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We consider the n2 × n2 real symmetric and hermitian matrices Mn,
which are equal to the sum mn of tensor products of the vectors Xµ =
B(Y µ⊗Y µ), µ = 1, . . . , mn, where Y µ are i.i.d. random vectors from Rn(Cn)
with zero mean and unit variance of components, and B is an n2×n2 positive
definite non-random matrix. We prove that if mn/n2 → c ∈ [0,+∞) and
the Normalized Counting Measure of eigenvalues of BJB, where J is defined
below in (2.6), converges weakly, then the Normalized Counting Measure of
eigenvalues of Mn converges weakly in probability to a non-random limit,
and its Stieltjes transform can be found from a certain functional equation.
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1. Introduction

Sample covariance matrices appeared initially in statistics in the 1920s–1930s.
Nowadays these random matrices are widely used in statistical mechanics, proba-
bility theory and statistics, combinatorics, operator theory and theoretical com-
puter science in mathematics, as well as in telecommunication theory, qualitative
finances, structural mechanics, etc. (see, e.g., [2]).

We consider the sample covariance matrices of the form

Mn =
1
n

XTX∗, (1.1)

where X is an n×m matrix whose entries are i.i.d. random variables such that

E{Xij} = 0, E{X2
ij} = 1, (1.2)
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and T is an m×m positive definite matrix. We begin considering the ensemble
of random matrices with studying Normalized Counting Measure of eigenvalues
which is defined by the formula

Nn(∆) = Card{i ∈ [1, n] : λi ∈ ∆}/n,

where

−∞ < λ1 ≤ . . . ≤ λn < ∞

are the eigenvalues of Mn. Also let σm be the Normalized Counting Measure of
eigenvalues {τi}m

i=1 of T .
The first rigorous result on the model (1.1) was obtained in [9], where it was

proved that if {mn} is a sequence of positive integers such that

mn → +∞, n → +∞, cn = mn/n → c ∈ [0, +∞),

and the sequence σm converges weakly to the probability measure σ,

lim
n→∞σm = σ,

then the Normalized Counting Measure Nn of eigenvalues Mn converges weakly
in probability to a non-random measure N (N(R) = 1). The Stieltjes transform
f of N ,

f(z) =
∫

N(dλ)
λ− z

, =z 6= 0,

is uniquely determined by the equation

f(z) =
(
c

∫
τσ(dτ)

1 + τf(z)
− z

)−1
.

By now, a number of ensembles have been considered. We mention two versions
of ensembles of sample covariance matrices that are similar to (1.1). The first is

BXX∗B, (1.3)

where X is an n×m matrix whose entries are i.i.d. random variables satisfying
(1.2) and B is an n×n matrix. Note that while studying the eigenvalues of (1.3)
we can consider the matrices X∗B2X instead of (1.3) coinciding with (1.1) for
T = B2. The second version is

(Rn + aXn)(Rn + aXn)∗, (1.4)
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where Xn is an n×m matrix whose entries are i.i.d. random variables satisfying
(1.2), a > 0 constant, and Rn is an n×m random matrix independent of Xn.

Numerous results and references on the eigenvalue distribution of these ran-
dom matrices can be found in [3], [4].

The paper is organized as follows. In Section 2 we present our result. In
Section 3, we give the proof of the main theorem and in Section 4 we prove all
the technical results which we use in Section 3. We denote by C, c, etc., various
constants appearing below, which can be different in different formulas.

2. Problem and Main Results

Let us define multi-indexes i = (i1, i2), where i1, i2 = 1, n, and inversion in
multi-indexes ī = (i2, i1). Let

B = Bn = {Bi,j} (2.1)

be an n2 × n2 real symmetric or hermitian matrix.
We consider the real symmetric or hermitian random matrices

Mn =
1
n2

m∑

µ=1

Xµ ⊗ X̄µ, (2.2)

where the vectors Xµ are given by the formula (cf. (1.3))

Xµ = B(Y µ ⊗ Y µ), µ = 1, . . . , m, (2.3)

and Y µ = {Y µ
i }n

i=1, µ = 1, . . . , m, are the vectors of Rn (or Cn) such that {Y µ
i }

(or {<Y µ
i ,=Y µ

i }) are i.i.d. random variables for all i = 1, n, µ = 1,m, and

E{Y µ
i } = 0, E{Y µ

i Y ν
k } = δikδµν (2.4)

in the real symmetric case, and

E{Y µ
i } = E{Y µ

i Y ν
k } = 0, E{Y µ

i Ȳ µ
k } = δik (2.5)

in the hermitian case. Introduce the n2 × n2 matrix

Jp,q = δpq + δp̄q, (2.6)

and denote by Nn and σn the Normalized Counting Measure of eigenvalues of
Mn and BJB, respectively.

In what follows, by saying that the matrix is bounded, we will mean that its
euclidian (or hermitian) norm | . . . | < c for some constant c. The main result of
the paper is
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Theorem 1. Let Mn be a random matrix defined by (2.1)–(2.2). Assume that
the sequence σn converges weakly to a probability measure σ,

lim
n→∞σn = σ,

B is bounded uniformly in n, and {mn} is a sequence of positive integers such
that

mn → +∞, n → +∞, cn = mn/n2 → c ∈ [0,+∞).

Then the Normalized Counting Measures Nn of eigenvalues of Mn converge weakly
in probability to a non-random probability measure N , and if f (0) is the Stieltjes
transform of σ, then the Stieltjes transform f of N is uniquely determined by the
equation

f(z) = f (0)

(
z

c− zf(z)− 1

)
(c− zf(z)− 1)−1

in the class of Stieltjes transforms of probability measures.

3. Proof of the Main Result

We will prove the theorem for the technically simpler case of hermitian matri-
ces. The case of real symmetric matrices is analogous. The next Proposition sets
a one-to-one correspondence between the finite nonnegative measures and their
Stieltjes transforms.

Proposition 1. Let f be the Stieltjes transform of a finite nonnegative mea-
sure m. Then:

(i) f is analytic in C\R, and f(z) = f(z);
(ii) =f(z)=z > 0 for =z 6= 0;
(iii) |f(z)| ≤ m(R)/|=z|, in particular, lim

η→+∞ η|f(iη)| ≤ ∞;

(iv) for any function f possessing the above properties there exists a nonneg-
ative finite measure m on R such that f is its Stieltjes transform, and

lim
η→+∞ η|f(iη)| = m(R); (3.1)

(v) if ∆ is an interval of R whose edges are not atoms of the measure m, then
we have the Stieltjes-Perron inversion formula

m(∆) = lim
ε→+0

1
π

∫

∆

=f(λ + iε)dλ;
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(vi) the above one-to-one correspondence between the finite nonnegative mea-
sures and their Stieltjes transforms is continuous if we use the uniform conver-
gence of analytic functions on a compact set of infinite cardinality of C\R for
Stieltjes transforms and the vague convergence for measures in general and the
weak convergence of probability measures if the r.h.s. of (3.1) is 1;

For the proofs of assertions see [1, Section 59] and [5]. Now recall some facts
from linear algebra on the resolvent of real symmetric or hermitian matrix:

Proposition 2. Let M be a real symmetric (hermitian) matrix and

GM (z) = (M − z)−1,=z 6= 0,

be its resolvent. We have:
(i)

|GM (z)| ≤ |=z|−1; (3.2)

(ii) if G1(z) and G2(z) are the resolvents of real symmetric (hermitian) ma-
trices M1 and M2, respectively, then

G2(z) = G1(z)−G1(z)(M2 −M1)G2(z); (3.3)

(iii) if Y ∈ Rn(Cn), then

GM+Y⊗Ȳ = GM − GM (Y ⊗ Ȳ )GM

1 + (GMY, Y )
, =z 6= 0. (3.4)

In what follows, we need

Y
µ(τ)
i = Y µ

i 1|Y µ
i |≤τ

√
n , Y

µ(τ)◦
i = Y

µ(τ)
i −E{Y µ(τ)

i }.
It is easy to see that these random variables satisfy the conditions

E{Y µ(τ)◦
i } = E{(Y µ(τ)◦

i )2} = 0, E{|Y µ(τ)◦
i |2} = 1 + o(1), n → +∞, (3.5)

E{|Y µ(τ)◦
i |k} ≤ n(k−2)/2τk−2. (3.6)

Similarly to Xµ and Mn, we can define

Xµ(τ) = B(Y µ(τ)◦ ⊗ Y µ(τ)◦), M τ
n =

1
n2

m∑

µ=1

Xµ(τ) ⊗ X̄µ(τ).

Consider the n2 × n2 matrices

Kn =
1
n2

m∑

µ=1

Cµ ⊗ C̄µ, K̂n =
1
n2

m∑

µ=1

Cµ ⊗ X̄µ,
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where

Cµ
i =

∑
p

Bi,p(Y µ
p1

Y µ
p2

(1− δp1,p2) + Y µ(τ)◦
p1

Y µ(τ)◦
p2

δp1,p2). (3.7)

Here and below
∑
p

=
n∑

p1=1

n∑

p2=1

.

We need the following simple fact, a version of the min-max principle of linear
algebra (see [7], Section I.6.10).

Proposition 3. Let M1 and M2 be the n × n hermitian matrices and N1

and N2 be the Normalized Counting Measures of their eigenvalues. Then for any
interval ∆ ⊂ R, we have

|N1(∆)−N2(∆)| ≤ rank(A1 −A2)/n. (3.8)

Let Nn, N
(1)
n and N̂

(1)
n be the Normalized Counting Measures of eigenvalues

of matrices Mn, Kn and K̂n, respectively. Then, according to (3.8) and (3.7), we
have

|Nn −N (1)
n | ≤ |Nn − N̂ (1)

n |+ |N̂ (1)
n −N (1)

n |
≤ rank(Mn − K̂n)/n2 + rank(K̂n −Kn)/n2

≤ 1
n2

(
rank{

∑
p

Bi,p{
m∑

µ=1

(Y µ(τ)◦
p1

Y µ(τ)◦
p2

− Y µ
p1

Y µ
p2

)δp1,p2X̄
µ
q}p,q}i,q

+ rank{
∑
q

{
m∑

µ=1

Cµ
p(Ȳ µ(τ)◦

q1
Ȳ µ(τ)◦

q2
− Ȳ µ

q1
Ȳ µ

q2
)δq1,q2}p,qB̄q,i}p,i

)

≤ 1
n2

(
rank{

m∑

µ=1

(Y µ(τ)◦
p1

Y µ(τ)◦
p2

− Y µ
p1

Y µ
p2

)δp1,p2X̄
µ
q}p,q

+ rank{
m∑

µ=1

Cµ
p(Ȳ µ(τ)◦

q1
Ȳ µ(τ)◦

q2
− Ȳ µ

q1
Ȳ µ

q2
)δq1,q2}p,q

)
=

2
n

.

Lemma 1. Let G(1)(z) and Gτ (z) be the resolvents of the matrices Kn and
M τ

n , respectively. Then

1
n2
|E{Tr(G(1)(z)−Gτ (z))}| = o(1), n → +∞.

P r o o f. Consider the (n2 +m)× (n2 +m) block matrices M̃n and M̃ τ
n such

that

M̃n =
(

0 A∗

A 0

)
, M̃ τ

n =
(

0 (Aτ )∗

Aτ 0

)
, (3.9)
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where A, Aτ are the n2 ×m matrices, and

Ai,µ = n−1Cµ
i , Aτ

i,µ = n−1X
µ(τ)
i .

Denote by G̃(z) and G̃τ (z) the resolvents of the matrices M̃n and M̃ τ
n , respectively.

Using the formula of inversion of block matrix, we get

Tr(G(1)(z2)−Gτ (z2)) = −z

2
Tr(G̃(z)− G̃τ (z)). (3.10)

Now we should estimate the last expression. From (3.3), we have

|Tr(G̃− G̃τ )| = |Tr(G̃G̃τ (M̃n − M̃ τ
n))|

≤ (Tr(G̃G̃τ G̃∗G̃τ∗))1/2(Tr(M̃n − M̃ τ
n)(M̃∗

n − M̃ τ∗
n ))1/2.

Here and below we drop the argument z. Relations (3.2) and (3.9) imply

|Tr(G̃− G̃τ )| ≤ n

=z2
(Tr(2(A−Aτ )(A∗ − (Aτ )∗)))1/2

=
1

n=z2

(
2

m∑

µ=1

∑

i

(Cµ
i −X

µ(τ)
i )(C̄µ

i − X̄
µ(τ)
i )

)1/2

=
n

=z2

(
2

m∑

µ=1

∑

i,p,q

Bi,p(1− δp1,p2)(Y
µ
p1

Y µ
p2
− Y µ(τ)◦

p1
Y µ(τ)◦

p2
)

×Bq,i(1− δq1,q2)(Ȳ
µ
q1

Ȳ µ
q2
− Ȳ µ(τ)◦

q1
Ȳ µ(τ)◦

q2
)
)1/2

=
1
=z2

(
2

m∑

µ=1

∑

p1 6=p2
q1 6=q2

B2
q,p(Y µ

p1
Y µ

p2
Ȳ µ

q1
Ȳ µ

q2
− Y µ(τ)◦

p1
Y µ(τ)◦

p2
Ȳ µ

q1
Ȳ µ

q2

− Y µ
p1

Y µ
p2

Ȳ µ(τ)◦
q1

Ȳ µ(τ)◦
q2

+ Y µ(τ)◦
p1

Y µ(τ)◦
p2

Ȳ µ(τ)◦
q1

Ȳ µ(τ)◦
q2

)
)1/2

.

Notice that in view of (3.5) and (2.5), the entries where one of the indexes
{p1, p2, q1, q2} differs from others are equal to zero. Thus,

|Tr(G̃− G̃τ )| ≤ 1
=z2

(
2

m∑

µ=1

∑
p=q
p̄=q

B2
q,p(Y µ

p1
Y µ

p2
Ȳ µ

q1
Ȳ µ

q2
− Y µ(τ)◦

p1
Y µ(τ)◦

p2
Ȳ µ

q1
Ȳ µ

q2

− Y µ
p1

Y µ
p2

Ȳ µ(τ)◦
q1

Ȳ µ(τ)◦
q2

+ Y µ(τ)◦
p1

Y µ(τ)◦
p2

Ȳ µ(τ)◦
q1

Ȳ µ(τ)◦
q2

)
)1/2

.

Relations (3.5) and (2.5) imply

E{|Y µ
p1
|2|Y µ

p2
|2 − Y µ(τ)◦

p1
Y µ(τ)◦

p2
Ȳ µ

p1
Ȳ µ

p2
− Y µ

p1
Y µ

p2
Ȳ µ(τ)◦

p1
Ȳ µ(τ)◦

p2
+ |Y µ(τ)◦

p1
|2|Y µ(τ)◦

p2
|2}

= 1− (1 + o(1))− (1 + o(1)) + (1 + o(1)) = o(1).
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Combining all above, we get

1
n2
|E{Tr(G̃− G̃τ )}| < (2mTr(JB)2o(1))1/2

N=z2
=
√

2m

n=z2
o(1).

Finally, in view of (3.10), we have

1
n2
|E{Tr(G(z)(1) −Gτ (z))}| <

√
m√

2n|=z|o(1) = o(1).

It follows from Lemma 1 that for our purposes it suffices to prove Theorem 1
for the matrix M τ

n . Hence below we will assume that Mn is replaced by M τ
n . To

simplify the notations, we drop the index τ and denote

G(z) = (Mn − z)−1, Gµ(z) = G |Xµ=0, N = n2.

In the proof of the main theorem we need some results

Lemma 2. If F is a non-random N ×N matrix such that |F | ≤ c, then
(i)

E{(FGµXµ, Xµ)} = Tr(FGµBJB),

Var{N−1(FGµXµ, Xµ)} = o(1), n → +∞;
(3.11)

(ii)

1
N
|TrF (G−Gµ)| = O(N−1); (3.12)

(iii)

Var{N−1Tr(FG)} ≤ c

N
. (3.13)

The proof of the lemma is given in Section 4..
According to (3.4), we have

Gi,j = Gµ
i,j −N−1 (GµXµ)i(GµX̄µ)j

1 + N−1(GµXµ, Xµ)
.

Hence,

(GXµ)i =
(GµXµ)i

1 + N−1(GµXµ, Xµ)
.
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Take any N ×N bounded matrix K. Then

1
N

Tr(KGM) =
1

N2

m∑

µ=1

∑

i,j

Kj,i(GXµ)iX̄
µ
j

=
1

N2

m∑

µ=1

∑

j

(KGµXµ)jX̄
µ
j

1 + N−1(GµXµ, Xµ)
=

1
N2

m∑

µ=1

(KGµXµ, Xµ)
1 + N−1(GµXµ, Xµ)

. (3.14)

To analyze the r.h.s. of (3.14), let us show first that if C and D are random
variables such that E{|C|2 + |D|2} < c and

C̄ = E{C}, C◦ = C − C̄, D̄ = E{D}, D◦ = D − D̄,

then

E
{ C
D

}
=
C̄
D̄ + O

(
E

{ |C◦|2
|D̄|2 +

|D◦|2
|D̄|2

})
. (3.15)

Indeed,

C
D =

C̄ + C◦
D̄ − (C̄ + C◦)D◦

D̄2
+ O

((D◦
D̄

)3
)

.

Thus,

E
{ C
D

}
=
C̄
D̄ + E

{C◦D◦
D̄2

}
+ O

( |D◦|3
D̄3

)
≤ C̄
D̄ + E

{ |C◦|2
|D̄|2 + c

|D◦|2
|D̄|2

}
.

The last inequality implies (3.15).
Let C = N−1(KGµXµ, Xµ), D = 1 + 2N−1(GµXµ, Xµ). Since the matrix K

is bounded, it follows from (3.11) that

Eµ{|C◦|2} = Eµ{|D◦|2} = o(1), n → +∞.

This, (3.14) and (3.15) imply

1
N

E{Tr(KGM)} =
1
N

m∑

µ=1

(
E

{ N−1Tr(KGµBJB)
1 + N−1Tr(GµBJB)

}
+ o(1)

)
. (3.16)

In the r.h.s. of (3.16) result (3.12) allows us to replace Gµ with G,

1
N

E{Tr(KGM)} = E
{cnN−1Tr(KGBJB)

1 + N−1Tr(GBJB)
+ o(1))

}
. (3.17)
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The last step is to replace N−1Tr(KGBJB) and N−1Tr(GBJB) in (3.17) with
their expectations. We use again (3.15) with C = N−1Tr(KGBJB), D = 1 +
N−1Tr(GBJB). It follows from (3.17) and (3.13) that

1
N

E{Tr(KGM)} =
cnN−1E{Tr(KGBJB)}
1 + N−1E{Tr(GBJB)} + o(1). (3.18)

Notice that

1
N

E{Tr(KGM)} =
1
N

E{Tr(K(G(M − z) + Gz))} =
1
N

E{TrK}+
z

N
E{Tr(KG)}.

This and (3.18) imply that for any bounded matrix K

1
N

E{TrK} =
1
N

E{Tr(KG(cnb−1
n BJB − z))}+ o(1), (3.19)

where

bn = 1 + N−1E{Tr(GBJB)}. (3.20)

Taking K = (cnb−1
n BJB − z)−1, we obtain

1
N

E{Tr(cnb−1
n BJB − z)−1} = fn(z) + o(1), (3.21)

where

gn(z) =
1
N

Tr(G(z)), fn(z) = E{gn(z)}.

It follows from (3.19) with K = I that

1
N

E{Tr(I + zG)} =
cn

bn
(bn − 1) + o(1).

Then we get

1 + zfn(z) = cn(1− 1
bn

) + o(1).

Now we can find bn:

bn =
cn

cn − zfn(z)− 1 + o(1)
. (3.22)

This and (3.21) yield

fn(z) = f (0)
n

(
z

cn − zfn(z)− 1

)
(cn − zfn(z)− 1)−1 + o(1), (3.23)
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where

f (0)
n (z) =

1
N

E{Tr(BJB − z)−1}.

The sequence {fn} consists of the functions that are analytic and uniformly
bounded in n and z. Hence, there exists an analytic in C\R function f and
a subsequence {fnj} that converges to f uniformly on any compact set of C\R.
In addition, we have

=fn(z)=z > 0, =z 6= 0,

and thus =f(z)=z ≥ 0, =z 6= 0. By Proposition 1(vi) and the hypothesis of
the theorem on the weak convergence of the sequence σn to σ, the sequence f

(0)
n

of their Stieltjes transforms consists of analytic in C\R functions that converge
uniformly on a compact set of C\R to the Stieltjes transform f (0) of the limiting
counting measure σ of matrices BJB. This allows us to pass to the limit n → +∞
in (3.23) and to obtain that the limit f of any converging subsequence of the
sequence fn satisfies the functional equation

f(z) = f (0)

(
z

c− zf(z)− 1

) (
c− zf(z)− 1

)−1
, (3.24)

and =f(z)=z ≥ 0, =z 6= 0. The proof of the uniqueness of solution of the
equation in the class of functions, analytic for =z 6= 0 and such that =f(z)=z ≥
0, =z 6= 0, is analogues to that from [9]. Hence, the whole sequence fn converges
uniformly on a compact set of C\R to the unique solution f of the equation. Let
us show that the solution possesses the properties =f(z)=z ≥ 0, =z 6= 0 and
lim

η→+∞ η|f(iη)| = 1. Assume that =f(z0) = 0, =z0 6= 0. Then (3.24) implies that

=
∫

dσ(λ)
(c− 1)λ− z0(f(z0)− 1)

= C=f (0)(z̃) = 0,

where C is some real constant and =z̃ 6= 0. This is impossible because, according
to Proposition 1(ii), =f (0)(z) is strictly positive for any nonreal z. Since |f(iη)| <
η−1, we have

lim
η→+∞ η|f(iη)| = lim

η→+∞

∫
ηdσ(λ)

(c− 1)λ− iη − iηf(iη)
= 1.

This and Proposition 1(iv) imply that f is the Stieltjes transform of a probability
measure.

92 Journal of Mathematical Physics, Analysis, Geometry, 2017, vol. 13, No. 1



Distribution of Eigenvalues of Sample Covariance Matrices

4. Proofs of Lemma 2

(i) It follows from (2.5) that

Eµ{(FGµXµ, Xµ)} = Tr(FGµBJB).

Denote

rµ
n = (FGµXµ, Xµ)− Tr(FGµBJB).

We need to show that Eµ{(N−1rµ)2} = o(1), n → +∞. Rewrite

rµ
n =

∑

i,j,p,q

(FGµ)i,jBj,pBq,i(Y µ
p1

Y µ
p2

Ȳ µ
q1

Ȳ µ
q2
− Jp,q)

=
∑

i,j

(FGµ)i,j
(∑

p

Bj,pBp,i

(
|Y µ

p1
|2|Y µ

p2
|2 − 1

)

+
∑
p

Bj,pBp̄,i

(
|Y µ

p1
|2|Y µ

p2
|2 − 1

)
+

∑

p 6=q
p̄ 6=q

Bj,pY µ
p1

Y µ
p2

Bq,iȲ
µ
q1

Ȳ µ
q2

)

=
∑

i,j

(FGµ)i,j
(∑

p

Bj,p(JB)p,i

(
|Y µ

p1
|2|Y µ

p2
|2 − 1

)

+
∑

p6=q
p̄6=q

Bj,pY µ
p1

Y µ
p2

Bq,iȲ
µ
q1

Ȳ µ
q2

)
.

Since Gµ is independent of Y µ, we obtain

Eµ{(N−1rµ)2} =
1

N2
Eµ

{( ∑

i,j

(FGµ)i,j
)2(∑

p

Bj,p(JB)p,i

(
|Y µ

p1
|2|Y µ

p2
|2 − 1

)

+
∑

p6=q
p̄6=q

Bj,pY µ
p1

Y µ
p2

Bq,iȲ
µ
q1

Ȳ µ
q2

)2}

=
1

N2
Eµ

{∑

i,j

∑

i′,j′
(FGµ)i,j(F̄ Ḡµ)i′,j′

×
( ∑

p 6=q
p̄ 6=q

∑

p′ 6=q′
p̄′ 6=q′

Bj,pY µ
p1

Y µ
p2

Bq,iȲ
µ
q1

Ȳ µ
q2

B̄j′,p′ Ȳ
µ
p′1

Ȳ µ
p′2

B̄q′,i′Y
µ
q′1

Y µ
q′2

}

+
1

N2
Eµ

{∑

i,j

∑

i′,j′
(FGµ)i,j ¯(FGµ)i′,j′
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×
∑
p

∑

p′
Bj,p(JB)p,iB̄j′,p′(JB̄)p′,i′

(
|Y µ

p1
|2|Y µ

p2
|2 − 1

)(
|Y µ

p′1
|2|Y µ

p′2
|2 − 1

)}

+
2

N2
Eµ

{∑

i,j

∑

i′,j′
(FGµ)i,j ¯(FGµ)i′,j′

×
∑
p

∑

p′ 6=q′
p̄′ 6=q′

Bj,p(JB)p,i

(
|Y µ

p1
|2|Y µ

p2
|2 − 1

)
B̄j′,p′ Ȳ

µ
p′1

Ȳ µ
p′2

B̄q′,i′Y
µ
q′1

Y µ
q′2

)}

=:
1

N2
(R1 + R2 + R3).

Denote

H = BFGµB,

and introduce an N ×N matrix ∆ such that

∆i,j = δi1j2δi2j1 .

It is easy to check that for any N ×N matrix A

Ai2i1,j1j2 = (∆A)i,j,
Ai1i2,j2j1 = (A∆)i,j.

(4.25)

Let us define the set E = {p1, p2, q1, q2, p
′
1, p

′
2, q

′
1, q

′
2}. Notice that if in the set E

there are more than 4 different numbers, then

Eµ{Y µ
p1

Y µ
p2

Ȳ µ
q1

Ȳ µ
q2

Ȳ µ
p′1

Ȳ µ
p′2

Y µ
q′1

Y µ
q′2
} = 0.

Hence we need to consider the sets I1, I2, I3 and I4 of all multi-indexes {p,q,p′,q′}
of the special form:

I1 =
{
{p,q,p′,q′} = {(a, b), (a, c), (d, b), (d, c)}

}
,

I2 =
{
{p,q,p′,q′} = {(a, b), (c, d), (a, b), (c, d)}

}
,

where the numbers a, b, c and d are all pairwise different,

I3 =
{
{p,q,p′,q′} : there are 3 different numbers (i, j, k) in the set E

}
,

I4 =
{
{p,q,p′,q′} : there are 2 different numbers (i, j) in the set E

}

or any inversion in the multi-indexes of the same form. Since B, F , ∆ and Gµ

(in view of (3.2)) are bounded, then there exists a constant c such that |H| < c.
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Hence, in view of (4.25) and (3.6),

R1 ≤ Eµ

{∑

I1

Hp,qH̄p′,q′ |Y µ
a |2|Y µ

b |2|Y µ
c |2|Y µ

d |2 +
∑

I2

Hp,qH̄p′,q′ |Y µ
a |2|Y µ

b |2|Y µ
c |2|Y µ

d |2

+
∑

I3

Hp,qH̄p′,q′(|Y µ
i |4|Y µ

j |2|Y µ
k |2 + Y µ

i |3|Y µ
j |3|Y µ

k |2)

+
∑

I4

Hp,qH̄p′,q′(|Y µ
i |4|Y µ

j |4 + |Y µ
i |6|Y µ

j |2 + |Y µ
i |5|Y µ

j |3)
}

≤ c̃
( ∑

p1,p′1,p2,q2

(H + ∆H + H∆ + ∆H∆)p1p2,q1q2(H̄ + ∆H̄ + H̄∆ + ∆H̄∆)p′1p2,p′1q2

+ Tr(H + ∆H + H∆ + ∆H∆)(H + ∆H + H∆ + ∆H∆)∗

+ |I3|c2nτ2 + |I4|c2n2τ4
)
.

Since ∆2 = I and |I3| = c1n
3, |I2| = c2n

2, we have

R1 ≤ c̃
( ∑

p1,p′1,p2,q2

Cp1p2,q1q2C
∗
p′1p2,p′1q2

+ TrHH∗ + Tr∆HH∗ + cn4τ
)
,

where

C = H + ∆H + H∆ + ∆H∆.

Denote by C̃ an n× n matrix with the coordinates

C̃p2q2 =
n∑

p1=1

Cp1p2,p1q2 .

Then

R1 ≤ c
(
TrC̃C̃∗ + TrHH∗ + Tr∆HH∗ + cn4τ

)
.

It is easy to see that |C̃| < n|H| < nc, hence

R1 ≤ c(n3 + n2 + n4τ).

Divide the set {(p,p′)} of all possible indexes into four sets {Ii}4
i=1 such that

(p,p′) ∈ Ii if there are exactly i different numbers in the set (p1, p2, p
′
1, p

′
2). The

matrices H and J are bounded and, in view of (3.5) and (3.6), we have

R2 ≤ cE
{∑

I1

|Y µ
1 |8 +

∑

I2

(|Y µ
1 |4|Y µ

2 |4 + |Y µ
1 |6|Y µ

2 |2) +
∑

I3

|Y µ
1 |4|Y µ

2 |2|Y µ
3 |2

+
∑

I4

(|Y µ
1 |2|Y µ

2 |2 − 1)(|Y µ
3 |2|Y µ

4 |2 − 1)
}

= c(|I1|n3τ6 + |I2|n2τ4 + |I3|nτ2 + |I4|o(1)) = cn4(τ + o(1)).
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Notice that if the set of indexes {p1, p2, p
′
1, p

′
2, q

′
1, q

′
2} has more than 3 or less than

2 different numbers, then

E
{(
|Y µ

p1
|2|Y µ

p2
|2 − 1

)
Ȳ µ

p′1
Ȳ µ

p′2
Y µ

q′1
Y µ

q′2

}
= 0.

Other terms are divided into the sets I1 (3 different numbers) and I2 (2 different
numbers). Similarly to the previous case,

R3 ≤ c
(∑

I1

nτ2 +
∑

I2

n2τ4
)

= cn4τ.

Finally, we get

Eµ{(N−1rµ)2} ≤ o(1) + cτ.

Since this inequality is true for every τ , we have

Eµ{(N−1rµ)2} = o(1).

(ii) According to (3.4),

(F (G−Gµ))i,j = −N−1(FGµXµ)i(GµXµ)j
1 + N−1(GµXµ, Xµ)

.

Hence,

|Tr(F (G−Gµ))| =
∣∣∣∣
N−1(FGµXµ, GµXµ)
1 + N−1(GµXµ, Xµ)

∣∣∣∣ ≤
|F | |((Gµ)∗GµXµ, Xµ)|

|=(GµXµ, Xµ)| .

On the other hand, by the spectral theorem,

(GµXµ, Xµ) =
m−1∑

k=1

(vk, Xµ)2

λk − z
,

where {λk} are the eigenvalues of Gµ and {vk} are the eigenvectors of Gµ. Then

|=(GµXµ, Xµ)| = |=z|
m−1∑

k=1

|(vk, Xµ)|2
(λk − z)(λ∗k − z)

.

Besides,

((Gµ)∗GµXµ, Xµ) =
m−1∑

k=1

|(vk, Xµ)|2
(λk − z)(λ∗k − z)

.
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Finally, we get

1
N

TrF (G−Gµ) ≤ |F |
N |=z| = O(N).

(iii) To prove the lemma, we need the following statement of martingale
bounds (see [6] for results and references):

Lemma 3. Let {Y µ}m
µ=1 be a sequence of i.i.d random vectors of Rn(Cn).

Assume that the function φ : Rnm(Cnm) → C is a bounded Boreal function such
that

sup
X1,...,Xµ∈Rn(Cn)

|φ− φµ| ≤ c,

where φµ = φ |Xµ=0. Then

Var{φ(Y 1, . . . , Y µ)} ≤ 4c2m.

Take φ = Tr(FG). Then, using representation (3.4), we obtain

|φ− φµ| = |TrG− TrGµ| =
∣∣∣∣
N−1(GµFGµXµ, Xµ)
1 + N−1(GµXµ, Xµ)

∣∣∣∣ .

Similarly to the proof of the previous result, we have
∣∣∣∣
N−1(GµFGµXµ, Xµ)
1 + N−1(GµXµ, Xµ)

∣∣∣∣ ≤ c|=z|−1.

Thus,

|φ− φµ| ≤ c|=z|−1.

So, according to Lemma 3,

Var{gn} ≤ 4c2cn/N.
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