Оценки параметров модели Самуэльсона с телеграфным трендом

Анна А. Хархота, Сергей А. Мельник

(Представлена С. Я. Махно)

Аннотация. В работе построены оценки неизвестных параметров модели Самуэльсона с телеграфным трендом. Для построения оценок применен метод моментов. Доказана сильная состоятельность оценок, построены асимптотические доверительные области для неизвестных параметров.

2010 MSC. 60P05, 60F05, 60G10, 60H10.

Ключевые слова и фразы. Модель Самуэльсона, телеграфная волна, стационарный процесс, эргодический процесс.

1. Введение

В 1965 г. в работе [1] П. Самуэльсоном была предложена модель эволюции стоимости финансового актива:

$$S(t) = S_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W(t)},$$

где S(t) — величина биржевого курса некоторого финансового актива в момент времени t, W(t) — стандартный винеровский процесс со значениями в \mathbb{R}^1 ; μ называют коэффициентом роста, σ — коэффициентом волатильности. Благодаря своей простоте модель Самуэльсона стала популярным объектом исследования, и на ее основе в 1973 г. Ф. Блэк и М. Шоулз провели расчеты стоимостей опционов. Оценивание параметров такой модели не представляет трудностей. Если $S_k = S(t_k)$, то последовательность $\left\{ \ln \frac{S_{k+1}}{S_k} \right\}_{k=0}^{\infty}$ является последовательностью независимых гауссовских величин с параметрами $((\mu - 0.5\sigma^2) h; \sigma^2 h)$. Однако, существенным недостатком модели Самуэльсона является постоянство коэффициентов μ и σ , что трудно

Статья поступила в редакцию 17.09.2014

Работа выполнена при поддержке гранта НАНУ-РФФИ № 09-01-14

встретить в действительности. Поэтому существует значительное количество моделей, представляющих собой усовершенствования модели Самуэльсона, например, модель диффузии со скачками Мертона [2]. Такая модель использовались в [3] для нахождения стратегии хеджирования наименьшей вариации. Другой тип моделей представлен моделями стохастической вариации, среди которых широко известна модель Гестона [4]. Г.Л. Бухбиндер и К.М. Чистилин построили оценки неизвестных параметров модели Гестона и применили полученные результаты к мониторингу реальных курсов акций российских компаний [5]. Однако, в перечисленных моделях остается постоянным коэффициент роста μ , что не позволяет учитывать возможные смены тренда, наступающие в случайные моменты времени.

В работе [6] была предложена усовершенствованная модель Самуэльсона — модель с телеграфным трендом. Напомним, как выглядит указанная модель. На стохастическом базисе ($\Omega, \Im, \{\Im_t\}_{t\geq 0}, \mathbb{P}$) заданы независимые: процесс Пуассона $\nu(t), t \geq 0$ с параметром $\lambda > 0$, винеровский процесс W(t), а также последовательность независимых случайных величин $\{\eta_k\}_{k=0}^{\infty}$, имеющих нормальное распределение с параметрами ($0; \theta^2$). Будем говорить, что курс финансового актива меняется согласно модели Самуэльсона с телеграфным трендом, если

$$S(t) = S_0 e^{\mu(t) - \frac{\sigma^2 t}{2} + \sigma W(t)},$$

где: $S_0 > 0, \ \mu(t) = \int_0^t \eta_{\nu(s)} ds, \ \sigma > 0.$ Процесс $\eta_{\nu(s)}, \ s \ge 0$ принято называть обобщённым телеграфным процессом.

Таким образом, тренд финансового актива формируется процессом $\mu(t)$, а случайные колебания курса в окрестности тренда формируются процессом W(t). В отличие от перечисленных выше разновидностей моделей, данная модель учитывает возможность смены тренда в случайные моменты времени (моменты скачков процесса Пуассона $\nu(t)$), что делает модель более адекватной по отношению к реальной динамике курса финансового актива на бирже.

2. Постановка задачи

Введённая выше модель Самуэльсона с телеграфным трендом характеризуется тремя параметрами:

- λ частота смены направления тренда;
- θ волатильность угла атаки тренда;
- σ волатильность курса финансового актива.

В моменты времени $t_k = kh, h > 0, k = 0, 1, \ldots, n$ производятся измерения $S_k = S(kh)$, на основе которых формирутся базовая последовательность измерений (БПИ)

$$z_k = \ln \frac{S_{k+1}}{S_k} = \Delta_k \mu - \frac{\sigma^2 h}{2} + \sigma \Delta_k W, \quad k = 0, 1, \dots, n-1,$$

где $\Delta_k \mu = \int_{kh}^{(k+1)h} \eta_{\nu(s)} ds, \ \Delta_k W = W((k+1)h) - W(kh).$

Необходимо построить оценки параметров λ , θ^2 , σ^2 , изучить их свойства и построить доверительные области.

3. Оценки параметров λ , θ , σ^2

В работе [6] доказано, что последовательность $\{z_k\}_{k=0}^{\infty}$ является стационарной как в широком, так и в узком смысле, а также эргодической по математическому ожиданию и по корреляционной функции. Это позволяет нам строить оценки параметров, основываясь на БПИ.

Оценки параметров λ , θ , σ^2 построим методом моментов. Обозначим через \bar{z} выборочное математическое ожидание и $\bar{R}_z(l)$, $l = 0, 1, \ldots, n - 1$ — выборочную корреляционную функцию последовательности $\{z_k\}_{k=0}^{\infty}$. Рассмотрим систему уравнений:

$$\begin{cases} Ez_k = \bar{z}, \\ R_z(1) = \bar{R}_z(1), \\ R_z(3) = \bar{R}_z(3), \end{cases}$$

ИЛИ

$$\begin{cases} -\frac{\sigma^2 h}{2} = \bar{z}, \\ \frac{\theta^2}{\lambda^2} \left(1 - e^{-\lambda h}\right)^2 = \bar{R}_z(1), \\ \frac{\theta^2}{\lambda^2} \left(1 - e^{-\lambda h}\right)^2 e^{-2\lambda h} = \bar{R}_z(3). \end{cases}$$

Решив систему уравнений относительно неизвестных λ и θ , получим оценки этих параметров:

$$\sigma^{*2}(n) = -\frac{2}{h}\bar{z},\tag{3.1}$$

$$\lambda^*(n) = \frac{1}{2h} \ln \frac{\bar{R}_z(1)}{\bar{R}_z(3)},\tag{3.2}$$

$$\theta^*(n) = \frac{\bar{R}_z(1)}{2h\left(\sqrt{\bar{R}_z(1)} - \sqrt{\bar{R}_z(3)}\right)} \ln \frac{\bar{R}_z(1)}{\bar{R}_z(3)}.$$
(3.3)

Может оказаться, что система неразрешима или имеет отрицательное решение. В этом случае положим $\sigma^{*2}(n) = \lambda^*(n) = \theta^*(n) = 0$ (см. [7, с. 76–77]). В силу [6, следствие 2]

$$\lim_{n \to \infty} \bar{z} = -\frac{\sigma^2 h}{2} \tag{3.4}$$

И

$$\lim_{n \to \infty} \bar{R}_z(l) = R_z(l) \tag{3.5}$$

с вероятностью 1. Поэтому найдется номер $n(\omega)$, начиная с которого $\bar{z} < 0$ и $\bar{R}_z(1) > \bar{R}_z(3) > 0$ с вероятностью 1, и мы получим ненулевые оценки.

Изучим свойства полученных оценок. Очевидно, что оценка $\sigma^{*2}(n)$ является несмещенной и состоятельной с вероятностью 1 в силу (3.4).

Теорема 3.1. Оценка $\sigma^{*2}(n)$ состоятельна в среднем квадратическом.

Доказательство. Как показано в [6], корреляционная функция последовательности $\{z_k\}_{k=0}^{\infty}$ имеет вид:

$$R_z(l) = \begin{cases} R_0 + \sigma^2 h, & l = 0\\ Re^{-\lambda h|l|}, & l \neq 0, \end{cases}$$

где $R_0 = 2\theta^2 \left(\lambda h - 1 + e^{-\lambda h}\right) / \lambda^2, R = \theta^2 e^{\lambda h} \left(1 - e^{-\lambda h}\right)^2 / \lambda^2.$ Имеем

$$\sum_{l=0}^{N} R_z(l) = R_0 + \sigma^2 h + R \frac{e^{-\lambda h(N+1)}}{1 - e^{-\lambda h}}.$$

Так как $\lim_{N\to\infty} \frac{1}{N} \sum_{l=0}^{N} R_z(l) = 0$, то, согласно [8, с.430], оценка $\sigma^{*2}(n)$ состоятельна в среднем квадратическом. Теорема 3.1 доказана.

Теорема 3.2. Оценки $\lambda^*(n) \ u \ \theta^*(n)$ состоятельны с вероятностью 1.

Доказательство. Оценки $\lambda^*(n)$ и $\theta^*(n)$ как функции от $\bar{R}_z(1)$ и $\bar{R}_z(3)$ непрерывны при $\bar{R}_z(1) > \bar{R}_z(3) > 0$. Из (3.5) следует, что $\lim_{n \to \infty} \lambda^*(n) = \lambda$ и $\lim_{n \to \infty} \theta^*(n) = \theta$ с вероятностью 1. Теорема 3.2 доказана.

4. Асимптотический доверительный интервал для σ^2

Чтобы с помощью оценки $\sigma^{*2}(n)$ построить доверительный интервал для σ^2 , необходимо знать её закон распределения. Хотя оценка $\sigma^{*2}(n)$ довольно просто устроена, построение ее закона распределения сопряжено с большими трудностями, так как в состав БПИ входит слагаемое $\Delta_k \mu$. Поэтому нашей целью будет построение асимптотических доверительных областей. Для этого нам понадобится следующая теорема.

Теорема 4.1. Случайные величины $\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(z_k + \frac{\sigma^2 h}{2} \right)$ сходятся по распределению к величине, имеющей нормальное распределение с параметрами $(0; 2\theta^2 h/\lambda + \sigma^2)$.

Доказательство. Для доказательства теоремы воспользуемся центральной предельной теоремой для стационарных процессов [9, с. 242]. Для последовательности $\{z_k\}_{k=0}^{\infty}$ проверим условия теоремы [9, с. 242]:

1) $\{z_k\}_{k=0}^{\infty}$ является вполне регулярной:

$$\alpha(l) = \sup_{\substack{A \in \mathfrak{S}_{0}^{t_{k}} \\ B \in \mathfrak{S}_{t_{k+l}}^{\infty}}} |P(AB) - P(A)P(B)| \to 0$$

при $l \to \infty$, где $\mathfrak{S}_0^{t_k}$ и $\mathfrak{S}_{t_{k+l}}^{\infty} - \sigma$ -алгебры, порожденные случайными величинами $z_m, m \leq k$ и $z_m, m \geq k+l$, соответственно. При этом $\alpha(l) = o(l^{-1-\epsilon})$ при некотором $\epsilon > 0$.

2) $\{z_k\}_{k=0}^{\infty}$ имеет моменты достаточно высокого порядка, именно, $Ez_k^{2+\delta} < \infty$ при некотором $\delta > 4/\epsilon$.

3) спектральная плотность $\varphi_z(u)$ последовательности $\{z_k\}_{k=0}^{\infty}$ ограничена, непрерывна и невырождена в нуле.

Проверим условие 1. Пусть: $A \in \mathfrak{S}_0^{t_k}, B \in \mathfrak{S}_{t_{k+l}}^{\infty}, H = \{\nu(t_{k+l+1}) - \nu(t_k) = 0\}$. Тогда

$$\begin{split} P(A) &= P(A|H)P(H) + P(A|\bar{H})P(\bar{H}), \\ P(B) &= P(B|H)P(H) + P(B|\bar{H})P(\bar{H}), \\ P(H) &= e^{-\lambda h(l+1)}, \end{split}$$

И

$$P(A \cap B) - P(A)P(B) = P(A \cap B|H)P(H) + P(A \cap B|\bar{H})P(\bar{H}) - P(A|H)P(B|H)(P(H))^2 - P(A|\bar{H})P(B|H)P(H)P(\bar{H}) - P(A|H)P(B|\bar{H})P(H)P(\bar{H}) - P(A|\bar{H})P(B|\bar{H})(P(\bar{H}))^2.$$

Покажем, что $P(A \cap B|\bar{H}) = P(A|\bar{H}) P(B|\bar{H})$. Действительно, $z_k = \Delta_k \mu - 0.5\sigma^2 h + \sigma \Delta_k W$, $z_{k+l} = \Delta_{k+l} \mu - 0.5\sigma^2 h + \sigma \Delta_{k+l} W$, а при условии \bar{H} величина $\Delta_k \mu$ не зависит от $\Delta_{k-\Delta t} \mu$ в силу независимости величин η_k . Следовательно, события A и B условно независимы.

Получим

$$\begin{split} P(A \cap B) - P(A)P(B) &= P(A \cap B|H)e^{-\lambda h(l+1)} \\ &- P(A|H)P(B|H)e^{-2\lambda h(l+1)} \\ &+ P(A|\bar{H})P(B|\bar{H})e^{-\lambda h(l+1)} \left(1 - e^{-\lambda h(l+1)}\right) \\ &- P(A|\bar{H})P(B|H)e^{-\lambda h(l+1)} \left(1 - e^{-\lambda h(l+1)}\right) \\ &- P(A|H)P(B|\bar{H})e^{-\lambda h(l+1)} \left(1 - e^{-\lambda h(l+1)}\right). \end{split}$$

Таким образом,

$$|P(A \cap B) - P(A)P(B)| < 5e^{-\lambda h(l+1)}.$$

Таким образом, условие 1 выполнено.

Условие 2 также выполнено, так как $Ez_k^3 = 0$.

Проверим выполнение условия 3. Построим спектральную плотность $\varphi_z(u)$ и покажем, что она удовлетворяет условиям теоремы [9, с.242]. Из структуры БПИ следует, что

$$\varphi_z(u) = \varphi_{\Delta\mu}(u) + \sigma^2 \varphi_{\Delta W}(u).$$

Последовательность $\{\Delta_k W\}_{k=0}^{\infty}$ является гауссовским белым шумом и согласно [8, с.405] ее спектральная плотность имеет вид:

$$\varphi_{\Delta W}(u) = \begin{cases} \frac{1}{2\pi}, & u \in [-\pi; \pi), \\ 0, & u \notin [-\pi; \pi). \end{cases}$$

В [6] показано, что

$$R_{\Delta\mu}(l) = \begin{cases} R_0, & l = 0, \\ R, & l \neq 0. \end{cases}$$

Отсюда и из [8, с. 412] следует:

$$\varphi_{\Delta\mu}(u) = \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} e^{-iul} R_{\Delta\mu}(l)$$
$$= \frac{R_0}{2\pi} + \frac{R}{2\pi} \left(\sum_{l=1}^{\infty} e^{-(\lambda h - iu)l} + \sum_{l=1}^{\infty} e^{-(\lambda h + iu)l} \right).$$

Так как $|e^{-\lambda h+iu}| = |e^{-\lambda h-iu}| = e^{-\lambda h} < 1$, то $\sum_{l=1}^{\infty} e^{-(\lambda h-iu)l} = \frac{e^{-\lambda h+iu}}{1-e^{-\lambda h+iu}}$ н $\sum_{l=1}^{\infty} e^{-(\lambda h+iu)l} = \frac{e^{-\lambda h-iu}}{1-e^{-\lambda h-iu}}.$

Далее имеем

$$\varphi_{\Delta\mu}(u) = \frac{R_0 - R}{2\pi} + \frac{R}{2\pi} \cdot \frac{1 - e^{-2\lambda h}}{|1 - e^{-iu}e^{-\lambda h}|^2}.$$

Таким образом,

$$\varphi_{z}(u) = \begin{cases} \frac{R_{0} - R + \sigma^{2}}{2\pi} + \frac{R}{2\pi} \cdot \frac{1 - e^{-2\lambda h}}{|1 - e^{-iu}e^{-\lambda h}|^{2}}, & u \in [-\pi; \pi), \\ \frac{R_{0} - R}{2\pi} + \frac{R}{2\pi} \cdot \frac{1 - e^{-2\lambda h}}{|1 - e^{-iu}e^{-\lambda h}|^{2}}, & u \notin [-\pi; \pi). \end{cases}$$

Легко видеть, что $\varphi_z(u)$ ограничена, непрерывна и невырождена в нуле.

Таким образом, условие 3 также выполнено. Таким образом,

$$\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}\left(z_k + \frac{\sigma^2 h}{2}\right) \stackrel{d}{\to} \Phi_{0,2\pi\varphi_z(0)},$$

где $2\pi \varphi_z(0)=2\theta^2 h/\lambda+\sigma^2.$ Теорема 4.1 доказана.

Построим доверительный интервал для $\sigma^2.$ Пусть все параметры неизвестны. В силу теоремы 4.1

$$\sqrt{n} \left(\sigma^{*2}(n) - \sigma^2 \right) \xrightarrow{d} \Phi_{0, V(\sigma^2, \lambda, \theta)},$$

где $V(\sigma^2,\lambda,\theta)=8\theta^2/\lambda h+4\sigma^2/h^2.$ Согласно [7, с.316]

$$\frac{\sqrt{n}\left(\sigma^{*2}(n) - \sigma^{2}\right)}{\sqrt{V(\sigma^{*2}, \lambda^{*}, \theta^{*})}} \xrightarrow{d} \Phi_{0,1}.$$

Таким образом, доверительный интервал для σ^2 будет следующим:

$$\sigma^{2\pm} = -\frac{2\bar{z}}{h} \pm \frac{2u_{\gamma}}{\sqrt{n}} \sqrt{\frac{1}{h^2} \left(\frac{\bar{R}(1)}{\sqrt{\bar{R}(1)} - \sqrt{\bar{R}(3)}}\right)^2 \ln\frac{\bar{R}(1)}{\bar{R}(3)} - \frac{2\bar{z}}{h^3}},$$

где u_{γ} — квантиль уровня $\gamma \approx 1$ распределения $\Phi_{0,1}$.

5. Асимптотическая доверительная область для λ, θ^2

Рассмотрим последовательность $\{\zeta_k(l)\}_{k=0}^{\infty} = \{\dot{z}_k \dot{z}_{k+l}\}_{k=0}^{\infty}$, где $\dot{z}_k = z_k - E z_k, l \in \mathbb{Z}^+$.

Лемма 5.1. Последовательность $\{\zeta_k(l)\}_{k=0}^{\infty}$ стационарна в узком смысле и эргодична по математическому ожиданию при каждом $l = 0, 1, \ldots$

Доказательство. Рассмотрим совместное распределение величин $\zeta_{k_1}(l), \ldots, \zeta_{k_n}(l)$:

$$P\left\{\zeta_{k_1}(l) < x_1, \dots, \zeta_{k_n}(l) < x_n\right\} = P\left\{\dot{z}_{k_1}\dot{z}_{k_1+l} < x_1, \dots, \dot{z}_{k_n}\dot{z}_{k_n+l} < x_n\right\}.$$

Так как последовательность $\{\mathring{z}_k\}_{k=0}^{\infty}$ стационарна в узком смысле, то для любого $m \in \mathbb{Z}^+$ верно равенство:

$$P \{ \dot{z}_{k_1} \dot{z}_{k_1+l} < x_1, \dots, \dot{z}_{k_n} \dot{z}_{k_n+l} < x_n \}$$

= $P \{ \dot{z}_{k_1+m} \dot{z}_{k_1+l+m} < x_1, \dots, \dot{z}_{k_n+m} \dot{z}_{k_n+l+m} < x_n \}$
= $P \{ \zeta_{k_1+m}(l) < x_1, \dots, \zeta_{k_n+m}(l) < x_n \}.$

Таким образом, последовательность $\{\zeta_k(l)\}_{k=0}^{\infty}$ стационарна в узком смысле. Эргодичность по математическому ожиданию следует из [6, теорема 4]. Лемма 5.1 доказана.

Теперь найдем совместное асимптотическое распределение случайных величин

$$\frac{1}{\sqrt{n-1}}\sum_{k=0}^{n-2}\zeta_k(1) - \sqrt{n-1}E\zeta_k(1) = \frac{1}{\sqrt{n-3}}\sum_{k=0}^{n-4}\zeta_k(3) - \sqrt{n-3}E\zeta_k(3).$$

Рассмотрим двумерный процесс $\{Z_k\}_{k=0}^{\infty} = \{\zeta_k(1), \zeta_k(3)\}_{k=0}^{\infty}$ и найдем его спектральную плотность $\varphi_Z(u)$. Для этого построим вначале матричную корреляционную функцию $R_Z(l) = \{R_{pq}(l)\}_{p=1;2}^{q=1;2}$. Заметим, что корреляционная матрица обладает свойством $R_Z(l) = R_Z^T(-l)$, поэтому достаточно определить ее элементы при $l \ge 0$.

Получим:

$$R_{11}(0) = \frac{8\sigma^4}{\lambda^2} \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) - h e^{-\lambda h} \right)^2 + \left(\frac{2\sigma^2}{\lambda} \left(h - \frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) \right) + \sigma^2 h \right)^2 - \frac{\sigma^4}{\lambda^4} \left(1 - e^{-\lambda h} \right)^4;$$

$$R_{11}(1) = \frac{2\theta^4 h^2}{\lambda^2} e^{-\lambda h} \left(1 - e^{-\lambda h}\right)^2 + \frac{2\theta^4}{\lambda^3} \left(1 - e^{-\lambda h}\right)^2 \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h}\right) - he^{-\lambda h}\right) - \frac{\theta^4}{\lambda^4} \left(1 - e^{-\lambda h}\right)^4;$$

$$R_{11}(l) = \frac{2\theta^4 h^2}{\lambda^2} \left(1 - e^{-\lambda h}\right)^2 e^{-\lambda h l}, \quad l \ge 2;$$

$$R_{12}(0) = \frac{4\theta^4 h}{\lambda^2} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right) \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h}\right) - h e^{-\lambda h}\right)$$
$$+ \frac{2\theta^4}{\lambda^3} \left(1 - e^{-\lambda h}\right)^2 e^{-\lambda h} \left(h - \frac{1}{\lambda} \left(1 - e^{-\lambda h}\right)\right)$$
$$- \frac{\theta^4}{\lambda^4} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^4;$$

$$R_{12}(1) = \frac{2\theta^4 h^2}{\lambda^2} e^{-3\lambda h} \left(1 - e^{-\lambda h}\right)^2$$
$$- \frac{2\theta^4}{\lambda^3} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^2 \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h}\right) - h e^{-\lambda h}\right)$$
$$- \frac{\theta^4}{\lambda^4} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^4;$$

$$R_{12}(l) = \frac{2\theta^4 h^2}{\lambda^2} \left(1 - e^{-\lambda h}\right)^2 e^{-2\lambda h} e^{-\lambda h l}, \quad l \ge 2;$$

$$R_{21}(0) = R_{12}(0);$$

$$R_{21}(1) = \frac{2\theta^4 h^2}{\lambda^2} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^2 + \frac{\theta^4}{\lambda^4} \left(1 - e^{-\lambda h}\right)^4 \left(1 - e^{-2\lambda h}\right);$$

$$R_{21}(2) = \frac{4\theta^4 h}{\lambda^2} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right) \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h}\right) - h e^{-\lambda h}\right) + \frac{2\theta^4}{\lambda^3} \left(1 - e^{-\lambda h}\right)^2 e^{-\lambda h} \left(h - \frac{1}{\lambda} \left(1 - e^{-\lambda h}\right)\right) - \frac{\theta^4}{\lambda^4} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^4;$$

$$R_{21}(3) = \frac{2\theta^4 h^2}{\lambda^2} e^{-3\lambda h} \left(1 - e^{-\lambda h}\right)^2 + \frac{2\theta^4}{\lambda^3} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^2 \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h}\right) - h e^{-\lambda h}\right) - \frac{\theta^4}{\lambda^4} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^4;$$

$$R_{21}(l) = \frac{2\theta^4 h^2}{\lambda^2} \left(1 - e^{-\lambda h}\right)^2 e^{-\lambda h l}, \quad l \ge 4;$$

$$R_{22}(0) = \frac{8\theta^4}{\lambda^2} e^{-2\lambda h} \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) - h e^{-\lambda h} \right)^2 + \left(\frac{2\theta^2}{\lambda} \left(h - \frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) \right) + \sigma^2 h \right)^2 - \frac{\theta^4}{\lambda^4} e^{-4\lambda h} \left(1 - e^{-\lambda h} \right)^4;$$
$$R_{22}(1) = \frac{2\theta^4 h^2}{\lambda^2} e^{-3\lambda h} \left(1 - e^{-\lambda h} \right)^2 + \frac{\theta^4}{\lambda^4} \left(1 - e^{-\lambda h} \right)^4 \left(1 - e^{-4\lambda h} \right);$$

$$R_{22}(2) = \frac{2\theta^4 h^2}{\lambda^2} e^{-4\lambda h} \left(1 - e^{-\lambda h}\right)^2 + \frac{\theta^4}{\lambda^4} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^4 \left(1 - e^{-2\lambda h}\right);$$

$$R_{22}(3) = \frac{2\theta^4 h^2}{\lambda^2} e^{-5\lambda h} \left(1 - e^{-\lambda h}\right)^2 + \frac{2\theta^4}{\lambda^3} e^{-4\lambda h} \left(1 - e^{-\lambda h}\right)^2 \left(\frac{1}{\lambda}(1 - e^{-\lambda h}) - he^{-\lambda h}\right) - \frac{\theta^4}{\lambda^4} e^{-4\lambda h} \left(1 - e^{-\lambda h}\right)^4;$$

$$R_{22}(l) = \frac{2\theta^4 h^2}{\lambda^2} e^{-2\lambda h} \left(1 - e^{-\lambda h}\right)^2 e^{-\lambda h l}, \quad l \ge 4.$$

При помощи равенства $\varphi_{pq}(u) = \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} e^{-iul} R_{pq}(l)$ найдем элементы матрицы спектральной плотности $\varphi_Z(u) = \{\varphi_{pq}(u)\}_{p=1;2}^{q=1;2}$:

$$\varphi_{11}(u) = \frac{1}{2\pi} \left[\frac{2\theta^4 h^2}{\lambda^2} \left(1 - e^{-\lambda h} \right)^2 \left(\frac{e^{2iu} e^{-2\lambda h}}{1 - e^{iu} e^{-\lambda h}} + \frac{e^{-2iu} e^{-2\lambda h}}{1 - e^{-iu} e^{-\lambda h}} \right) + R_{11}(0) + 2R_{11}(1) \cos u];$$

$$\varphi_{12}(u) = \frac{1}{2\pi} \left[\frac{2\theta^4 h^2}{\lambda^2} \left(1 - e^{-\lambda h} \right)^2 \left(\frac{e^{4iu} e^{-4\lambda h}}{1 - e^{iu} e^{-\lambda h}} + \frac{e^{-2iu} e^{-4\lambda h}}{1 - e^{-iu} e^{-\lambda h}} \right) + e^{iu} R_{21}(1) + e^{2iu} R_{21}(2) + e^{3iu} R_{21}(3) + R_{12}(0) + e^{-iu} R_{12}(1) \right];$$

$$\varphi_{21}(u) = \varphi_{12}(-u);$$

$$\varphi_{22}(u) = \frac{1}{2\pi} \left[\frac{2\theta^4 h^2}{\lambda^2} \left(1 - e^{-\lambda h} \right)^2 \left(\frac{e^{4iu} e^{-6\lambda h}}{1 - e^{iu} e^{-\lambda h}} + \frac{e^{-4iu} e^{-6\lambda h}}{1 - e^{-iu} e^{-\lambda h}} \right) + R_{22}(0) + \left(e^{iu} + e^{-iu} \right) R_{22}(1) + \left(e^{2iu} + e^{-2iu} \right) R_{22}(2) + \left(e^{3iu} + e^{-3iu} \right) R_{22}(3) \right].$$

Теперь докажем центральную предельную теорему.

Теорема 5.1. Случайный вектор

$$\vec{Z}(n) = \left(\frac{1}{\sqrt{n-1}} \sum_{k=0}^{n-2} \zeta_k(1) - \sqrt{n-1}E\zeta_k(1); \frac{1}{\sqrt{n-3}} \sum_{k=0}^{n-4} \zeta_k(3) - \sqrt{n-3}E\zeta_k(3)\right)$$

имеет асимптотически нормальное распределение с параметрами $(0; 2\pi\varphi_Z(0)).$

Доказательство. Покажем, что к процессу $\{Z_k\}_{k=0}^{\infty}$ применима теорема [9, с.242]. Условия 1 и 2 для $\{Z_k\}_{k=0}^{\infty}$ проверяются так же, как и при доказательстве теоремы 4.1.

Проверим выполнение условия 3. Так как $1 - e^{-iu}e^{-\lambda h}$ отлично от нуля при $u \in [-\pi; \pi]$, то спектральная плотность $\varphi_Z(u)$ непрерывна и ограничена. Покажем теперь, что det $\varphi_Z(0) \neq 0$. Найдем $\varphi_{pq}(0)$, p, q = 1; 2.

$$\begin{split} \varphi_{11}(0) &= \frac{1}{2\pi} \left[\frac{4\theta^4 h^2}{\lambda^2} e^{-\lambda h} \left(1 - e^{-\lambda h} \right) + \frac{8\theta^4}{\lambda^2} \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) - h e^{-\lambda h} \right)^2 \right. \\ &+ \left(\frac{2\theta^2}{\lambda} \left(h - \frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) \right) + \sigma^2 h \right)^2 + \frac{4\theta^4}{\lambda^3} \left(1 - e^{-\lambda h} \right)^2 \\ &\times \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) - h e^{-\lambda h} \right) - \frac{3\theta^4}{\lambda^4} \left(1 - e^{-\lambda h} \right)^4 \right]; \end{split}$$

$$\varphi_{12}(0) = \frac{1}{2\pi} \left[\frac{8\theta^4 h}{\lambda^2} e^{-2\lambda h} \left(1 - e^{-\lambda h} \right) \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) - h e^{-\lambda h} \right) \right. \\ \left. + \frac{4\theta^4}{\lambda^3} e^{-\lambda h} \left(1 - e^{-\lambda h} \right)^2 \left(h - \frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) \right) \right. \\ \left. + \frac{2\theta^4 h^2}{\lambda^2} e^{-2\lambda h} \left(1 - e^{-2\lambda h} \right) + \frac{\theta^4}{\lambda^4} \left(1 - 5e^{-2\lambda h} \right) \left(1 - e^{-\lambda h} \right)^4 \right];$$

 $\varphi_{21}(0) = \varphi_{12}(0);$

$$\begin{aligned} \varphi_{22}(0) \\ &= \frac{1}{2\pi} \left[\frac{4\theta^4 h^2}{\lambda^2} e^{-3\lambda h} \left(1 - e^{-\lambda h} \right) + \frac{8\theta^4}{\lambda^2} e^{-2\lambda h} \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) - h e^{-\lambda h} \right)^2 \right. \\ &+ \left(\frac{2\theta^2}{\lambda} \left(h - \frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) \right) + \sigma^2 h \right)^2 \\ &+ \frac{4\theta^4}{\lambda^3} e^{-4\lambda h} \left(1 - e^{-\lambda h} \right)^2 \left(\frac{1}{\lambda} \left(1 - e^{-\lambda h} \right) \\ &- h e^{-\lambda h} \right) + \frac{\theta^4}{\lambda^4} \left(2 + 2e^{-2\lambda h} - 7e^{-4\lambda h} \right) \left(1 - e^{-\lambda h} \right)^4 \right]. \end{aligned}$$

Докажем, что $\det \varphi_Z(0) > 0$. Заметим, что $\det \varphi_Z(0) > \det \tilde{\varphi}_Z(0) = \tilde{\varphi}_{11}(0)\tilde{\varphi}_{22}(0) - \varphi_{12}^2(0)$, где $\tilde{\varphi}_{11}(0)$ и $\tilde{\varphi}_{22}(0)$ – значения $\varphi_{11}(0)$ и $\varphi_{22}(0)$ при $\sigma = 0$. Поэтому достаточно показать, что $\det \tilde{\varphi}_Z(0) > 0$. Для краткости положим h = 1 и обозначим $v = e^{\lambda} - 1$. Тогда

$$\frac{2\pi\lambda^4}{\theta^4}e^{4\lambda}\tilde{\varphi}_{11}(0) = 4(v+1)^2(v^2+3v+3)\lambda^2 - 4v(v+1)(2v^2+9v+6)\lambda + 12v^2(v+1)^2 + 4v^3(v+1) - 3v^4;$$

$$\frac{2\pi\lambda^4}{\theta^4}e^{6\lambda}\varphi_{12}(0) = 2v(v+1)^2(v-2)\lambda^2 + 4v^2(v+1)^2(v+3)\lambda + v^3(v^3 - 2v^2 - 12v - 4);$$

$$\frac{2\pi\lambda^4}{\theta^4}e^{8\lambda}\tilde{\varphi}_{22}(0) = 4(v+1)^4(v+2+(v+1)^4)\lambda^2 - 4v(v+1)(4(v+1)^3) + 2(v+1)^6 + v)\lambda + 8v^2(v+1)^4 + 4v^2(v+1)^6 + 4v^3(v+1) + v^4(2(v+1)^4 + 2(v+1)^2 - 7).$$

Обозначим $D(\lambda) = \frac{4\pi^2 \lambda^8}{\theta^8} e^{12\lambda} \det \tilde{\varphi}_Z(0)$ и рассмотрим $D'(\lambda)$ — производную этой функции по переменной λ .

$$\begin{split} D'(\lambda) &= 120\lambda^5 + 288\lambda^4 + (920\lambda^5 + 2016\lambda^4 - 1152\lambda^3)v \\ &+ (3104\lambda^5 + 6296\lambda^4 - 8760\lambda^3 + 1728\lambda^2)v^2 \\ &+ (6228\lambda^5 + 12728\lambda^4 - 29472\lambda^3 + 13104\lambda^2 - 1152\lambda)v^3 \\ &+ (8420\lambda^5 + 20108\lambda^4 - 61266\lambda^3 + 42728\lambda^2 - 8592\lambda + 288)v^4 \\ &+ (8144\lambda^5 + 25984\lambda^4 - 91118\lambda^3 + 83180\lambda^2 - 26728\lambda + 2112)v^5 \\ &+ (5772\lambda^5 + 26264\lambda^4 - 102031\lambda^3 + 111754\lambda^2 - 48172\lambda + 6256)v^6 \\ &+ (3016\lambda^5 + 19856\lambda^4 - 85347\lambda^3 + 109484\lambda^2 - 58222\lambda + 10448)v^7 \\ &+ (1156\lambda^5 + 42728\lambda^4 - 51835\lambda^3 + 77890\lambda^2 - 49690\lambda + 11426)v^8 \\ &+ (312\lambda^5 + 4324\lambda^4 - 22053\lambda^3 + 38828\lambda^2 - 29540\lambda + 8504)v^9 \\ &+ (52\lambda^5 + 1164\lambda^4 - 6216\lambda^3 + 12736\lambda^2 - 11608\lambda + 4108)v^{10} \\ &+ (4\lambda^5 + 196\lambda^4 - 1046\lambda^3 + 2450\lambda^2 - 2674\lambda + 1176)v^{11} \\ &+ (16\lambda^4 - 80\lambda^3 + 210\lambda^2 - 266\lambda + 154)v^{12}. \end{split}$$

Теперь положим $V = (e^{\lambda} - 1)/\lambda = v/\lambda$ и перепишем $D'(\lambda)$. Получим

$$\begin{split} D'(\lambda) &= 288V^4 - 1152V^3 + 1728V^2 - 1152V + 288 + \\ &+ (120V^5 + 2016V^4 - 8760V^3 + 13104V^2 - 8592V + 2112)v \\ &+ (920V^5 + 6296V^4 - 29472V^3 + 42728V^2 - 26728V + 6256)v^2 \\ &+ (3104V^5 + 12728V^4 - 61266V^3 + 83180V^2 - 48172V + 10448)v^3 \\ &+ (6228V^5 + 20108V^4 - 91118V^3 + 111754V^2 - 58222V + 11426)v^4 \\ &+ (8420V^5 + 25984V^4 - 102031V^3 + 109484V^2 - 49690V + 8504)v^5 \\ &+ (8144V^5 + 26264V^4 - 85347V^3 + 77890V^2 - 29540V + 4108)v^6 \\ &+ (5772V^5 + 19856V^4 - 51835V^3 + 38828V^2 - 11608V + 1176)v^7 \\ &+ (3016V^5 + 42728V^4 - 22053V^3 + 12736V^2 - 2674V + 154)v^8 \\ &+ (1156V^5 + 4324V^4 - 6216V^3 + 2450V^2 - 266V)v^9 \\ &+ (52V^5 + 196V^4 - 80V^3)v^{11} \\ &+ (4V^5 + 16V^4)v^{12} > 0, \end{split}$$

так как коэффициенты при степенях v строго положительны при $V \in (1; +\infty)$. Это означает, что $D(\lambda)$ строго возрастает. Поскольку D(0) = 0, то $D(\lambda) > 0$ при всех значениях $\lambda > 0$.

Таким образом, мы показали, что к процессу $\{Z_k\}_{k=0}^{\infty}$ применима центральная предельная теорема [9, с.242], согласно которой $\vec{Z} \xrightarrow{d} \Phi_{0,2\pi\varphi_Z(0)}$. Теорема 5.1 доказана.

Отметим, что построение доверительной области в случае, если все три параметра неизвестны, привело бы к необходимости доказать центральную предельную теорему для трехмерного процесса $\{Z_k\}_{k=0}^{\infty} = \{\dot{z}_k, \zeta_k(1), \zeta_k(3)\}_{k=0}^{\infty}$, где $\zeta_k(l) = (z_k - \bar{z})(z_{k+l} - \bar{z})$. Доказательство невырожденности матрицы спектральной плотности такого процесса еще более затруднительно, чем в предыдущем случае.

Пусть σ^2 известно, а λ и θ неизвестны. Построим асимптотическую доверительную область для вектора $\tau = (\lambda, \theta)^T$. Для этого рассмотрим уравнение

$$\begin{pmatrix} \theta^2 (1 - e^{-\lambda h})^2 / \lambda^2 \\ \theta^2 (1 - e^{-\lambda h})^2 e^{-2\lambda h} / \lambda^2 \end{pmatrix} = \begin{pmatrix} \bar{R}(1) \\ \bar{R}(3) \end{pmatrix},$$

с помощью которого построены оценки λ^* и θ^* . Обозначим матрицу слева через $G(\tau)$. Из теоремы 5.1 известно, что асимптотической корреляционной матрицей вектора $(\sqrt{n}(\bar{R}(1) - R(1), \sqrt{n}(\bar{R}(3) - R(3)))$ является матрица $\varphi_Z(0)$. Асимптотическую корреляционную матрицу $Q(\tau)$ для вектора $\tau = (\lambda^*, \theta^*)^T$ найдем по формуле

$$Q = [(G(\tau)')^{-1}]^T \varphi_Z(0) (G(\tau)')^{-1},$$

где $G(\tau)'$ — матрица производных $G(\tau)$ по λ и θ . Подставив в матрицу $Q(\tau)$ значения оценок, получим матрицу $Q(\tau^*)$. Согласно [7, с.325]

$$n(\tau^* - \tau)^T [Q(\tau^*)]^{-1}(\tau^* - \tau) \stackrel{d}{\to} \chi_2^2$$

Отсюда следует

$$\lim_{n \to \infty} P\{n(\tau^* - \tau)^T [Q(\tau^*)]^{-1}(\tau^* - \tau) < v_{\gamma}\} = 1 - \gamma,$$

где v_{γ} — квантиль уровня γ распределения χ^2 с двумя степенями свободы. Пусть для краткости $Q(\tau^*) = Q^*$. Таким образом, доверительная область для вектора $\tau = (\lambda, \theta)^T$ задается уравнением:

$$\begin{aligned} (\lambda^* - \lambda)((Q^*)_{11}^{-1}(\lambda^* - \lambda) + (Q^*)_{21}^{-1}(\theta^* - \theta)) + (\theta^* - \theta)((Q^*)_{12}^{-1}(\lambda^* - \lambda) \\ + (Q^*)_{22}^{-1}(\theta^* - \theta)) < \frac{v_{\gamma}}{n}. \end{aligned}$$

Для построения доверительных интервалов для λ и θ воспользуемся тем, что

$$(\tau^* - \tau)^T \sqrt{n} (Q^*)^{-1/2} (\tau^*) \stackrel{d}{\to} \Phi_{0,E}$$

([7, с.325]). Таким образом,

$$\lambda^{\pm} = \lambda^{*} \pm \frac{u_{\gamma} \sqrt{(Q^{*})_{11}^{-1}}}{\sqrt{n}},$$
$$\theta^{\pm} = \theta^{*} \pm \frac{u_{\gamma} \sqrt{(Q^{*})_{22}^{-1}}}{\sqrt{n}}.$$

Применим предложенные методы оценивания к траекториям процесса $S(\tau)$, построенным с помощью компьютерной имитации. Построим БПИ с шагом h = 1, продолжительностью 200, 500, 1000 и 2000 измерений. В каждом случае будем рассматривать по 100 различных траекторий, для которых истинные значения параметров равны $\lambda = 0.5, \theta = 0.3, \sigma^2 = 0.01$. Для доверительных интервалов выбран уровень значимости $\gamma = 0.95$. В таблице 1 представлены выборочное среднее *a* и выборочная дисперсия s^2 полученных оценок, а также указано m — количество случаев, когда истинное значение параметра не попало в доверительный интервал.

Таблица 1.										
	λ			σ^2			θ^2			
n	a	s^2	m	a	s^2	m	a	s^2	m	
200	0.4764	0.0221	7	0.0093	$0.4321 \cdot 10^{-3}$	4	0.0828	$0.0988 \cdot 10^{-3}$	6	
500	0.5602	0.0074	6	0.0133	$0.2208 \cdot 10^{-3}$	5	0.0792	$0,0332 \cdot 10^{-3}$	5	
1000	0.5189	0.0124	5	0.0112	$0.0440 \cdot 10^{-3}$	3	0.0878	$0,0646 \cdot 10^{-3}$	4	
2000	0.4844	0.0056	5	0.0102	$0.0886 \cdot 10^{-3}$	4	0.0895	$0,0314 \cdot 10^{-3}$	4	

Пример показывает, что для выбранных значений параметров мы можем получить приемлемые оценки параметров (относительные погрешности не превосходят 5%), произведя 1000 и более наблюдений, что означает в среднем 500 и более смен тренда. Доверительные интервалы при этом соответствуют номинальному уровню значимости даже для меньших объемов выборки.

6. Выводы

Для параметров λ , θ , σ^2 модели Самуэльсона с телеграфным трендом построены оценки, определенные соотношениями (3.1), (3.2), (3.3). Доказана несмещенность, состоятельность с вероятностью 1 и в среднем квадратическом оценки $\sigma^{*2}(n)$, и сильная состоятельность оценок $\lambda^*(n)$ и $\theta^*(n)$. Доказаны теоремы об асимптотической нормальности величин

$$\Theta^{(1)}(n) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(z_k + \frac{\sigma^2 h}{2} \right), \ \Theta^2(n) = \frac{1}{\sqrt{n-1}} \sum_{k=0}^{n-2} \left(\mathring{z}_k \mathring{z}_{k+1} - R_z(1) \right),$$

которые использованы для построения доверительных интервалов. Доказано, что почти для каждой траектории наблюдаемого процесса такие интервалы могут быть построены, при условии, что произведено достаточное количество наблюдений. В случае небольшого объема данных оценки и доверительные интервалы могут оказаться довольно неточными, однако, их точность будет возрастать с ростом объема выборки.

Литература

- P. A. Samuelson, Rational theory of warrant pricing // Industrial Management Review, 6 (1965), 13–31.
- [2] R. S. Merton, Option pricing when underlying stock returns are discontinuous // J. Financial Economics, 3 (1976), 125–144.
- [3] В. М. Радченко, Хеджування з найменшою варіацією в пуассонові випадкові моменти // Теорія ймовірностей та математична статистика, 78 (2008), 159– 174.
- [4] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options // Rev. Financial Studies, 6 (1993), No. 2, 327–343.
- [5] Г. Л. Бухбиндер, К. М. Чистилин, Описание российского фондового рынка в рамках модели Гестона // Мат. моделирование, 17 (2005), No. 10, 31–38.
- [6] А. А. Хархота, Свойства модели Самуэльсона с телеграфным трендом // Труды ИПММ НАН Украины 27 (2013), 217–225.
- [7] А. А. Боровков, Математическая статистика, М.: Наука, 1984.
- [8] А. Н. Ширяев, Вероятность, М.: Наука, 1980.

Мельник

[9] Ю. А. Розанов, Стационарные случайные процессы, М.: Наука, 1990.

Сведения об авторах

Анна	Институт прикладной математики
Александровна	и механики НАН Украины
Хархота	E-Mail: annaharhota@yandex.ru
Сергей	s.a.melnik@yandex.ua
Анатольевич	