PDEs with linear dependent variable coeffi-
cients.
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2. Differentiability on commutative algebras

Let A be an infinite-dimensional (or finite-dimensional) commutative
unitary Banach algebra over a field K of characteristic 0. Assume that
the set of vectors €,, n = 1,2,... is a basis of A. Suppose B is an m-
dimensional subspace of A with the basis €1, €5,...,€,, m € N. Now,
any function f : B — A is of the form

oo
= Gur(@)
k=1

where ug (%) = ug(x1,x2,...,2,) are K-valued functions of m variables
x; € K. We will assume that all considered series are convergent in A.

Definition 2.1. f(f) is called differentiable at a point Xy € B if there
exists a unique element f'(Zy) € A such that for any h € B

i 7 (7o) = tim L T0 1) = F(F0) (2.1)

e—0 IS

where Ef’(a?o) is the product of elements h and ﬁ(fo) in algebra A.

It should be keep in mind that ¢ € K in accordance with algebra
A. The classification of monogenic functions in a finite-dimensional com-
mutative algebra is performed in [6]. The element f/(Z) is called as the
Gateaux derivative of f at the point Zy. For A = B = C this definition is
also equivalent to the (complex) differentiability of the complex function
£, and f'(Z) becomes the usual complex derivative.

We say that f : B — A is differentiable (in B) or monogenic if it is
differentiable at any point of B.

Theorem 2.1. Suppose that for some 1 <1 < m there exists é’fl. Then
a function f(Z) = Y req Epuk(Z) ts is monogenic if and only if there
exists the function f’ : B — A such that for oll k = 0,1,...,m, and
vVieB

& F(T) = tim LEH ) = f(@) (2.2)

e—0 IS

where f’ does not depend on €.

Proof. Suppose that (2.2) is fulfilled. Since by assumption there exists
~1 (1 <1< m), we have

Lo f@+ed) - f(@) Auy,
e f' = lim Z €r——
e—0 € oy’
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or equivalently,

> B 1 fl@+ee)—F(@) 2w — g &, Qu

erf —hmea07 D k1€ kdz, — RIY: o

N RT fi’+562 —»8u o —1 —»8u

€ f = lim. o f@ Zk; 1€k axg = Zk 1€k 33;7

S F@+een)—f(@) gou _ 5 z-1 &, du

emf’ —llmeﬁoi > k=0 kamm = Emf " Y e kazlf'
(2.3)

Now, let us consider h= > pey hi€y, then it follows from (2.

- 7 o
herf' = h1 35 Ergl,

7 oo = Ou
hQ@Qf/ — h2 Zkzl ekiamg’

- Juy
memf = hm Zk 1 k55m~

This implies that

- —

f@+eh)-f(@)

= lim =

e—0

Furthermore, it follows from (2.3) that
h1 ZZO 1 ek 89[:1 + ho Zk 1 ek auk + o+ hy ZZOZI €k g;’;

o -1 &, Qe
=hiére; Y kaz + ha€aé; e Koz T

1 & Juy,
+hm€me€, Y ey €k G-

Hence, for every heB

6k— = lim
T e—0 9

Egl_ Z Juy, f(®+eh) — f(@)
k=1

or

3) that

0o Buk & Juy
12 51 € ekaxl +he il Brges o han Dol G
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The set of (2.4) implies the following Cauchy—Riemann type of con-
ditions for a differentiable function f:

1 X2 =1 81‘1
- (2.5)
o o0
= . 8uk . 5 8uk
S g 2t g g O
1 al‘m el 8:1:;
or in the vector form
of of
Gt ==, k=1,2,...,m. 2.6
€ = g m (2.6)

3. Differentiable functions providing solutions
to partial differential equations

In this section we extend the basic idea of relating analytic and har-
monic functions into more general situations. For given integers m, r > 1
let

P(é—l?gQa"'agm) = Z Cil,ig,.‘.,im(l'lam%"-7xm) il ;2 :r;na
i1+ttt =r

(3.1)
where Cj, 4y i (T1,%2,. .., %) are K-valued continuous functions of m
variables x;, ¢ = 1,2,...,m. Consider the following partial differential
equation
P(0y,01y...,0m) [u(z1,z2,...,2m)] =0, (3.2)
ak:
here 0y :== —.
where Jg 8:Ek

Theorem 3.1. Let P be a polynomial as in (3.1). Let a function f
B — A, and its derivatives f', f" ..., f" be differentiable, f(Z) =

n

Ze‘;}uk(f). Assume that functions Ci, iy, i (1, 22,...,Tm) are lin-
k=0
ear dependent in K™ and the basis €1,¢és,...,€Ey of the subspace B of

the algebra A is such that
P(e1,éa,...,6n) =0, (3.3)
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then the functions ug (%), k =1,2,... are solutions of (3.2).
Proof. Tt follows from the Cauchy—Riemann condition (2.6) that

5in ; -1 ——1 6 ;
— = 6]@1"6[ tn
t 0 ’
8.%‘;" o)

k=1,2,...,m. (3.4)

This implies, for i1 + 2 + -+ - + i, < 1, that
ai1+7;2+"'+ian
dx' ok - iy

- . i1+iot+im f

_ é»—(21+12+“'+1m)é»ilé»i2 . é»im g mf

- 12 mogpitietetim
1

(3.5)

Therefore, we obtain

> Ciyig,eosim (21,2, -+, Tin)

i1 gt tim=r

87‘

X Eew “3ximf($1’x2’ ey Tm)
1 9%y m
:g,rar (1‘1,1‘2,...,1‘m)
! Ox]

X Z Cil’i2:~-~7im (x17 xQ? sty xm)(@l)ll (52) i2 e (gm)lm = 0
i1Higtetim=r

Hence, it follows that every component ug (%), k = 1,2,...,n of func-
tion f is a solution of (3.2). O

Remark 3.1. We should notice that if the subspace B contains the unit
then among its basis vectors there is an invertible element.

4. Examples

4.1. The three-dimensional equation

Let us consider the following PDE

0? 0? 0?
<W+x82+(a: +1)82)U(x,y72)=0- (4.1)

This equation implies the polynomial P(&1, &2, €3) = €2+ 2263 + (22 +
1)£2 and (3.3) has the following view €2 + x2e2 + (22 + 1)e2 = 0. In this
case we can use bicomplex algebra BC' = {ag + a1i + asj + aze|aj, € ]R}
ThlS algebra is commutative and its basis vectors 1, 1, j, e satisfy i2 = j2
—e’=1,andij=ji=e ie=ei= —j, je=ej=
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It is easy to see that z%i% 4 j2 + (22 + 1)e? = 0. So, we may consider
BC as algebra A and B = {a1i+ asj+ase|ap € R} C BC as a subspace
of A.

Consider a function f : B — A namely,

f(xvyv Z) = UO(mvya Z) + ul(xaya Z) i + UQ(CC, Y, Z)j + ’LLg(fL',y, Z) €

where z,y,z € R and u, : R* - R, k —0,1,2,3

According to Theorem 3.1, if the function f is monogenic then the
functions ug(z,y, z) are solutions of (4.1).

Thus, to obtain solutions of (4.1) it is enough to find a monogenic
function f B - A, As an example consider the following function
f(z) = e"ituitze where z = zi + yj + ze. It is easily seen that f is
monogenic and

f(Z) ezl+yj+ze
= (cos(x) +isin(x))(cos(y) + jsin(y))(cosh(z) + esinh(z))
= cos(x) cos(y) cosh(z) + sin(z) sin(y) si
i(sin(x) cos(y) cosh(z) — cos(z) sin(y) sinh(z))
j(cos(z )sm( )cosh( sm(x) cos(y) cosh
e(c

A

4.2. The four-dimensional equation

Now let us consider the following PDE

2 2 2 2
< (98:v2 U(ny (v* —I—v—i—l)aa2 %)u(x,y,z,v):& (4.2)
This equation implies the polynomial P(£1, &2, &3, &) = y262 +-v€2 — (y? +
v+1)E2+ €2 and (3.3) has the following form y?e? +wve3 — (y2 +v+1)el +
e2 = 0. Suppose A is the commutative algebra of the following form
A = {ag+ eay + fay + gaslay € R}, where e® = f2 = g2 = 1 and efg = 1.
We will find a monogenic function such as

f+ A=A,
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namely,

—

flx,y,z,v) = up(z,y, z,v) + ui(x,y, z,v) e + uz(z,y, z,v) f

+U3(l’,y, Z7U) g

where z,y, z,v € Rand u, : R* > R, k=0,1,2,3.
Let us define

f(a:,y,z,v) = (x+ye+zf+vg)3.

It is easily verified that this function is monogenic and hence, by
calculating u;(z,y, z,v), i = 0,1,2,3 we obtain four solutions of (4.2).
After a simple computation, we obtain a solution of (4.2) in the following
form

uo(z,y, 2,v) = 2° 4 3xy® + 322% 4 3zv* 4 6yzv.

We may obtain solutions of (4.2), by using such monogenic functions
as f(z) = ertvetzttve () = cos(x + ye + 2f + vg), and so on.

4.3. The linearized Korteweg—de—Vries equation

A linearized version of the KdV equation is

ow  Pw

Then, in order to show the use of our method we consider the slightly
different equation
Pw  Pw
9:201 9

The corresponding polynomial can be defined as

—0. (4.4)

P(&,8.8) =&+ 6.

Let Ag be a 3-dimensional commutative algebra over R, and assume
that the set eg, e1, eo, is a basis of Ay with Cayley table:

€ie; = Cigj,

where ©j =i+ j (mod 3).
The algebra Ay has the following matrix representation:

ek—>Pk:P1k,
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where
010
P = 0 01
1 00

Let us define

iV =e,1=0,1,2, 7™ =epni=ien m=0,12,

where i is the complex numbers imaginary unit.
Let us consider the commutative algebra with the basis ’T(l), Tl(m),
[=0,1,2, m=0,1,2 as A and the element Téo) = ep is a unit of A. We

state B = {ti + am'l(l) + zeo} since it is easily seen that

P(&,6,86) =864 +&.

P (i, Tl(l),e()) = 0.

Consider a function 7 : B — A such that

2 2
? (z,t,x) = Zul (t,z,2) e+ Z U3 (t, @, 2) epi

=0

m=0

where u; : R® > R, [ =0,1,---

, D, are three times continuously differen-
tiable functions.

We will find ? as an exponential function of the following form

7 (t, 2, CC) t1+r‘r1( )+ze0

00 k_6k o0 k, .6k+1
. . (—1)"x ) (—1)"x
= (cost +151nt)<2‘—|—e11 TR
— (6k)! — (6k +1)!
k 26k+2 O (_1)k6k+3
§: 6k+2 iE:(mgfsy
k= k=0 ’
)k 6k-+4 ) 0 (_1)kx6k+5 :
+e12 6k 1 4)! +621kzo CEBA

Taking into account that

[e.9]

Z DFz0% 14 44/3 i, (36) L 3-2V8 _2\[ o (:c)
= e 2 Pcos (= Tsin
— 48 2 48 2
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P T 1
Tcos (2) + —cos ().

L
3 3

i 1)k 0k+3 14+\/§e\g§xsin(ﬂf)+2\/§_?’eégxcos<x>
> 6k+3 I 2 .

+16§xsin (E) — 1sin (x)
3 2 3 '

Therefore, omitting the factor e* we obtain three particular solutions
of the linearized Korteweg—de—Vries equation. One of them is given by

V3 V3
wy (t,x) = cost (Kl e 5 %cos (g) — Ky e~ %sin (g)

+1 V3, (x) n 1 ()
—e2 “cos —cos (x
3 2 3
f V3 1 3
+sint <K1 e 2 %sin (2> + Koe 2 Pcos (g) + geT%Sin (g)

—ésin (x)) .

where Kl—MandK 2\[ 2v3=3
In the same manner, by computlng the pairs

oo k 26k+1 00 k 2 Bk+4
Z 6k:+ ’ Z 6k+4
=0 k=0
and
00 k 2 6k+2 o k 2 Bk+5

we obtain two more solutions, respectively wy (t, ) and w3 (¢, x) of (4.4).

4.4. Fourth-order equation

Let us consider the following equation

w0

— +a"— =0. 4.5

ot? Oxt (45)
This equation arises in the problems of the transverse vibrations of a

uniform elastic rod [7].
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To use our method we consider the close related equation

otw n o 0tw
012022 ¢ 9t

=0. (4.6)
The corresponding polynomial is as follows

P(&1,6,&) = 16 + a%5.

In this case, we may consider the bicomplex algebra as A and B =
{ao + a1ia + age} with the basis 1,iy/a, e, which satisfies the equation

P (&,6,8)=0.

Consider a function 7 :B — A, as follows

? (21, 22, 3) = ug (1,22, x3) + vy (z1, 2, x3) i+ ug (21,22, 3) j

+ug (1,22, 23) €,

where u; : R® - R, [ = 0,1,---,5 are four times continuously differen-
tiable functions.
The components of the exponential function

7 (3317 T, 1,3) — ez+iat+ex

are solutions of (4.6). It is easily seen that solutions of (4.5) are compo-
nents of the function el®*e% namely

ug (t,z) = cos (at) cosh (x),
uq (t,2) = sin (at) cosh (x),
ug (t,z) = cos (at) sinh (x),
ug (t,z) = sin (at) sinh (x).
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