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Adapted statistical experiments
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Abstract. We study statistical experiments with random change of
time, which transforms a discrete stochastic basis in a continuous one.
The adapted stochastic experiments are studied in continuous stochastic
basis in the series scheme. The transition to limit by the series param-
eter generates an approximation of adapted statistical experiments by a
diffusion process with evolution.
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Introduction

Statistical experiments (CE) are defined as averaged sums of random
variables with a finite number of possible values. In particular, only
two possible values mean that the sample values indexes the presence or
absence of a certain feature.

Statistical experiments are defined in a discrete stochastic basis

BN = (Ω, F, (Fk, k ∈ N), P)

with filtration (Fk, k ∈ N = {0, 1, . . .}) on a probability space (Ω, F, P).
This paper deals with adapted statistical experiments defined by a

random change of time [1, Ch. 1], which transforms a discrete stochastic
basis BN in a continuous one:

BT = (Ω, G, (Gt, t ∈ R+), P).

The adapted statistical experiments in continuous stochastic basis
BT is considering in series scheme with a small series parameter ε → 0,
ε > 0. The limit passage, by ε→ 0, generates approximation of adapted
statistical experiments by a diffusion process with evolution [2, Ch. I].
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1. Statistical experiments and evolutionary processes

Statistical experiments in a discrete stochastic basis BN are defined as
averaged sums of the sample random variables (δn(k), 1 ≤ n ≤ N), k ≥ 0,
identically distributed and jointly independent by different n ∈ [1, N ], for
a fixed k ≥ 0, with two possible values ±1.

SN (k) :=
1

N

N∑

n=1

δn(k) , k ≥ 0. (1)

The discrete parameter k ∈ N defines evolution by growing the discrete
time k (called also stage).

Statistical experiment (1) is defined by the difference of the positive
frequencies:

SN (k) = S+
N (k)− S−

N (k) , k ≥ 0,

S±
N (k) :=

1

N

N∑

n=1

δ±n (k) , δ±n (k) := I{δn(k) = ±1}.

The predictable component of binary and of frequency statistical experi-
ments are defined by the corresponding conditional expectations:

C(k + 1) := E[δn(k + 1) |SN (k) = C(k)] , 1 ≤ n ≤ N , k ≥ 0,

P±(k + 1) := E[δ±n (k + 1) |S±
N (k) = P±(k)] , 1 ≤ n ≤ N , k ≥ 0

and does not depend on the sample size N .

The dynamics, by k of the predictable components of statistical ex-
periment SN (k) and S±

N (k) are determined by evolutionary processes :

C(k + 1) = E[SN (k + 1) |SN (k) = C(k)] , k ≥ 0, (2)

P±(k + 1) = E[S±
N (k + 1) |S±

N (k) = P±(k)] , k ≥ 0. (3)

The following obvious identities take place:

C(k) = P+(k)− P−(k) , P+(k) + P−(k) ≡ 1 , k ≥ 0.

Hence the relations

P±(k) =
1

2

[
1± C(k)

]
, k ≥ 0,

define the relationship between evolutionary processes (2) and (3).
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The predictable components evolution is given for increments as fol-
lows:

∆C(k + 1) := C(k + 1)− C(k) = E[∆SN (k + 1) |SN (k) = C(k)],

∆P±(k + 1) := P±(k + 1)− P±(k) = E[∆S±
N (k + 1) |S±

N (k) = P±(k)].

The form of regression functions of increments are postulated on the
principle of “stimulation and deterrence”:

V0(p+, p−) := p+p−(V+p+ − V−p−) , −1 < V± < +1. (4)

The basic assumption 1. The dynamics of evolutionary processes
(2)–(3) is given by the difference evolution equations with regression func-
tion (4):

∆C(k + 1) = −2V0(P+(k), P−(k)) , k ≥ 0,

∆P±(k + 1) = ∓V0(P+(k), P−(k)).

The equilibrium is determined by the balance of evolutionary pro-
cesses increments.

ρ = V /V , V := V− − V+ , V := V− + V+,

ρ = ρ+ − ρ− , ρ± = V∓/V .

So the evolution of statistical experiments (1) is determined by the
regression function of increments

V0(c) =
1

4
V (1− c2)(c− ρ) , |c| ≤ 1, (5)

V ±
0 (p±) = V p+p−(p± − ρ±)

given by cubic parabola with three equilibria: ±1, ρ (|ρ| < 1).

Now the regression function of increments is convenient to express in
terms of fluctuations, that is, through the deviations of the statistical
experiment values from the equilibrium.

The basic assumption (conclusion). The evolution of statistical
experiments (1) is given by the difference evolution equations

∆C(k + 1) = −V0(C(k)) , k ≥ 0, (6)

∆P±(k + 1) = −V ±
0 (P±(k)) , k ≥ 0.



D. V. Koroliouk 109

2. Stochastic dynamics of statistical experiments

The stochastic component is expressed by martingale-differences

∆µN (k + 1) := ∆SN (k + 1)− E[∆SN (k + 1) |SN (k)] , k ≥ 0. (7)

Given the difference evolution equation (6), the martingale-differences (7)
have the following representation

∆µN (k + 1) = ∆SN (k + 1) + V0(SN (k)) , k ≥ 0. (8)

Conclusion 1. The SE increments are determined by the sum two
components

∆SN (k + 1) = −V0(SN (k)) + ∆µN (k + 1) , k ≥ 0. (9)

The predictable component V0(SN (k)), k ≥ 0, is given by the regression
function of increments (5).

The martingale-differences (7) are characterized by the first two mo-
ments

E∆µN (k + 1) = 0, E[(∆µN (k + 1))2 |SN (k)] = σ2(SN (k))/N, k ≥ 0.
(10)

The dispersion of the stochastic components has explicit form [3]:

σ2(c) = 1− V 2(c) , V (c) = c− V0(c) , |c| ≤ 1. (11)

The stochastic dynamics of SE SN (k), k ≥ 0, is specified by the stochastic
difference equation (9)–(11).

The properties of the stochastic component allow specifications.

Lemma 1. The stochastic component, defined by martingale-differences
(8), has the following representation:

∆µN (k + 1) =
1

N

N∑

n=1

βn(k + 1) , k ≥ 0. (12)

The sample variables βn(k + 1), 0 ≤ n ≤ N , k ≥ 0, take two values:

βn(k+1) =
{
±1− V (C(k)), with probability P±(k+1)

}
, k ≥ 0, (13)

where

P±(k + 1) =
1

2

[
1± C(k + 1)

]
=

1

2

[
1± V (C(k))

]
.
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The latter equality provides the predictability of evolutionary process
C(k), k ≥ 0.

Conclusion 2. The stochastic component (12) has Bernuolli distri-
bution:

BN (ν; V (C(k))) = P{∆µN (k + 1) = ν − V (C(k)) |SN (k) = C(k)}

=
N !

N+!N−!
P

N+
+ (k + 1)P

N−
− (k + 1), (14)

where

N±/N =
1

2
[1± ν] , ν = ν+ − ν− , ν± = N±/N,

with the first two moments:

E[βn(k + 1) |SN (k)] = 0 , ∀k ≥ 0,

E[β2n(k + 1) |SN (k)] = σ2(SN (k)) = 1− V 2(SN (k)).

Now the SE dynamics has two interpretations.

• The increments ∆SN (k) are defined by difference equation (9), in
which the stochastic component has Bernoulli distribution (14).

• The probabilities (13) are defined by the Bernoulli distribution (14)
of the stochastic component at a fixed k-th stage.

3. Adapted statistical experiments

The transition from discrete stochastic basis BN = (Ω, F, (Fk, k ∈
N), P) to continuous stochastic basis BT = (Ω, G, (Gt, t ∈ R+), P) is
implemented by a random change of time

ν(t), t ≥ 0 , ν(0) = 0.

The growing process ν(t), t ≥ 0, that is everywhere right-continuous
and has left limits everywhere, is determined by Markov jumping points:

τk := inf{t : ν(t) ≥ k} , k ∈ N.

The regularity of ν(t), t ≥ 0 is provided by the following condition:

P{τk < +∞} , ∀k > 0. (15)

The counting process of recovery ν(t), t ≥ 0, is considered, for simplic-
ity, as a stationary Poisson process with with exponentially distributed
intervals of recovery θk+1 := τk+1 − τk, k ≥ 0:

P{θk+1 ≥ t} = exp(−qt) , 0 < q < +∞ , t ≥ 0.
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It is known that the compensator of Poisson process ν(t), t ≥ 0, is given
by the formula:

Eν(t) = qt , t ≥ 0.

Definition 1. A random change of time in discrete basis BN is given by
the filtration:

Gt = Fν(t) , t ≥ 0. (16)

According to Lemma 3.8 [2, II:3b], there has place the following prop-
erties: τ0 = 0, G0 = F0, as well as Gτk = Fk on the set τk < ∞, where
Fk−1 = Gτk−, k > 0.

For example, if ν(t) = [t] be an integer part of a positive number
t > 0, then the basis BT coincides with the basis BN.

Definition 2. The adapted statistical experiments with random change
of time (16) is determined by the relation

αN (t) := SN (ν(t)) , t ≥ 0,

or equivalently:

αN (t) := SN (k) , τk ≤ t < τk+1 , t ≥ 0.

Conclusion 3. An adapted statistical experiment is s special semi-
martingale [2, I:4с, p. 84], defined by two components:

• the predictable component defined by the regression function of
increments V (c), |c| ≤ 1;

• the stochastic component defined by the Bernoulli distribution (14)
of increments ∆µN (k + 1), k ≥ 0.

Namely, there is a presentation (compare with (9)):

αN (t) = αN (0) +VN (t) +MN (t) , t ≥ 0,

VN (t) := −
ν(t)∑

k=0

V0(αN (τk)) , MN (t) :=

ν(t)∑

k=0

∆µN (k + 1).

4. Adapted statistical experiments in series scheme

The adapted statistical experimens in series scheme with small pa-
rameter ε→ 0, (ε > 0) is defined by the random change of time:

νε(t) := ν(t/ε2) , t ≥ 0, (17)

and by normalization of the increments (9) by the series parameter ε2.
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Definition 3. Adapted statistical experimens random change of time
(17) in series scheme

αε(t) := SN (νε(t)) , ε2 = 1/N , t ≥ 0,

are defined by the following predictable characteristics [2, Ch. 2]:

• evolutionary component

Vε
t := −ε2

νε(t)∑

k=0

V0(α
ε(τ εk)) , t ≥ 0; (18)

• dispersion of stochastic component

σεt := ε2
νε(t)∑

k=0

σ2(αε(τ εk)) , σ2(c) := 1− V 2(c) , t ≥ 0, (19)

• compensating measure of jumps

Γε
t (g) := ε2

νε(t)∑

k=0

E
[
g(αε(τ εk+1)) |Gε

τεk

]
, g ∈ C1 (R) , t ≥ 0. (20)

Here the filtration Gε
t := F ε

νε(t)
, t ≥ 0.

The predictable characteristics of adapted statistical experimens (18)–
(20) depend on the current value of the adapted statistical experiment
αε(τ εk), k ≥ 0 in the jumping points τ εk = ε2τk, k ≥ 0 of the random
change of time νε(t), t ≥ 0. So the study of convergence of adapted sta-
tistical experiments in the series scheme by ε→ 0 has to be implemented
in two stages (see [5]).

Stage 1. One define the terms of compactness of adapted statistical
experimens αε(t), 0 ≤ t ≤ T , ε ≥ 0.

Stage 2. By additional conditions at the predictable characteristics:
the functions V0(c), σ

2(c), |c| ≤ 1 identify the limiting process, defined
by the limit predictable characteristics.

At the first stage the approach proposed in [5] is used (see also [6]).
That is the compact embedding condition be firstly established.

Lemma 2. By the condition of the initial values boundness E|αε(0)| ≤ c0
with a constant with a constant, independent of ε, there takes place the
compact embedding condition [4, 4:5]:

lim
c→∞

sup
ε>0

P{ sup
0≤t≤T

|αε(t)| > c} = 0. (21)
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Proof. One used semimartingale representation of the adapted statistical
experimens:

αε(t) = αε(0) +Vε
t +M ε

t , t ≥ 0. (22)

The evolutionary component Vε
t , t ≥ 0 is given by the sum (18), and

the stochastic component is characterized by a modified component σεt ,
according to the formula (19).

Convergence of the random change of time (17) and regularity of the
process (15) provide the boundedness of the components

sup
0≤t≤T

|Vε
t |2 ≤ C1 , sup

0≤t≤T
|σεt |2 ≤ C2.

Consequently, by the boundedness of the initial values, the following
inequality takes place:

E sup
0≤t≤T

|αε(t)|2 ≤ C

with a constant C, independent from ε.
Now the Kolmogorov’s inequality for the adapted statistical exper-

imens αε(t), 0 ≤ t ≤ T , ε ≥ 0, establishes the condition of compact
embedding (21).

Remark 1. Other approach of establishment the compact embedding
condition (21) are presented in the monograph [4, 4:5].

Conclusion 1. Under the conditions of Lemma 2 the following esti-
mate takes place:

E|αε(t)− αε(t′)|2 ≤ CT |t− t′| , 0 ≤ t, t′ ≤ T. (23)

Under the conditions (21) and (23), the compactness of process αε(t),
0 ≤ t ≤ T , ε > 0, takes place.

At the second stage, under the compactness condition of the adapted
statistical experimens in the series scheme αε(t), 0 ≤ t ≤ T , ε > 0, the
verification of the limiting process boils down to the study of convergence
(as ε→ 0) of the predictable characteristics (18)–(20).

First one established the convergence of the compensating measures
of jumps (20):

sup
0≤t≤T

Γε
t (g)

D−→ 0 , ε→ 0,

provided by Lindeberg condition:

N∑

n=1

E[βεn(k + 1)]2 · I(|βn(k + 1)|) ≥ h/ε |SN (k) = c] → 0 , ε→ 0,
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for sampling sums

∆µε(k + 1) := ε
N∑

n=1

βn(k + 1),

with dispersion

D2
N := E[(∆µε(k + 1))2 |SN (k) = c] = σ2(c).

Next be established the convergences of the evolutionary component
and of the stochastic component dispersion for semimartingale αε(t),
t ≥ 0.

Lemma 3. In the conditions of Lemma 2 there are convergence in dis-
tribution, as ε→ 0:

Vε
t

D−→ V0
t = −

∫ qt

0
V0(α

0(s))ds , 0 ≤ t ≤ T,

σεt
D−→ σ0t =

∫ qt

0
σ2(α0(s))ds , 0 ≤ t ≤ T,

σ2(c) = 1− V 2(c).

Here the limit process α0(t), t ≥ 0, is determined by the condition of
compactness (see Lemma 2):

αεr(t)
D−→ α0(t) , εr → 0 , r → ∞.

Proof of Lemma 3. Since both predictable characteristics (18) and (19)
have the same structure of the integral functional on the process αε(t),
t ≥ 0, there enough to explore the convergence of one of them, for exam-
ple, the evolutionary component (18).

It is used martingale characterization

µεt = ϕ(V ε
t )−

∫ t

0
Lε
V ϕ(V

ε
u )du , t ≥ 0.

The generator of integral functional (18):

Lε
V ϕ(c) = ε−2q[ϕ(c− ε2V0(c))− ϕ(c)] , ϕ(c) ∈ C2(R),

admits the asymptotic representation at the class of test functions ϕ(c) ∈
C2(R):

Lε
V ϕ(c) = L0

V ϕ(c) +Rεϕ(c) , ϕ(c) ∈ C2(R),
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with neglecting term:

Rεϕ(c) → 0 , ε→ 0 , ϕ(c) ∈ C2(R).

The limit operator L0
V defines the evolution:

L0
V ϕ(c) = −qV0(c)ϕ′(c) , ϕ(c) ∈ C2(R).

The limit evolution is given by the following relation:

V 0
t = −

∫ qt

0
V0(α

0(u))du , t ≥ 0.

Hence the compactness of the adapted statistical experiments (22),
established by Lemma 2, provides the convergence of martingales

µεt ⇒ µ0t = ϕ(V 0
t )−

∫ t

0
L0
V ϕ(V

0
u )du , 0 ≤ t ≤ T , ε→ 0.

Similarly one established the quadratic characteristic convergence
(19) using the martingale characterization:

µεt = ϕ(Cε
t )−

∫ t

0
Lε
σϕ(V

ε
u )du , t ≥ 0,

with generator

Lε
σϕ(c) = ε−2q[ϕ(c+ ε2σ20(c))− ϕ(c)] , ϕ(c) ∈ C2(R),

which allows asymptotic representation for the class of test functions
ϕ(c) ∈ C2(R):

Lε
σϕ(c) = qσ20(c)ϕ

′(c) +Rεϕ(c) , ϕ(c) ∈ C2(R),

with neglecting term:

Rεϕ(c) → 0 , ε→ 0 , ϕ(c) ∈ C2(R).

So the limit quadratic characteristic has the following representation:

σ0t =

∫ qt

0
σ2(α0(u))du , t ≥ 0 , σ2(c) = 1− V 2(c).

At the final stage one use the uniqueness condition for semimartingale
characterization of diffusion Markov process with evolution α0(t), t ≥ 0,
given by the generator [2, Ch. IX]:

L0
V ϕ(c) = −V0(c)ϕ′(c) +

1

2
σ2(c)ϕ′′(c) , ϕ(c) ∈ C2(R).
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Theorem 1. Adapted statistical experimens αε(t), t ≥ 0 in series scheme
with small series parameter ε→ 0, (ε > 0), determined by the predictable
characteristics (18)–(20) with additional condition of convergence of ini-
tial values:

αε(0)
D−→ α0 , Eαε(0) → Eα0 , ε→ 0,

converges, in distribution, to the diffusion process with evolution with the
following time scaling

αε(t)
D−→ α0(t) , 0 ≤ t ≤ T , ε→ 0.

The predictable characteristics of the limiting process α0(t), t ≥ 0, has
the following representation:

V 0
t =

∫ qt

0
V0(α

0(u))du , σ0t =

∫ qt

0
σ2(α0(u))du , 0 ≤ t ≤ T,

and the compensating measure of jumps is absent:

Bε
t (g) → 0 , ε→ 0 , g(c) ∈ C1(R).

Conclusion 1. The limit diffusion process with evolution α0(t), t ≥
0, is given by the statistical differential equation

dα(t) = −V0(α(t))dt+ σ(α(t))dWt , t ≥ 0,

with the following time scaling:

α0(t) = α(qt) , t ≥ 0.
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